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Docking molecules into their respective 3D macromolecular targets is a widely used method
for lead optimization. However, the best known docking algorithms often fail to position the
ligand in an orientation close to the experimental binding mode. It was reported recently that
consensus scoring enhances the hit rates in a virtual screening experiment. This methodology
focused on the top-ranked pose, with the underlying assumption that the orientation/
conformation of the docked compound is the most accurate. In an effort to eliminate the scoring
function bias, and assess the ability of the docking algorithms to provide solutions similar to
the crystallographic modes, we investigated the most known docking programs and evaluated
all of the resultant poses. We present the results of an extensive computational study in which
five docking programs (FlexX, DOCK, GOLD, LigandFit, Glide) were investigated against 14
protein families (69 targets). Our findings show that some algorithms perform consistently
better than others, and a correspondence between the nature of the active site and the best
docking algorithm can be found.

Introduction

Structure-based drug design methods utilize knowl-
edge of the three-dimensional structure of a receptor
complexed with a lead molecule in an attempt to
optimize the bound ligand or a series of congeneric
molecules. Docking plays an important role in this
process by placing a molecule into the active site of the
target macromolecule in a noncovalent fashion. In that
light, docking can be viewed as a search or optimization
method which, given the degree of conformational
flexibility at the macromolecular level, can be a very
challenging problem.1-5 Regardless of the many dif-
ficulties, structure-based drug design methods have
become valuable tools in the design of new chemical
entities by attempting to predict and explain their
binding modes, when the active site is known. The
increasing number of X-ray, NMR, and model-built
structures of receptors and enzymes have made the
above methodologies quite useful in the pharmaceutical
industry.

Docking consists of two parts, namely, the accurate
prediction of the orientation (pose) of the bioactive
conformation into the binding pocket, and the estima-
tion of the tightness of target-ligand interactions
(scoring). Several approaches have been employed in an
attempt to solve the docking problem. Almost all current
docking programs perform flexible ligand docking, but
treat the receptor as rigid, with the exception of GOLD,
which applies some limited flexibility to the active site
side chains.6 The methods these programs are based
upon vary from incremental construction approaches,
such as FlexX,7 to shape-based algorithms (i.e., DOCK8),
genetic algorithms (GOLD6), systematic search tech-
niques (Glide9), and Monte Carlo simulations (Ligand-
Fit10).11

The number of target-ligand complexes that these
programs have reportedly been validated against varies
as well. FlexX was verified on a set of 19 protein-ligand
complexes in the original paper,7 with a subsequent
evaluation of a larger set of 200 complexes,12 while
GOLD was validated on 100 complexes.6 Most recently,
an even larger dataset of 305 protein-ligand complexes
was used to evaluate GOLD.13 Glide may have been
rigorously assessed internally, since it is an industrial
rather than an academic algorithm; however, no pub-
lished reports have appeared to date. LigandFit was
reported recently for 19 protein-ligand complexes,10

while DOCK has been verified on several targets over
the years;14-21 however, we are not aware of a compre-
hensive report in regard to its overall performance.

It was reported recently that docking programs are
able to predict experimental poses with deviations
averaging from 1.5 to 2 Å rms11,22 However, this has
not been our experience with the available docking
programs. Furthermore, in recent years a number of
papers exploring the performance of the docking pro-
grams in database searching have been published.11,23-25

These reports investigated the accuracy of the scoring
functions, after docking is completed, thus making the
underlying assumption that the docking procedure is
successful in identifying the experimental pose ac-
curately.26 Whether or not a docking program will affect
the hit rates of an in silico screening methodology
remains to be answered. However, prior to answering
the above question, one needs to know how accurate the
best-known docking programs are in finding experimen-
tal solutions for ligand-target complexes in a compre-
hensive and comparative fashion. Thus, a reference
study comparing the strengths and limitations of dock-
ing programs is still missing.

Consequently, we decided to explore whether docking
programs do indeed find experimental solutions for
target-ligand complexes. We also wished to explore
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which docking algorithms perform best for specific
receptor families, and what the ranking is of the
experimental binding mode of the ligand, when a
docking program is able to reproduce it. We have
performed an extensive computational study in which
five docking programs (FlexX, DOCK, LigandFit, Glide,
and GOLD) were investigated against 14 protein fami-
lies (69 targets). We report here the results of these
algorithms in terms of their ability to predict the
binding modes of the respective protein-bound ligands
relative to the experimental poses, their comparative
performance against the same protein families, and
what the ranking of the crystallographically observed
binding modes is, if identified by a program.

Results and Discussion

Special attention was given to the targets chosen for
this study. The criteria used were (1) varied crystal-
lographic resolution of chosen targets, (2) wide spectrum
of receptor families, (3) metal presence in the binding
pocket, (4) range of active site topologies and water
accessibility, (5) varied flexibility of receptor-bound
ligands, and (6) activities of bound ligands varying from
the low micromolar to nanomolar range. We also chose
targets with more than one bound ligand per crystal
structure, to explore the ability of the programs to
handle various conformations of the same receptor, and
eliminate potential failures due to their inability in
dealing with induced fit. Consequently, we believe that
our dataset is comprehensive, large enough, and de-
manding. The PDB identification codes of the proteins
studied in this work are in the first column of Table 1.
Furthermore, the ionization state of the ligands we were
attempting to dock was of particular concern to us. All
carboxylic acids were deprotonated, amines were posi-
tively charged, phosphonates were partially deproto-
nated, and guanidiniums were positively charged.11

Because there is no reference study that we could use
as a guide to set the adjustable parameters required by
each program to run, we performed diagnostic calcula-
tions for each docking algorithm with a range of settings
and evaluated the results. Given that we were investi-
gating single-ligand dockings, our objective was ac-
curacy and exhaustive search for all plausible target-
ligand complexes, rather than speed. For all targets, the
active sites were defined within a 12 Å radius from the
bound ligand or an amino acid central to the binding
pocket, unless otherwise noted below or in the compu-
tational methods. In a previous work on FlexX, the
active sites were defined within 6.5 Å from a ligand
atom;12 however, we chose a more enlarged definition
of the binding pockets because, first, this exercise should
not cater to a particular algorithm for one and, second,
we were concerned that smaller sites might not be able
to accommodate larger ligands. Waters and metals not
involved in binding were removed from the protein. For
consistency purposes, we chose to increase the number
of return poses to 60 for all programs, although in some
cases, such as DOCK, the calculations did not result in
as many poses.

In FlexX, we used formal charges, which were as-
signed by the program, and default parameters other-
wise. In LigandFit, the protein model was generated
after the ligand and solvent removal. The definition of

the binding site was based on the docked ligand.
Therefore, those grid points inside the protein, which
lay within a consistent distance from the ligand atoms
and were not occupied by the ligand, formed the site.
Stochastic conformational searching was applied to the
ligands with a higher than the default number of Monte
Carlo search steps, to ensure extensive conformational
sampling. Charges were assigned via the CFF1.01 force
field,27,28 rather than the charge equilibration method.29

Because the difference in the docking score between the
two methods was very slight, we did not use the charge
equilibration method to calculate charges.30 Ligands
were scored with the PLP1,31,32 PLP2,33 Ludi,34 PMF,35

and Ligscore scoring functions, the latter using CFF in
turn. For Ligscore a higher grid extension of 12.0 Å was
utilized to lower the time used for scoring. Regarding
DOCK 4.01, partial Gasteiger-Marsilli charges were
calculated. To increase accuracy, we increased the
number of maximum orientations to 500 for the anchor
fragment, and to 25 configurations per cycle for growth
of the ligand. In GOLD, we performed 50 genetic
algorithm runs, as opposed to the default 10. Glide
presented a bigger challenge since it is the newest code;
thus, we leaned toward using the default settings for
the most part. However, we used 0.90 to scale the vdW
radii of the nonpolar ligand atoms, which may be a little
less permissive than the standard 0.80 but not by much,
and kept 60 poses per ligand in the end. We also
discovered that it is crucial for Glide to have the correct
ionization state, because the “atomtype” functionality
is not able to add hydrogens; therefore, a complete
ligand structure is required. Using the utility script
glide_sort, we reordered the poses on the basis of the
Emodel scoring function, which was then used to
analyze our results. 9 Emodel is a weighted combination
of ECvdW, GlideScore, and the strain energy of the ligand,
with ECvdW referring to the ligand-receptor Coulomb-
van der Waals interaction energy.

To assess the docking accuracy of each algorithm, we
used two approaches. All solutions were inspected
visually and evaluated on the basis of the rms deviation
of the predicted pose from the experimental bound
orientation. With visual inspection as a guide, we
classified the solutions in a subjective manner similar
to the one used in the GOLD paper.6 We first selected
the poses that were the closest to the respective binding
modes, and subsequently assigned a classification (close,
active site, inaccurate) on the basis of the definitions
that follow. A “close” classification corresponds to solu-
tions that reproduce the bioactive conformation and
most, if not all, of the important binding interactions
by positioning the functional groups of the ligand in
proximity to the active site residues. Thus, this category
includes predictions which may not be fully superim-
posable onto the crystallographic binding modes, but
show a rather minimal displacement of one group per
ligand. The “active site” category includes predictions
where the binding mode is reproduced by and large but
a few groups are pointing toward active site residues
that are different from the corresponding crystallo-
graphically observed pose. Finally, the assignment
“inaccurate” means that the algorithm was not able to
reproduce the binding mode or that it failed to position
the ligand in the binding site. Figures 1-3 show
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Table 1. Summary of Docking Predictionsa

subjective results

PDB code LigandFit (rank) DOCK (rank) FlexX (rank) Glide (rank) GOLD (rank)

Thermolysin
2tmn active site (1) active site (15/17) inaccurate (1) close (1) close (30)
3tmn active site (1) inaccurate inaccurate (39) active site (36) close (1)
4tmn active site (58) inaccurate inaccurate (1) close (6) close (39)
5tmn inaccurate (58) inaccurate inaccurate (3) close (2) close (31)
5tln inaccurate (59) active site (23/23) close (20) close (27) active site (30)

Carbonic Anhydrase
1bnt active site (7) active site (24) inaccurate (5) active site (1) active site (34)
1bnm inaccurate (1) inaccurate close (27) close (48) active site (1)
1bn1 active site (4) inaccurate close (17) active site (40) close (1)
1i9l active site (47) active site (53) active site (19) close (1) inaccurate
1i9n active site (49) active site (32) active site (59) close (30) active site (1)

Stromelysin
1hy7 active site (25) active site (36/53) close (9) close (22) active site (30)
1g49 active site (4) active site (7/60) close (4) close (37) close (27)
1g4k active site (9) inaccurate inaccurate (3) close (1) inaccurate
1d5j inaccurate (59) inaccurate inaccurate (39) active site (38) active site (29)
1d8f inaccurate (40) active site (10) active site (38) active site (36) inaccurate (1)
1d8m close (5) active site close (13) close (1) inaccurate (1)
1biw active site (10) inaccurate inaccurate (9) close (1) close (14)
1bqo active site (1) inaccurate active site (1) active site (1) active site (20)
1sln inaccurate (55) active site (1) inaccurate (51) active site (60) active site (11)

Aspartate Carbamoyltransferase
1d09 active site (39) active site (1) close (1) close (1) close (11)
4at1 active site (44) active site (19) active site (4) inaccurate (60) active site (19)

Dihydrofolate Reductase
1aoe close (2) inaccurate active site (8) close (2) close (7)
1boz active site (8) inaccurate inaccurate (3) close (1) close (12)
1daj active site (2) inaccurate inaccurate (12) active site (9) close (50)
1dg5 active site (6) inaccurate active site (2) active site (48) close (36)
1dg7 close (3) inaccurate close (19) close (2) close (12)
1hfp active site (24) inaccurate active site (5) active site (27) close (15)
1ia1 active site (15) inaccurate close (29) close (1) close (10)
3dfr active site (5) active site (15) close (1) inaccurate (34) close (12)
4dfr active site (1) active site (12) close (1) close (1) close (32)

Thymidine Kinase
3vtk close (55) active site (52) inaccurate (6) close (1) close (44)
2ki5 close (11) inaccurate close (1) close (27) inaccurate
1vtk close (1) inaccurate close (1) close (1) close (39)
1ki8 close (6) active site (36/36) inaccurate close (10) close (42)
1ki4 close (26) inaccurate inaccurate close (1) close (10)
1kim close (1) inaccurate active site (52) close (1) inaccurate

HIV-1 Protease
2bpx close (5) inaccurate active site (53) inaccurate (1) close (27)
2bpz inaccurate (12) inaccurate active site (10) active site (53) close (19)
2bpw active site (4) inaccurate inaccurate (22) close (7) close (19)
1tcx close (1) inaccurate inaccurate (16) close (1) close (18)
1upj close (11) close (27) inaccurate (7) active site (23) inaccurate
1sbg close (4) inaccurate inaccurate (1) close (1) close (4)

COX-2
6cox close (15) inaccurate active site (7) close (2) close (29)
3pgh close (2) active site (27) close (8) close (4) close (25)
4cox close (5) inaccurate close (6) close (8) active site (11)

CDK-2
1dm2 inaccurate (3) close (34/52) active site (11) active site (2) active site (50)
1aq1 close (5) close (30) close (1) close (17) close (28)
1ckp active site (1) active site close (6) close (1) close (12)
1di8 active site (6) active site close (2) close (34) inaccurate
1fvt active site (52) inaccurate close (1) active site (2) close (9)
1fvv active site (26) close (40) close (33) close (6) close (15)

FGFR-1
1agw active site (58) active site (39) close (6) active site (2) close (1)
1fgi active site (2) inaccurate (44) active site (1) active site (1) active site (1)
2fgi active site (5) inaccurate close (8) active site (32) close (1)

Reverse Transcriptase
1rt1 close (22) inaccurate close (20) close (4) close (36)
1rt5 close (1) inaccurate inaccurate active site (1) close (27)
1rt7 active site (37) inaccurate inaccurate active site (1) active site (50)
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representative examples of close, active site, and inac-
curate predictions.

The results of our analyses reflecting these subjective
assignments are shown in Table 1. Once the selection
of the solutions that were the closest to the experimen-
tally observed binding modes was made, we looked at
the corresponding rank numbers, which are represented
by the numbers in parentheses in Table 1. For inac-
curate solutions, the one that would remotely resemble
the observed binding pose is given. In the DOCK
column, the second number corresponds to the total
number of solutions per run found by the program; for
all other docking tools the total number of returned
poses was 60, as already discussed. Also, it should be
noted that the LigandFit and Glide results are based
on Ligscore and Emodel scoring functions, respec-
tively.9,10 If we ignore the numbers in parentheses for
now, but instead pay attention to the frequency with

which the close solutions appear in Table 1, it can be
seen that very few of the Glide and GOLD solutions fall
into the inaccurate category. This is more obvious in
Table 2, which summarizes the results of Table 1. Table
2 shows how many times each program succeeds in
finding poses close to the experimental binding modes,
and how many of these solutions are in the active site
or inaccurate. It can be seen that GOLD outperforms
(47 correct poses out of the total 69 investigated) the
other docking programs in being able to identify the
experimental binding modes for the most part, followed
by Glide (39 close predictions). The numbers in paren-
theses (Table 2) correspond to the total number of
solutions ranked the highest by the respective programs,
which in turn addresses the ranking accuracy of the
docking algorithms under investigation, and will be
discussed in the following paragraph. It should also be
noted that for certain receptor families in Table 1, the

Table 1. Continued

subjective results

PDB code LigandFit (rank) DOCK (rank) FlexX (rank) Glide (rank) GOLD (rank)

PPAR-γ
1fm6 close (7) inaccurate active site (1) inaccurate (3) close (8)
1fm9 active site (21) inaccurate active site (34) inaccurate (1) close (49)

TACE TNF-R Converting Enzyme
1bkc active site (50) inaccurate inaccurate active site (1) close (47)

Neuraminidase
1a4g close (1) active site (12) wrong (21) active site (23) close (1)
1nsd close (16) inaccurate close (1) close (3) close (1)
2bat inaccurate (2) inaccurate active site (11) active site (32) close (18)
2qwk active site (42) inaccurate active site (48) close (7) close (1)
1inf active site (44) inaccurate close (24) active site (1) close (11)
1a4q active site (21) inaccurate active site (1) active site (19) active site (10)
1b9s inaccurate (10) inaccurate inaccurate (1) inaccurate close (1)
1b9t close (1) inaccurate close (2) close (11) close (1)
1b9v close (4) inaccurate inaccurate close (1) close (1)

a The numbers in parentheses represent the rank numbers of the respective poses.

Figure 1. Example of a close prediction (target 1aq1).
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poses identified by some of the programs are either close
only or a combination of close and active site (for
example, see Glide on thymidine kinase and GOLD for
neuraminidase). This suggests that some programs
perform better for particular targets; thus, a cor-
respondence between the nature of the active site and
a docking algorithm may be implied. Because this study
did not cover the whole spectrum of crystal ligand-
target complexes reported for each protein family we
investigated, it may be risky to draw conclusions relat-
ing families with programs. However, given that we

studied 70% of the reported thymidine kinase complexes
and 90% of the COX-2 crystal structures, we can say
that Glide and LigandFit should be the programs of
choice for targets of these families. Glide and FlexX are
the best performers in CDK-2, on the basis of coverage
of half of the reported crystal complexes for this family.
Similarly, GOLD should be preferred for neuramini-
dases and thermolysins, with the first studied in its
entirety, while 41% of the latter was investigated here.
Glide is also excellent for the thermolysins under
investigation.

Furthermore, we addressed the ranking accuracy of
the docking algorithms, that is, whether the experimen-
tal binding modes of the ligands are found among the
highest-ranked conformations by any of the programs.
As already mentioned, the numbers in parentheses in
Table 1 represent the ranking for each solution, which
was the closest to the experimentally observed binding
mode. It seems rather difficult to make claims that any
of the algorithms identify the bound ligands among the
highest-ranked poses. This becomes clearer in Table 2,
which shows in parentheses how many correct answers

Figure 2. Example of an active site prediction (target 1d8f).

Figure 3. Example of an inaccurate prediction (target 1b9s).

Table 2. Summary of Docking Accuracy

no. of resultsa

program close active site inaccurate

LigandFit 24 (7) 35 10
GOLD 47 (10) 13 8
DOCK 4 (0) 19 45
Glide 39 (17) 24 5
FlexX 26 (9) 18 25
a The values in parentheses indicate how many times each

program finds the experimental binding mode as its top-scoring
answer.
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(i.e., top-ranked poses) each program resulted in for the
69 complexes investigated. Although GOLD is more
reliable in identifying the experimentally observed
binding modes of the ligands, only 10 out of its 47 close
solutions correspond to top-scoring poses. Our results
do not seem to agree with the high rate of 71% that
Jones et al. reported in their validation of the GOLD
docking tool.6 They reported that the top-scoring an-
swers were correct for 71 out of the 100 complexes they
tested. We are even more perplexed, because our genetic
runs were longer than theirs. It may be that the scoring
function used by GOLD does not perform as well for the
targets studied herein. In contrast, we found that Glide
performs better than GOLD in ranking the binding
modes correctly. If we were a bit permissive and looked
at the top six Glide answers, then 26 of the 39 correctly
predicted binding modes are top scored, a rate of 67%.
This appears to be our best scoring tool. To summarize,
when Glide does well, it will most likely rank the
observed pose as its top-scoring binding mode, while
GOLD may not succeed at doing that, which is an
observation made already by the developers of GOLD.6

As mentioned earlier, we looked at the results of the
docking experiments statistically as well. Table 3 dis-
plays the rms deviations of the predicted poses from the
corresponding observed binding modes for FlexX, GOLD,
Glide, and LigandFit. DOCK was not included, because
it did not perform as well as the other algorithms (see
Table 1). The majority of the close solutions have rms
deviations less than 1.5 Å for all programs. The active
site poses fall mostly into the category of 1.5-3.5 rms.
However, it can be seen that some of the active site
solutions ranging from 1.5 to 2.0 rms were considered
as close poses in the subjective analysis, if we compare
the sums for close assignments in Tables 2 and 3. This
finding is in accord with the classification used by
Kramer et al., who considered results up to 2.0 Å rms
as acceptable.12 However, our criteria are more stringent
than the ones used in the validation paper of GOLD,
where the reported success rate of 71% represents
answers with rms deviations of 3.0 Å or less.6 This also
sheds light on the discrepancy between our results and
those of the developers of GOLD regarding GOLD’s
success rate in identifying the experimental binding
modes as its top-ranked poses. Interestingly enough,
almost 66% of the correct solutions found by GOLD are
within an rms of less than 1.0 Å, while 54% of the
correct Glide solutions fall in that range. The data in
Table 3 seem to reiterate what we also observed through
our subjective analysis; that is, GOLD is quite reliable
in finding experimental binding modes.

In an attempt to understand what the factors are for
the failure of the programs, we decided to analyze our
results in terms of crystal structure resolution, nature
of the active sites, such as polarity versus hydrophobic-

ity, and complexity of the bound ligands. The results
are displayed in Tables 3-5, respectively. Analysis of
Table 3 indicates that all programs performed well, as
long as the crystal structure resolution was 2.5 Å or
better. However, it should be pointed out that LigandFit
seems to be more sensitive, since a major part of its close
poses fall into the most accurate X-ray resolution of less
than 2.0 Å (see Table 3).

In regard to complexity of the ligands, GOLD seems
to be the least sensitive of all. In our hands, the studied
docking programs perform best when the ligands have
10 or fewer rotatable bonds. An analysis of Table 4,
however, shows that LigandFit to a greater extent than
the other tools identifies 75% of its close dockings when
the ligands have 10 or fewer rotatable bonds. For FlexX
the rate is 69% for less than 10 rotatable bonds, which
increases to 92% if the ligand has 15 or fewer degrees
of freedom. Our findings are in agreement with previous
analyses of FlexX.12 In contrast, Glide is less sensitive
with a success rate of 78% when the complexity is
smaller than 15.

Table 5 gives an overview of the nature of the active
sites of the 66 targets we investigated. Results were
obtained using MOLCAD.36 The lipophilic potential was
mapped globally for all active sites, to bring the values
on the same scale so that the reported surface area
properties would be consistent. It can be seen that most
targets are mildly hydrophilic. Stromelysin, HIV pro-
tease, and TACE are mostly hydrophilic, while only one
of our targets, COX-2, is mainly hydrophobic. We looked
at the results of Table 1 in conjunction with the findings
of Table 5 to deduce whether polarity can be a cause
for some of the failures of the programs. GOLD seems
to perform very well with mildly or mostly hydrophilic
targets. On the basis of the observation that GOLD fails
with hydrophobic ligands,6 which in turn could be
extended to lipophilic binding pockets, our results do
not surprise us. However, we did obtain successful

Table 3. Summary of rms Deviations

LigandFit GOLD Glide FlexX

rms total close, act total close, act total close, act total close, act

e0.5 0 0, 0 6 6, 0 3 3, 0 2 2, 0
0.5-1.0 10 10, 0 25 25, 0 18 18, 0 9 9, 0
1.0-1.5 10 8, 2 12 12, 0 12 12, 0 10 10, 0
1.5-2.0 6 3, 3 5 1, 4 7 1, 6 10 4, 6
2.0-3.5 21 0, 21 5 0, 5 14 0, 14 10 0, 10

>3.5 22 0, 5 16 0, 5 14 0, 1 28 0, 2

Table 4. Summary of Protein Structure Resolution and
Distribution of Poses Accordingly

closeno. of
targets resolution LigandFit GOLD Glide FlexX

17 <2.0 12 12 14 9
38 g2.0, e2.5 4 26 15 10
14 >2.5 8 9 10 7

Table 5. Ligand Complexity and Distribution of the Close
Poses

no. of rotatable
bonds GOLD LigandFit Glide FlexX

5 10 6 9 8
>5, e10 15 12 17 10

>10, e15 12 3 6 6
>15 10 3 7 2
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dockings with GOLD in the cases where there is some
lipophilic character in the active site (i.e., thermolysins
and PPAR-γ). Contrary to GOLD, Glide does not seem
as discriminatory in regard to the nature of the polarity
of the active sites. Both LigandFit and Glide performed
well with COX-2, a target with a mainly hydrophobic
binding pocket.

Conclusions

The results presented here indicate that certain
docking algorithms are more reliable in reproducing
experimentally observed binding modes than others.
Among all the programs studied, GOLD, followed by
Glide, is clearly the most reliable in predicting accurate
poses. It was also pleasing to observe trends relating
docking accuracy with the nature of the active sites
under investigation. Our results demonstrate that, for
the given data set of 69 receptor-ligand complexes, one
may be able to predict which docking tool will work the
best depending upon the nature of the active site.
However, we should bear in mind that this is a repre-
sentative study, and therefore, our conclusions may be
limited to the complexes studied here. Although the
experimental binding modes of the ligands were not
found among the highest-ranked conformations by any
of the programs, we were particularly pleased to observe
a higher success rate with Glide’s ability to identify
binding modes as its top-scoring poses. Although general
rules cannot be drawn, it appears that there is a certain
degree of confidence associated with this particular tool
in being able to rank the poses more accurately than
others. With the industry’s need for virtual screening
and the necessity for scoring functions, which can
discriminate actives from inactives, this finding is quite
encouraging. However, one needs to factor in not just
accuracy and performance, but speed as well. Glide
tends to be very slow (2-3 min per compound), while
LigandFit is the fastest (10-18 s) among the codes
presented in this study. We believe that the choice of a
docking program is interrelated to the objective of the
project. If single-ligand docking is performed, and the
target belongs to one of the structural types we and
others have reportedly investigated, the choice is per-
haps more straightforward. Even if there is no study
alluding to one code being more advantageous than
another, we are confident enough that either Glide or
GOLD will perform well. However, for library screening,
and given that most corporate libraries consist of about
1 million compounds, we would recommend first using
a fast code (i.e., LigandFit), followed by the more
accurate ones on the hits identified in the first step.

This study shows that, despite its challenges, docking
is a powerful tool. Although scoring is difficult, predict-
ing the correct pose appears to be a very tangible
exercise. Coupling this with our findings that Glide
succeeds in identifying and ranking the observed bind-
ing modes at a 40% rate, we are hopeful that structure-
based design is making noticeable advances.

Computational Methods
Preparation of Proteins and Ligands. All bound waters,

ligands, and cofactors were removed from the proteins. His-
tidines and cysteines were mutated to HID and CYX, respec-
tively, for DOCK calculations. Kollman charges were com-
puted, when necessary (DOCK), using Sybyl. Hydrogen atoms

were added subsequently. For each target, the active site was
defined as a sphere with a radius of 12 Å from the bound ligand
or an amino acid in the center of the site. Flexible ligand
docking was performed in all calculations. Sixty solutions were
reported from each docking exercise. Ligands were either
extracted and distorted from their bound conformations or
built within Sybyl. Ionizable groups (amines, carboxylic acids,
phosphates, amidines) were assumed to be ionized at physi-
ological pH. Ligands were assigned formal charges for the
FlexX and Glide calculations, and partial Gasteiger-Marsilli
charges for the DOCK runs.

FlexX Docking. All default parameters, as implemented
in the 6.72 release of Sybyl, were used. Cscore calculations
were performed for ranking, and all 60 poses were inspected.

LigandFit Docking. LigandFit from Cerius2, consortium
and 4.6 versions, within the Accelrys suite of programs was
used for all runs. The active sites were defined using the
docked ligands, and all calculations were performed with the
CFF 1.01 force field. Conformations were generated with
Monte Carlo simulations (10000 trials). Electrostatic energy
was included in the calculation of the ligand internal energy.
The default rigid body minimization parameters were used to
dock the four orientations of each conformation into the site,
followed by a 500-step final minimization of each docked
ligand. Scoring was performed with PLP1, PLP2, PMF, Ludi,
and Ligscore scoring functions. Hydrogen-bond and lipophilic
contributions to the Ludi score were included in all calcula-
tions. Individual descriptors were checked for all Ligscore
function calculations.

DOCK 4.01 Docking. A Connolly surface of each active site
was generated using a 1.4 Å probe radius. A flexible docking
was performed starting with a selection and matching of an
anchor atom within a maximum of 500 orientations, followed
by growth of the ligand with 25 configurations per cycle. The
final step included relaxation of 100 simplex minimizations
to a convergence of 0.2 kcal/mol.

Glide Docking. Distances from a grid point to the receptor
surface were compared to distances from the ligand center to
the ligand surface. Good matches were kept, followed by a
clash test, subset scoring, greedy scoring, and final refinement
of 5000 initial poses in the X/Y/Z directions. The resultant 400
refined poses were kept, and then minimized with a distance-
dependent dielectric constant, and 100 conjugate gradient
steps. Final poses were scored with GlideScore with an
inclusion of an energy score.

GOLD Docking. For each of the GA runs, a maximum
number of 100000 operations were performed on a population
of 100 individuals. Operator weights for crossover, mutation,
and migration were set to 95, 95, and 10, respectively, which
are the standard default settings recommended by the authors
for careful work. The distance for hydrogen bonding was set
to 4 Å, and the cutoff value for van der Waals was 2.5.

Table 6. Polarity of Active Sites of the Targets

area (%)

PDB target hydrophilic
mildly

hydrophilic lipophilic

thermolysin 0.00 65.00 35.00
carbonic anhydrase 0.00 89.80 10.20
stromelysin 82.33 17.66 0.00
aspartate

carbamoyltransferase
19.24 80.76 0.00

DHFR 2.73 97.27 0.00
thymidine kinase 0.00 100.00 0.00
HIV 93.54 6.46 0.00
COX-2 0.00 7.31 92.69
CDK-2 0.00 100.00 0.00
FGFR-1 1.38 98.62 0.00
reverse transcriptase 51.16 48.84 0.00
PPAR-γ 0.09 82.64 17.27
TACE 64.46 35.54 0.00
neuraminidase 0.00 100.00 0.00
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