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The use of Bayesian statistics to model both general (multifamily) and specific (single-target)
kinase inhibitors is investigated. The approach demonstrates an alternative to current
computational methods applied to heterogeneous structure/activity data sets. This approach
operates rapidly and is readily modifiable as required. A generalized model generated using
inhibitor data from multiple kinase classes shows meaningful enrichment for several specific
kinase targets. Such an approach can be used to prioritize compounds for screening or to
optimally select compounds from third-party data collections. The observed benefit of the
approach is finding compounds that are not structurally related to known actives, or novel
targets for which there is not enough information to build a specific kinase model. The general
kinase model described was built from a basis of mostly tyrosine kinase inhibitors, with some
serine/threonine inhibitors; all the test cases used in prediction were also on tyrosine kinase
targets. Confirming the applicability of this technique to other kinase families will be determined
once those biological assays become available.

Introduction

Kinase inhibition is a major focus for therapeutic
intervention against a variety of diseases including
cancer, inflammatory disorders and diabetes. Several
categories of methods have been used to study kinase
inhibitors, including 3D methods, clustering and cell-
based binning methods, and fitting methods.

As a result of the abundant structural information
generated using X-ray and NMR technologies, many
computational efforts have involved structure-based
design techniques such as ligand-protein docking,1,2

and three-dimensional (3D) pharmacophoric identifica-
tion,3,4 Usually, predictions made with such computa-
tional methods were for inhibitors of specific proteins
rather than for entire kinase families and were ap-
plicable only to proteins with known 3D structure
information, which limits their applicability to specific
kinases for which the target is known. A number of
techniques, such as clustering, binning, and fitting
methods, have recently been used to classify compounds
without the requirements of 3D protein target informa-
tion.

Several researchers have used clustering or binning
in compound classification. Willett5 suggested that
Jarvis-Patrick clustering was the most effective non-
hierarchical method for clustering molecules according
to their chemical and biological characteristics. Brown
and Martin6,7 later analyzed the results of different
clustering methods and the use of various 2D and 3D
descriptors for the classification of active and inactive
compounds. They concluded that the combination of a
hierarchical Ward’s clustering and two-dimensional
structural keys performed best. Cell-based partitioning

of compounds in lower dimensional chemical space is a
method related to clustering, though a grid rather than
a distance function is used to bin the samples. Pirard
and Pickett8 used partitioning and BCUTs9,10 to classify
kinase inhibitors active against five different protein
kinases.

Fitting methods such as artificial neural networks,11-13

genetic function approximation (GFA),14,15 standard and
partial least squares,16-19 and recursive partition-
ing20,21 have also been used to analyze structure-
activity data or to predict chemical properties. For
example, Manallack et al. used a neural network in con-
junction with BCUT descriptors to successfully discrimi-
nate compounds belonging to a kinase family.22 The
genetic function has been applied widely in compound
classification, quantitative structure-activity relation-
ship (QSAR) and quantitative structure-property re-
lationship (QSAP) by a number of investigators.14,15

Both standard least-squares and partial least-squares
analysis (PLS) have a long history of application in
quantitative structure-activity relationship (QSAR;,16-19

in fact, PLS method was incorporated into compara-
tive molecular field analysis (CoMFA, a 3D QSAR
method).2325 Stanley Young and colleagues implemented
a recursive partitioning method a few years ago that
can be used to derive predictive models to distinguish
active from inactive compounds.20,21 This method, com-
pared to some older implementations, has the advantage
of being able to handle a large number of descriptors
and very large compound data sets.

One is struck by the wide variety of methods available
for analysis and the different conclusions reached by
different authors as to the preferred method. Because
of differences in selected test cases, methods and
descriptors, it is difficult to compare directly the per-
formance of the above methods.

Bayesian concepts and methodology has existed for
many years; however, its popularity as a tool within
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drug discovery and structure-activity analysis is recent.
Therefore, many applications of Bayesian statistics,
such as prioritization of compounds for biological testing
purchasing, have not been fully explored. Here we report
our investigation on a modified Naı̈ve Bayesian statis-
tics, such as the one implemented in SciTegic’s Pipeline
Pilot, and its application in kinase activity classification.
We will describe this process and present several
results, building both general (multiclass) and specific
(single-target) models of kinase inhibitors.

Materials and Methods

Modified Bayesian in Pipeline Pilot. Bayesian analysis
is a statistical categorization method that addresses some of
the limitations inherent in conventional fitting methodologies.
The learned models are created with a straightforward learn-
by-example paradigm: the researcher marks the sample data
that is of interest (the “good” samples), and the system learns
to distinguish them from other background data. No tuning
parameters are required beyond the selection of the input
descriptors from which to learn.

The learning process generates a large set of Boolean
features from the input descriptors, then collects the frequency
of occurrence of each feature in the “good” subset and in all
data samples. To apply the model to a particular sample, the
features of the sample are generated, and a weight is calcu-
lated for each feature using a Laplacian-adjusted probability
estimate. The weights are summed to provide a probability
estimate, which is a relative predictor of the likelihood of that
sample being from the “good” subset.

The Bayesian modeling method offers three important
features:

First, it is fast and efficient for large datasets, scaling
linearly with respect to the number of molecules. During
analysis, data frequency statistics are collected in a single pass
and the frequencies themselves become the model. This is in
contrast to methods that attempt to fit the data; such methods
nearly always scale greater than linearly.

Second, because the method is not a fitting method, it is
less affected by the “curse of dimensionality” when large
numbers of descriptors are used. This lack of fitting also aids
in modeling datasets with extremely small numbers of “good”
samples or when there are large sources of noise from false
positives and false negatives. The ability to model in a high-
dimensional environment also assists modeling structurally
dissimilar (noncongeneric) data or in modeling multiple activ-
ity classes in a single model (multimodal data).

Third, the Bayesian model weights features by assigning
greater significance to characteristics that appear to distin-
guish good samples from baseline samples. This is in contrast
to the static distance functions used by clustering methods,
such as the Tanimoto Distance between two fingerprints, in
which all bits are given equal weight. In such functions, a
small number of bits representing features important for
activity may be lost among a larger number of bits represent-
ing less important features.

The Laplacian-Corrected Estimator. The Laplacian-
corrected estimator is used to adjust the uncorrected prob-
ability estimate of a feature to account for the different
sampling frequencies of different features. The derivation is
given below.

Assume that N samples are available for training, of which
M are “good” (active). An estimate of the baseline probability
of a randomly chosen sample being active, P(Active), is M/N.

Next, assume we are given a feature F contained in B
samples, and that A of those B samples are active. The
uncorrected estimate of activity, P(Active|F), is A/B. Unfor-
tunately, as the number of samples, B, becomes small, this
estimator tends to be less reliable.

For example, if A ) 1 and B ) 1, P(Active|F) would be 1
(that is, certainly active), which seems overconfident for a
feature we have only seen once.

Most likely, the estimator is poor because the feature is
undersampled, and further sampling of that feature would
improve the estimate. We can estimate the effect of further
sampling if we assume the vast majority of features have no
relationship with activity; that is, if, for most features, Fi, we
would expect P(Active|Fi) to be equal to our baseline prob-
ability P(Active).

If we sampled the feature K additional times, we would
expect P(Active)*K of those new samples to be active. This pro-
vides the information needed to estimate the corrective effect
of K additional samples: Pcorr(Active|F) ) (A + P(Active)*K)/
(B + K). (For K ) 1/P(Active), this is the Laplacian correction.)

This correction stabilizes the estimator: as the number of
samples, B, containing a feature approaches zero, the feature’s
probability contribution converges to P(Active), which would
be the expected value for most features.

The final step is to make the estimator a relative estimate
by dividing through by P(Active) - that is, Pfinal(Active|F) )
Pcorr(Active|F)/P(Active).

For most features, log Pfinal ∼ 0. For features more common
in actives, log Pfinal > 0. For features less common in actives,
log Pfinal < 0. The completed estimate for a particular sample
is derived by adding together the log Pfinal values for all the
features present in that sample.

Definition of Datasets. The following three datasets of
Amgen compounds were used in this study:

CORP: A dataset of 193 417 Amgen screening compounds.
These compounds represent random drug molecules and are
referred to in this document as “baseline”.

KA: “Kinase-Active”, a subset of the CORP dataset contain-
ing 6236 compounds found to inhibit one or more protein
kinases with IC50 < 10 µM. These compounds were tagged as
“good” molecules.

SUB: A subset of the CORP dataset containing 13 253
compounds that are a “preferred list” of compounds used by
biologists for kinase assay screening. The bias in this preferred
list is based on previous knowledge amassed by chemists and,
in cases of vendor-supplied compounds, on information sup-
plied by vendors.

Building a Bayesian Model. SciTegic’s Pipeline Pilot
(version 2.0) was employed to perform the Bayesian analysis
to build a model. The computation was undertaken on a four
CPU Pentium III server (899 MHz).

Figure 1 shows the building blocks used by Pipeline Pilot
to generate the Bayesian Categorization protocol.

A kinase model is generated by first reading in all the “good”
(kinase inhibitors) and “baseline” (random drug compounds)
molecules, then molecular features and properties are calcu-
lated, among them FCFP_6 (functional-class fingerprints, a
2D structural fingerprint where the atom types are abstracted
to the role that the atom plays in the molecule, e.g. hydrogen-

Figure 1. Bayesian categorization protocol in Pipeline Pilot.
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bond donor, halogen, or aromatic), AlogP, molecular weight,
number of hydrogen-bond donors and acceptors, and number
of rotatable bonds.

The software then creates a new “learned property” com-
ponent that stores the model as a calculator. Unlike regression
models, Bayesian does not supply a simple parameter equa-
tion. Rather, a cumulative score of feature contributions to
“kinase-inhibitor” likeness is computed. Scores must therefore
be interpreted by likelihood instead of potency. That is, if
compounds A’s Bayesian score is 90 and compounds B’s score
is 70, a correct interpretation is that compounds A is more
likely to be an inhibitor than compound B, not that compound
A is likely to be more potent than compound B.

This new component can be utilized within another protocol
to generate a numerical score that, when applied to a test
molecule, can be used to rank the evaluation set on the relative
likelihood that the compounds will exhibit the desired activity
(in this case, kinase inhibition).

To validate the methodology, the entire CORP dataset was
split into a training set and a validation set.

We examined two splits: 1:1 and 1:9. For the 1:1 split, the
training set contained 96 628 samples with 3186 known “good”
compounds, and the validation set contained 96 789 samples
with 3050 known “good” compounds. For the 1:9 split, the
training set contained 19 319 samples with 873 known “good”
compounds, and the validation set contained 174 098 samples
with 5363 known “good” compounds.

The position of active compounds in the ordered list of the
validation set is an indicator of the quality of the model. A
convenient way to visualize this is by plotting the cumulative
distribution of the active compounds in the ranked validation
set (called an enrichment curve).

Another useful measure of the quality of the model is the
enrichment rate in the highest scoring subsets. This is defined
as the ratio of the number of actives in a subset to the number
of actives in the whole set, divided by the ratio of the number
of compounds in the subset to the number of compounds in
the whole set.

Diversity Analysis. For predictivity over the widest range
of structural classes and kinase classes, the predictive model
should be built from a heterogeneous dataset, i.e., a dataset
of structurally diverse compounds. The KA dataset (containing
6236 “good” compounds) was analyzed to ensure that it
consisted of compounds that were dissimilar and that they
accurately represented the major structural variations present
in the in-house kinase inhibitors and contained examples of
inhibitors of all the major kinase classes.

First, in terms of biological diversity, these compounds
inhibit as many as 39 protein kinases representing two kinase
families (tyrosine and serine/threonine). Second, the chemical
diversity was assessed by the following two methods:

Self-Similarity.This method employs a distance-based
mathematical measurement. Clusters of many highly similar
compounds are undesirable. For a given compound A, the
Tanimoto Distances between A and each of the other com-
pounds in the dataset were calculated. The Daylight finger-
print (1024 bits) was used as the structural descriptor. Any
compound for which its Tanimoto Distance to A was less than
a predetermined cutoff value was defined as A’s near neighbor
(NN), and the total number of near neighbors in the vicinity
of A was calculated. The calculations were performed auto-
matically using a script developed in-house at Amgen.

Ring Analysis.This is a visual method for displaying the
chemotype within the dataset. The dataset was examined for
the number of different ring systems contained within it. Ring
fragments were rank-ordered based on their frequency of
occurrence using a script originally written by Jerry Young of
Daylight26 and modified by Greg Woo of Amgen. Excel (MS)
and JMP4.0 (SAS) were used to analyze the results of the
study.

Results and Discussion

Diversity Analysis of the Dataset. Table 1 and
Figure 2 show the results of applying Tanimoto Distance

cutoffs of 0.15 and 0.25 in Self-Similarity tests per-
formed on the KA set “good” compounds used to build
the model (0.15 and 0.25 cutoffs correspond to 85% and
75% similarity, respectively).

The results show that (1) using either cutoff, less than
50% of the compounds have five or more neighbors, and
(2) depending on the cutoff, 30-40% of the compounds
are highly similar (NN g 10). This similarity was
attributed to the fact that Amgen’s in-house medicinal
chemistry project teams synthesized many of the com-
pounds.

In addition to examining the numbers for Tanimoto
Distance calculation, the KA dataset was broken down
to fragment level to ensure structural dissimilarity of
the compounds. Since rings are often good representa-
tions of chemical families, a ring analysis script was
used to extract rings from each molecule. The script
searched for larger rings (e.g. indoles) and ignored
smaller component rings (e.g. benzene and pyrrole). The
script extracted 573 rings; the 20 rings occurring with
the highest frequency are listed in Table 2. The table
also shows smaller and less interesting rings (such as
pyrimidine/furan) as well as larger and more interesting
rings (such as indole/indazole).

The results from Tanimoto Distance calculations and
from ring analyses show that the KA (“good”) set
contains diverse molecules including a variety of struc-
ture motifs, which suggests that the compounds are
good candidates for the kinase-learning test.

Validation of the Kinase Model. Figure 3 is an
enrichment curve generated by Pipeline Pilot and is a
visual display of the enrichment obtained using the 1:1
split to predetermine the “good” compounds in the
validation set. In a random, unbiased screening, plotting
the percentage of “good” compounds found (Y-axis)
against the percentage of compounds screened (X-axis)
should yield a constant and that is clearly shown by the
straight line. If the samples are rank-ordered according
to the their likelihood of exhibiting activity and then
screened, the active compounds should be found more
rapidly than if they are screened at random and the plot
appears as the curve shown. Figure 4 shows the enrich-
ment rate (Y-axis) against the percentage of compounds
screened (X-axis), the reciprocal of the enrichment plot
shown in Figure 3.

Table 1. Near Neighbor Statistics of the KA (“Good”) Set

number of near
neighbors (NN)

distance cutoff
< 0.15

distance cutoff
< 0.25

0 1824 1361
1-2 1451 872
3-4 665 717
5-9 765 715
g10 1531 2571

Figure 2. Number of near neighbors distribution of the KA
(“good”) set.
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Figure 3 shows that 85% of the “good” compounds
occurred in the top 10% of the ordered compounds,
which corresponds to an 8-fold enrichment compared
with random screening. This illustrates the power of the
Bayesian-derived model to capture characteristics about
general kinase inhibitors that aid in their detection in
the validation set.

Subsequently the CORP dataset was randomly split
1:9 to examine whether a smaller training set would
have similar predictive ability. A second model was built
based on a training set of 10% of CORP and then used
to predict the results for the remaining 90%.

The results from Validation Set 2 are shown in Figure
5 and Figure 6 together with the results from the
Validation Set from the 1:1 split described earlier. The
results suggest that the kinase model built using only
10% of the data is nearly as good as the model built
with the larger training set, and that the use of 50% of
the data for learning is probably redundant.

From Table 1, since only 20-30% of the KA set “good”
compounds are unique and 70-80% have at least one
neighbor, a question arises: could the easy identification

Table 2. Twenty Most Frequently Occurring Rings in the KA (“Good”) Set

Figure 3. Enrichment curve. Kinase-1:1 split model versus
random screening of the validation set.

Figure 4. Enrichment rate using the kinase-learning model
of the validation set.

Figure 5. Enrichment Curve. 1:1 Split model versus 1:9 split
model.
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of “good” compounds be simply due to the similarity of
the compounds? Stated differently, might the Bayesian
analysis also be effective in identifying new classes of
kinase inhibitors that are markedly different from those
used in the learning set, considering the fact that many
modeling techniques only select compounds that re-
semble the training set, thus making it potentially
difficult to avoid patent problems if these compounds
are used as starting points for optimization?

To attempt to answer this question, 172 newly identi-
fied compounds, described in recent literature as newly
emerging protein kinase inhibitor classes,3 were chosen
for additional testing. These compounds were specifi-
cally selected to not overlap with the classes represented
by the KA set; all had Tanimoto Distances > 0.40 from
all the KA set compounds.

The set of 172 newly identified compounds was
merged with the 1:9 validation set, then all KA com-
pounds were removed, which yielded 168 907 samples
with 172 “good” compounds. If we apply the 1:9 split
model to this set, can we identify the 172 kinase
inhibitors quickly, and if so, how does the performance
compare with the 1:9 validation set, which only contains
in-house known “good” compounds?

Figure 7 depicts the enrichment curve. Although these
compounds represent new kinase inhibitor classes, we
are still able to find 70% of them in the top 10% rank-
ordered compounds and 85% in the top 20% rank-
ordered compounds. The active compounds discovery
rate is very similar and only slightly worse than finding
the in-house kinase inhibitors.

This demonstrates that in addition to identifying
“good” compounds, the Bayesian analysis was also able
to identify compounds from novel kinase and structural
classes. This offers a significant advantage over many
other classification methods.

Applications. To test the modeling method in the
real world, we applied it to two specific applications in
order to answer the following questions:

1. Can the model help us rank order the screening of
compounds so that the efficiency of a screening is
improved?

2. Can the model be used in the design of a kinase-
preferred collection that can be used to frontload any
kinase assay?

Rank Order Screening of Compounds. The re-
sults of the validation tests described earlier show that
the kinase model is efficient in identifying compounds
that have a high likelihood of producing a hit in a kinase
assay. A complete kinase model was thus generated
using all data (KA as “good” and CORP as “baseline”);
all CORP compounds were assigned a score and rank-
ordered. The score is an indication of the likelihood of
the given compound to inhibit a kinase, but is not an
indicator of the potency.

Approximately 90% of the “good” compounds in the
KA set occurred within the top 10% of the rank-ordered
CORP set list (corresponding to approximately 20 000
compounds). We feel that ranking in the top 20 000
compounds is probably an appropriate cutoff value to
decide whether a compound is worth screening.

Our biologist colleagues agreed to use the score
computed from the model to prioritize a panel of 22 new
assays (against which KA set compounds had not yet
been tested). Since they would be running a considerable
number of assays, screening all 193 417 CORP com-
pounds was considered an onerous task. Instead it was
decided to screen SUB, a biased subset of 13 253 CORP
compounds which consisted largely of compounds syn-
thesized in-house by kinase project teams, and vendor
compounds purchased with kinase in mind.

The histogram and quantiles table in Figure 8 show
the distribution of the rank orders of the SUB set
compounds among all CORP compounds using the
kinase model. According to the quantiles table, nearly
50% of the SUB set compounds fell in the top 20 000
ranked compounds.

The results of applying 22 kinase assays against
compounds in the SUB set are shown in Table 3 (the
results define a hit as POC < 50). For each assay, the
following data are shown:

1. Total number of hits (a) occurring with compounds
in the entire SUB set.

2. Number of hits (b) that occurred using compounds
with rank order <20 000 in SUB set.

3. Percentage ratio of hits obtained: b/a.
4. Percentage ratio of hits missed: 1 - (b/a).
Table 3 shows that, for most assays, screening com-

pounds that are rank-ordered between 1 and 20 000

Figure 6. Comparison of enrichment rate. 1:1 Split model
versus 1:9 split model. Figure 7. Enrichment curve using 1:9 split model to identify

new classes of kinase inhibitors and in-house kinase inhibitors.
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(one-half the SUB set) yields over 90% of the total hits
(using POC < 50 to define a hit). The percentage varied
from 66% to 99% with a mean of 93%. This indicates
that on average 93% of hits are identified (only 7% are
false negatives) by a limited screening of the 50% of the
SUB compounds that are ranked below 20 000. This
demonstrates that the general kinase model did act as
an effective method of prioritizing screening compounds
within the kinases tested.

Kinase-Preferred Collection. Biologists often start
with a preferred set comprising a few hundred to a few
thousand compounds in order to validate an assay, or
more frequently, as the initial set of a sequential
screening process.

Recently the work on sequential screening (also called
smart screening) has been reviewed by both Young27 and
Engels.28 In this approach, a relatively small number
of compounds (the initial set) is screened and the results
are analyzed statistically to produce a mathematical
model. The model is used to select additional compounds
for screening. Such a strategy has often been effective
in exploiting the potential of HTS in smarter and more
cost-efficient ways.

Ideally, compounds in the initial set should be defined
by the following criteria:

1. Compounds must have a higher likelihood of
binding to the target.

2. Compounds must be structurally diverse.
3. Compounds should not be isolated but somehow

related to other members of the preferred set, so that
after performing biological experiments, structure-
activity knowledge can be extracted from the results.

The derived kinase model was used to help construct
the kinase-preferred set. As discussed earlier, limiting
compounds to those occurring within the top 20 000 of
the rank-ordered set satisfies criterion no. 1. However,
screening against 20 000 compounds still requires con-
siderable effort and may not be feasible for low through-
put screening tests (i.e. dose-response). Additional
sampling and paring down of the compound test set are
required to satisfy criterion no. 2 and 3.

A bilevel clustering method was used for this purpose.
Fingerprint-based clustering was utilized to sample the
chemical families, and within each chemical family the
physical property space was sampled using BCUT-based
binning technology.9 Using this method, selected com-
pounds are diverse yet are related to each other when
sharing the same cluster/bin membership (shaded rows
in Table 4).

Finally, an analytical experiment was conducted to
ensure the selected compounds were of high quality.
This selection method yielded 972 compounds to form
a kinase-preferred set.

Once the kinase-preferred set is in place, it is used
as the initial set of a sequential screening process.
Figure 9 illustrates our sequential screening paradigm.
The screening results from the kinase-preferred set are
analyzed to produce a second and more refined Bayesian
model with information specific only to the particular

Figure 8. Rank order histogram of the SUB Set of CORP using the kinase model.

Table 3. Screening Result of the SUB Set in 22 Kinase Assays

assay

total number
of hits

POC < 50 in
SUB

number of hits
POC < 50 and
rank < 20 000

percentage
of hits with

rank < 20 000

false
negative

rate

1 286 230 80.42 19.58
2 918 823 89.65 10.35
3 254 235 92.52 7.48
4 282 270 95.74 4.26
5 797 755 94.73 5.27
6 169 168 99.41 0.59
7 652 642 98.47 1.53
8 44 29 65.91 34.09
9 582 503 86.43 13.57

10 806 776 96.28 3.72
11 166 146 87.95 12.05
12 625 589 94.24 5.76
13 387 381 98.45 1.55
14 280 267 95.36 4.64
15 424 375 88.44 11.56
16 591 535 90.52 9.48
17 592 561 94.76 5.24
18 94 91 96.81 3.19
19 194 187 96.39 3.61
20 77 73 94.81 5.19
21 682 679 99.56 0.44
22 663 641 96.68 3.32

Table 4. Bilevel Clustering Method for Selecting a
Kinase-Preferred Set

compound
ID

fingerprint-based
clustering

BCUT-based
binning

1 1 1
2 1 2
3 1 2
4 2 1
5 2 2
6 3 4
7 3 4
8 3 5
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protein inhibitors instead of to the entire kinase family
inhibitors. This information is then used to predict the
compounds that are more likely to bind to that protein
and that are to be screened in the second iteration.

Following the paradigm, 16 tyrosine kinase assays
were front-loaded with the kinase-preferred set and
their activities were carefully measured in terms of IC50.
The results are illustrated in Table 5.

The table shows that the hit rates from the kinase-
preferred set ranged from 3-13% with an average of
7%. Although it is a marked improvement on the
average hit rate of 0.1% observed with random screen-
ings at Amgen, the hit rate of the second screening
iteration jumps significantly as we use the information
obtained from the initial screening to extract further
knowledge specific to the target to prioritize the screen-
ing compounds.

For example, in assay 1, the 39 compounds identified
with IC50 < 10 µM were used to build a “target
1-specific” learning model. The model was then applied
to the entire CORP set and suggested the next 100
compounds which have the highest likelihood of binding
to target 1. When biologists tested the top 100 suggested
compounds, 43 were observed with IC50 < 10 µM.

The same experiment was repeated on assay 3.
Knowledge gained from the initial screening recom-
mended 100 top ranked compounds for screening, and
47 were found with IC50 < 10 µM. Unfortunately, due
to the limited biology resources, this experiment was
only performed on the two assays referred to here and
not across all 16 assays, but we have been able to prove
the concept.

Conclusion

In this study we investigated the use of Bayesian
statistics to model both general (multifamily) and
specific (single-target) kinase inhibitors. This approach
appears to give useful insight for the kinase activity
classification problem. The method did operate rapidly
and is readily modifiable as required.

Building the model based on a 200 000 compound set
took three minutes, and evaluation of the 10 000
compound library took 10 s. For two examples, the
general kinase model demonstrated meaningful enrich-
ment for several specific kinase targets, relative to
random screening, without having to develop specific
models for inhibitors of each individual kinase. Such an
approach can be used to prioritize the compounds for
screening or to optimally select compounds from third-
party data collections. One observed benefit of the
approach is the possibility of finding compounds that
are not structurally related to known actives, or novel
targets for which there is not enough information to
build a specific kinase model.

The general kinase model described in this paper was
built from a basis of mostly tyrosine kinase inhibitors
(∼80%); all the test cases were also on tyrosine kinase
inhibitors. Confirming the applicability of this technique
to other kinase families will be determined once those
biological assays become available.
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