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We present an extension and confirmation of our previously published method (J. Med. Chem.
2002, 45, 2867—2876) for the prediction of volume of distribution (VD) in humans for neutral
and basic compounds. It is based on two experimentally determined physicochemical param-
eters, ElogD(7.4) and fix.4), the latter being the fraction of compound ionized at pH 7.4, and on
the fraction of free drug in plasma (f,). By regressing the fraction unbound in tissues, f, vs
the above parameters, we demonstrate the ruggedness of the method in predicting VD through
the Oie—Tozer equation, via the use of several testing approaches. A comparison is also
presented between several methods based on animal pharmacokinetic data, using the same
set of proprietary compounds, and it lends further support for the use of this method, as opposed
to methods that require the gathering of pharmacokinetic data in laboratory animals. The
reduction in the use of animals and the overall faster and cheaper accessibility of the parameters
used make this method highly attractive for prospectively predicting the VD of new chemical

entities in humans.

Introduction

The complex, costly, and often uncertain outcome of
the drug discovery and development process requires
the simultaneous optimization of several properties. It
has now long been recognized that favorable potency
and selectivity characteristics are not the sole hallmarks
of a successful drug discovery program, nor is the safety
profile considered to be the only hurdle to be overcome,
although it is of paramount importance.

The ability to prospectively predict the pharmaco-
kinetics of new chemical entities in humans is a power-
ful means by which scientists involved in the discovery
of new drugs can select for further development only
those compounds with the potential to be successful
therapeutic agents.

The half-life of a drug is a major contributor to the
dosing regimen,! and it is a function of the clearance
and apparent volume of distribution (VD), each of which
can be predicted and combined to predict the half-life.
Drugs with short half-lives are more likely to be
required to be administered more frequently than those
with long half-lives. Dosing regimen is also intrinsically
linked to other factors such as the pharmacodynamics
of the drug and the difference between systemic con-
centrations associated with side effects vs those mini-
mally required for efficacy. However, these latter at-
tributes are much more difficult to predict from in vitro
or animal data and will be different for each therapeutic
target. Thus, a great deal of focus has been placed on
the prediction of human half-life. While methods using
allometric scaling or correlative methods exist for
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prediction of half-life,2~* greater success is attained if
the two major components of half-life, clearance and
volume of distribution, are predicted separately and
combined to generate a half-life prediction.®

Volume of distribution represents a complex combina-
tion of multiple chemical and biochemical phenomena.
It is a measure of the relative partitioning of drug
between plasma (the central compartment) and the
tissues. Thus, the volume of distribution term considers
all of the tissues as a single homogeneous compartment.

As a result, compounds that are equally bound to
plasma proteins may yield different volumes of distribu-
tion, since the compound with the greater tissue binding
will yield the larger VD. Conversely, compounds with
equal tissue binding may differ in VD, with the com-
pounds having the greater plasma protein binding
yielding the smaller volume of distribution. Drug par-
titioning into tissues is a function of the sum of binding
interactions with tissue components vs binding to
plasma proteins, provided that the drug can readily
penetrate into tissues. It should be noted that, realisti-
cally, binding to the various tissues is a function of the
composition of each tissue, which dictates the binding
affinities and capacities for various drugs. However,
while it is simple to measure plasma protein binding
using human plasma, measurement of tissue binding
in humans is not practical.

In a previous report® we described a method for
prediction of human volume of distribution for cationic
and neutral drugs via the prediction of the theoretical
unbound fraction in tissues (f:) for each of these drugs
by the Oie—Tozer equation.” Once the predicted f; value
is available, VD can be calculated from this value and
the fraction unbound in plasma, f,, to generate the
predicted volume of distribution values. This method
was generally successful, yielding approximately a 2-fold
mean accuracy for predictions.
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In this report, we have further expanded this method
and have demonstrated the robustness of the overall
approach. The scientific literature was exhaustively
mined for human volume of distribution data, resulting
in an expansion of the data set used, with the original
references provided in the Supporting Information sec-
tion. Several statistical approaches, as well as an
external test set, have been used to validate the model.
The obvious advantage is in the application of this
method to the prediction of volume of distribution and,
of course, in the drastic reduction in the amount of
resources needed and in the reduction in the use of
animals. Details of this method are described herein,
and a discussion of the general applicability of the
method is offered.

Results and Discussion

In the Introduction we have outlined the importance
of the volume of distribution (VD) for the prediction of
the half-life of a drug and the usefulness of our previ-
ously reported method® in predicting VD from physico-
chemical properties and the fraction unbound in plasma.
The following discussion will further illustrate these
points and will show the suitability and ruggedness of
this approach, with an extended data set and test
statistics. We have mined the literature extensively for
volume of distribution at steady state, VDss, from clinical
data, and we have assembled a data set of 120 com-
pounds comprising neutral and basic drugs. In the vast
mayjority of cases these data are indeed VDss values, and
in many cases they represent the weighted average of
multiple reports. In some cases we have used VDyg, or
the volume of distribution of the terminal phase, if that
was the only value available. We are aware of the
potential variability, from drug to drug, of the two
parameters, but we considered the extended data set a
higher priority. Furthermore, in considering these data,
it should be borne in mind that variability is encoun-
tered from protocol to protocol, laboratory to laboratory,
and among individuals, as well as between healthy
subjects and patients, and it is not possible to avoid such
variability because it is not possible to have access to
self-consistent clinical studies for a wide variety of
compounds. It should also be emphasized that only
studies using intravenous administration offer a legiti-
mate basis for calculating VD from concentration vs
time data, and those were the only data considered,
although this “filter” resulted in the elimination of many
compounds from inclusion in the data set. In the course
of the discussion we will refer to VDsgs unless otherwise
specified.

VDgs is, of course, a composite parameter because it
depends on a plethora of factors, and the basic premise
of our previous work was to reduce its complexity by
choosing the fraction unbound in tissues, fy, as the
target of the quantitative structure—pharmacokinetic
relationship, or QSPkR,® we wished to pursue. Other
authors have pursued direct correlations between VD
and physicochemical parameters, especially logD(7.4),
but these attempts have generally been confined to very
small sets of compounds and in some cases to sets of
analogues.®~14

To derive the fy; values to be used in our QSPKR
efforts, we used the Oie—Tozer equation, which relates
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VDsgs to fyr and f, with some species-dependent param-
eters:

Vf
VDg = Vp(1 + Rgy) + f,Vp(Ve/Vp — Rgy) + f_u 1)
ut

The parameters Vp, Vg, and Rg, are taken to be the
plasma volume, the extracellular fluid volume, and the
ratio of extravascular to intravascular proteins, respec-
tively, with corresponding values in human of 0.0436
and 0.151 L/kg body weight for Vp and Vg, respectively,
and approximately 1.4 for the ratio. Rgy, in particular,
only takes into account the distribution of aloumin. Vg
is defined as the physical volume into which the drug
is distributed minus the extracellular space, and its
value is taken to be 0.380 L/kg body weight. f, and fy;
are defined respectively as the fraction of drug unbound
in plasma and the overall fraction unbound in tissues.
The value of f is, of course, an oversimplified “average”
value, which actually arises from numerous, undeter-
minable binding interactions with various tissue com-
ponents. It is a fundamental assumption of this ap-
proach that these binding interactions are of a “non-
specific” type and rely heavily on the physicochemical
properties of the drug. Drugs for which the volume of
distribution is heavily driven by a specific type of
binding interaction will likely fail to have their VD
values accurately predicted.

A useful rearrangement of the Oie—Tozer equation,
described in the Experimental Section, allows the
calculation of f,;, and the f,; data were used to derive
our correlation. We further transformed, as in previous
work, the values f, and fy into their respective loga-
rithms, and we sought to establish a correlation with
lipophilicity and the fraction of drug ionized at pH 7.4,
or fiz.4).

Table 1 shows the compounds used in the present
study together with the pharmacokinetic (PK) data used
and the respective references. In the calculations, when
only a value in liters was reported, a 70 kg average
human weight was assumed, and the f,; data were
calculated from the rearranged form of the Oie—Tozer
equation described in the Experimental Section.

Using only physicochemical parameters, such as
ElogD(7.4) determined via our published method,*® and
an experimentally determined pK, for the calculation
of fi7.4) together with the logarithm of f, values, we cast
an equation for these 120 compounds that is similar to
the previously reported one for the set of 64 compounds.
We note here that this approach has the advantage of
relying only on in vitro parameters that can be gener-
ated via high-throughput methods.16-2° Table 2 reports
all the physicochemical data used, with their respective
references, and the QSPKR equation used is

log f,, = 0.0080(:0.0747) —

0.2294(0.0410) ElogD —
0.9311(0.0777) ;) + 0.8885(+0.0956) log f, (2)

N =120; R®=0.8665; rmse = 0.3661;
Q? =0.8542; F3116 = 250.9; p < 0.0001;
mean-fold error for the prediction of VD, = 2.08

while a plot of predicted vs calculated (Oie—Tozer, from
clinical data) log f: values is shown in Figure 1.
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Table 1. Pharmacokinetic Data for the 120 Compounds in the Training Set

VDss 9 (predicted)

compd CAS no. VDss 2 (obsd) (L/kg) fu® fue © (L/kg) refe
acebutolol 37517-30-9 1.2 0.74 0.273 2.65 29-31
acetamidophenol 103-90-2 0.95 1 0.503 0.65 32
alfentanil 70879-28-6 0.75 0.08 0.048 1.38 33
allopurinol 315-30-0 0.6 0.95 0.881 0.54 34
alprazolam 28981-97-7 0.72 0.29 0.187 1.15 35—36
alprenolol 13655-52-2 3.2 0.24 0.030 3.85 37-39
amantadine 768-94-5 6.6 0.33 0.019 1.96 40
amiodarone 1951-25-3 66 0.0002 0.000 26.00 41
amitriptyline 50-48-6 8.3 0.06 0.003 10.87 42—-43
amitriptyline 4317-14-0 12 0.2 0.071 1.76 42,44
N-oxide
antipyrine 60-80-0 0.6 0.9 0.825 0.63 45
atenolol 29122-68-7 0.93 0.91 0.465 1.59 46—-52
atomoxetine 83015-26-3 0.85 0.02 0.010 4.18 53
atropine 51-55-8 2 0.82 0.171 3.02 54
azelastine 58581-89-8 15 0.17 0.004 7.25 55
azithromycin 83905-01-5 33 0.88 0.010 38.88 56
betamethasone 378-44-9 1.32 0.36 0.116 1.28 57-58
betaxolol 63659-18-7 6.08 0.42 0.027 3.71 59-63
bisoprolol 66722-44-9 3.31 0.7 0.085 2.63 64—66
bromazepam 1812-30-2 0.91 0.39 0.192 0.84 67
butorphanol 42408-82-2 8.8 0.18 0.008 4.38 68—70
caffeine 58-08-2 0.61 0.64 0.543 0.52 71
chloramphenicol 56-75-7 0.94 0.47 0.225 0.92 72
chlordiazepoxide 58-25-3 0.34 0.04 0.066 1.43 73—80
chlorpheniramine 132-22-9 3.2 0.3 0.037 6.29 81
chlorpromazine 50-53-3 10.1 0.03 0.001 11.43 82—84
cimetidine 51481-61-9 1 0.81 0.374 0.98 85
citalopram 59729-33-8 13 0.2 0.006 5.32 86—88
clomipramine 303-49-1 20 0.04 0.001 14.83 89
clonidine 4205-90-7 2.1 0.8 0.158 2.62 90
clozapine 5786-21-0 5.4 0.05 0.004 6.24 91
cocaine 50-36-2 2 0.09 0.018 2.94 92
codeine 76-57-3 35 0.93 0.107 3.08 93
colchicine 64-86-8 5.2 0.61 0.046 0.73 94-95
delorazepam 2894-67-9 1.7 0.05 0.012 1.53 94
A9-THC 1972-08-3 9.8 0.03 0.001 10.23 97-98
desipramine 50-47-5 20 0.15 0.003 5.23 99-100
desmethyldiazepam 1088-11-5 0.64 0.03 0.021 1.52 101
dexamethasone 50-02-2 1.14 0.32 0.121 1.09 102—-104
diazepam 439-14-5 1.3 0.02 0.006 1.27 101, 105—124
diltiazem 33286-22-5 3.1 0.22 0.028 5.38 125
diphenhydramine 58-73-1 4.5 0.22 0.019 5.46 126
domperidone 57808-66-9 5.7 0.08 0.005 7.77 127
ergotamine 113-15-5 2.7 0.02 0.003 2.96 128
estradiol 50-28-2 1.2 0.015 0.005 1.94 129
felodipine 72509-76-3 10 0.004 0.000 2.30 130
fentanyl 990-73-8 5.1 0.16 0.012 7.76 33, 131-135
flecainide 54143-55-4 4.9 0.39 0.031 3.76 136
fluconazole 86386-73-4 0.6 0.89 0.814 0.71 137
flumazenil 78755-81-4 11 0.5 0.200 0.67 138—-139
galanthamine 357-70-0 2.46 0.82 0.137 2.94 140-141
haloperidol 52-86-8 18 0.08 0.002 7.97 142
hydrocortisone 50-23-7 0.44 0.09 0.105 0.74 143-145
imipramine 50-49-7 21 0.1 0.002 6.95 100, 146—150
itraconazole 84625-61-6 3.9 0.028 0.003 5.75 151
labetalol 36894-69-6 438 0.5 0.041 2.46 14
levomepromazine 60-99-1 14 0.034 0.001 10.62 152
lidocaine 137-58-6 0.72 0.3 0.194 3.54 153—-154
lorazepam 846-49-1 1.6 0.09 0.023 1.36 124, 155-166
lormetazepam 848-75-9 1.5 0.12 0.033 1.39 167f
maprotiline 10262-69-8 43 0.12 0.001 7.48 168—169
meperidine 57-42-1 2.7 0.42 0.062 4.83 170
methadone 76-99-3 6.2 0.11 0.007 3.91 171-173
methylprednisolone 83-43-2 1.38 0.22 0.067 1.26 174
metoclopramide 364-62-5 3.4 0.6 0.070 4.51 175
metoprolol 56392-17-7 3.73 0.89 0.095 243 176—180
metronidazole 443-48-1 0.74 0.89 0.609 0.58 181
mexiletine 31828-71-4 4.9 0.37 0.030 3.24 182
midazolam 59467-70-8 14 0.02 0.006 1.49 107, 183
mirtazapine 61337-67-5 4.8 0.15 0.012 3.20 184
morphine 64-31-3 2.6 0.61 0.095 2.79 154, 185—196
nadolol 42200-33-9 1.94 0.7 0.150 2.18 197
naloxone 465-65-6 43 0.54 0.049 4.09 198

nebivolol 99200-09-6 11.2 0.02 0.001 6.78 14
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Table 1 (Continued)
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compd CAS no. VDss 2 (obsd) (L/kg) fub fut© VDss 9 (predicted) (L/kg) refe
nefazodone 83366-66-9 0.51 0.009 0.008 3.94 199
nicotine 54-11-5 2.6 0.95 0.150 2.69 200
nifedipine 21829-25-4 0.78 0.04 0.023 1.28 201
nizatidine 76963-41-2 1.2 0.78 0.289 0.67 175
nortriptyline 72-69-5 19.1 0.12 0.002 6.94 202
omeprazole 73590-58-6 0.34 0.05 0.082 0.88 203
oxazepam 604-75-1 0.59 0.04 0.032 1.34 204
oxycodone 76-42-6 2.3 0.55 0.097 3.28 205—207
paclitaxel 33069-62-4 2.4 0.07 0.012 3.10 208
paroxetine 61869-08-7 17.2 0.05 0.001 6.97 209
pentoxifylline 6493-05-6 4.2 1 0.095 0.62 210
perphenazine 58-39-9 20 0.07 0.001 13.48 211
pindolol 13523-86-9 2.01 0.58 0.119 2.81 212-214
prednisolone 50-24-8 0.52 0.075 0.070 0.76 215—-222
prednisone 53-03-2 0.97 0.25 0.113 0.74 220, 222—-223
procainamide 614-39-1 1.9 0.84 0.186 2.42 224
promazine 58-40-2 7.5 0.11 0.006 10.19 83
promethazine 60-87-7 14 0.07 0.002 13.27 83
propafenone 54063-53-5 3.6 0.05 0.005 4.98 225
propofol 2078-54-8 3.9 0.02 0.002 2.31 226—235
propranolol 525-66-6 4.02 0.1 0.010 4.06 236—241
quinacrine 69-05-6 124 0.103 0.000 18.45 242f
quinidine 56-54-2 35 0.13 0.015 3.92 243-244
ranitidine 66357-35-5 1.3 0.85 0.289 2.21 245
remoxipride 80125-14-0 0.64 0.28 0.209 3.89 246
risperidone 106266-06-2 1.1 0.11 0.042 4.65 247
rivastigmine 123441-03-2 2.2 0.6 0.112 3.62 248
sotalol 3930-20-9 0.9 1 0.539 1.66 249—-250
sufentanil 56030-54-7 2.9 0.07 0.010 7.99 33
sumatriptan 103628-46-2 0.65 0.82 0.661 2.66 251
tacrine 1684-40-8 8.22 0.45 0.021 3.30 252—254
tebufelone 112018-00-5 31 0.0007 0.000 3.33 255
terbutaline 23031-32-5 1.8 0.8 0.187 1.45 256
testosterone 58-22-0 1.03 0.02 0.008 1.39 257
theophylline 58-55-9 0.57 0.46 0.412 0.59 258
timolol 26839-75-8 35 0.9 0.103 2.55 259
tolamolol 38103-61-6 3.2 0.09 0.011 3.90 260
tolterodine 124937-51-5 1.3 0.037 0.012 3.89 261
trazodone 19794-93-5 1 0.07 0.030 2.14 262
triazolam 28911-01-5 0.67 0.1 0.068 151 263
trimethoprim 738-70-5 1.6 0.63 0.166 1.36 264
trimipramine 739-71-9 31 0.05 0.001 11.48 265
venlafaxine 93413-69-5 4.4 0.73 0.066 4.95 266
verapamil 52-53-9 4.68 0.1 0.008 7.67 267—269
voriconazole 137234-62-9 4.6 0.42 0.036 1.20 270
zidovudine 30516-87-1 17 0.77 0.192 0.56 271-274

aVDss data from iv clinical studies. See Experimental Section for further details. P Experimentally determined fraction unbound in
human plasma, from literature or in-house data. ¢ Calculated via a rearranged form of the Oie—Tozer equation and experimental VDss
and f, values. See Experimental Section. 4 VD predicted using predicted fu: values and experimentally determined f,. ¢ References for
the volume of distribution data reported from clinical iv studies. Available as Supporting Information. f The experimental VDss value was
calculated using the data obtained from the reported plot after digitization.

Equation 2 was derived directly from a multiple linear
regression, but it was checked, together with its statis-
tics, via a principal component regression analysis. As
previously reported,® we took this approach to check the
potential impact of collinearity between ElogD and log f,
data. The principal component regression analysis
showed that all the three principal components, derived
from all three variables, are statistically significant.
Furthermore, we have performed a randomization
experiment (1000 cycles, data not shown) that yielded
R2 values well below 0.2 in all cases, with a high
distribution of zero and near-zero values. In a similar
randomization experiment with 1000 cycles, we found
that the mean-fold error was centered about a value of
6, with a minimum value above 4, while the actual value
of mean-fold error for the prediction of VDs; is 2.08 for
the training set. These findings further confirm the
validity and stability of eq 2 and of our approach. We
note that ElogD and the fraction ionized increased their

respective coefficients when compared to the previously
reported equation, while the log f, term yielded a lower
value for its coefficient. However, the fraction ionized
and the log f, parameters are still the largest contribu-
tors to the overall equation, and all the coefficients are
reasonably close to the ones reported for the equation
based on 64 compounds. Thus, the near-doubling of the
compounds in the training set did cause some change
in the coefficients observed, but the overall statistical
quality and predictive power was unchanged. This is,
in itself, an indication of the ruggedness of the approach,
especially when considering that, together with a wider
parameter space, we have introduced more error, in
particular from the variability of clinical and biological
data.

The signs of the coefficients are physically reasonable
and they reflect, for example, an increase in tissue
binding (lower log fy;) with an increase in the fraction
ionized. This may be rationalized by considering the
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Table 2. Physicochemical Data for the 120 Compounds in the Training Set

compd CASno. ElogD?2 fiz4? pKa® refd compd CAS no. ElogD 2 fiz.g® pKa® refd
acebutolol 37517-30-9 —0.39 0.995 9.67 275 maprotiline 10262-69-8 2.04 0.999 10.5 290
acetamidophenol 103-90-2 0.38 0.000 n/a meperidine 57-42-1 1.11 0.952 87 285
alfentanil 70879-28-6 239 0.112 65 276 methadone 76-99-3 1.3 0.876 825 291
allopurinol 315-30-0 -0.1 0.000 n/a methylprednisolone 83-43-2 2.42 0.000 n/a
alprazolam 28981-97-7 2.16 0.000 n/a metoclopramide 364-62-5 0.73 0.992 951 e, 277
alprenolol 13655-52-2 0.62 0.994 9.6 e, 275, 277 metoprolol 56392-17-7 —0.62 0.995 9.7 275
amantadine 768-94-5 —0.81 0.999 10.68 e metronidazole 443-48-1 0.12 0.000 n/a
amiodarone 1951-25-3 595 0.955 8.73 278 mexiletine 31828-71-4 0.23 0.983 9.15 e, 277
amitriptyline 50-48-6 294 0.990 94 279 midazolam 59467-70-8 3.31 0.000 n/a
amitriptyline n-oxide 4317-14-0 3.14 0.000 n/a mirtazapine 61337-67-5 2.6 0.443 7.3 292—-293
antipyrine 60-80-0 0.34 0.000 n/a morphine 64-31-3 0.32 0.858 8.18 282
atenolol 29122-68-7 —1.51 0.994 9.6 275, 277 nadolol 42200-33-9 —0.77 0.995 9.67 275
atomoxetine 83015-26-3 13 0.998 10.1 f naloxone 465-65-6 144 0.776 7.94 285
atropine 51-55-8 —0.16 0.996 9.84 e nebivolol 99200-09-6 2,76 0.869 822 14
azelastine 58581-89-8 1.93 0993 954 e nefazodone 83366-66-9 495 0.112 65 e
azithromycin 83905-01-5 09 1950 8.74 280 nicotine 54-11-5 0.23 0834 81 e

9.45 nifedipine 21829-25-4 2.84 0.000 n/a

betamethasone 378-44-9 2.33 0.000 n/a nizatidine 76963-41-2 0.06 0.134 6.59 e
betaxolol 63659-18-7 0.46 0985 9.21 281 nortriptyline 72-69-5 1.9 0998 101 e
bisoprolol 66722-44-9 —0.38 0.993 9.57 14 omeprazole 73590-58-6 2 0.000 n/a
bromazepam 1812-30-2 1.38 0.000 n/a oxazepam 604-75-1 2.94 0.000 n/a
butorphanol 42408-82-2 148 0.860 819 g oxycodone 76-42-6 0.37 0.931 853 294
caffeine 58-08-2 —0.01 0.000 n/a paclitaxel 33069-62-4 4.5 0.000 n/a
chloramphenicol 56-75-7 1.55 0.000 n/a paroxetine 61869-08-7 212 0992 951 f
chlordiazepoxide 58-25-3 3.08 0.000 n/a pentoxifylline 6493-05-6 0.24 0.000 n/a
chlorpheniramine 132-22-9 1.56 0.986 9.26 e perphenazine 58-39-9 3.94 0.837 811 277
chlorpromazine 50-53-3 3.2 0986 9.25 275,279,282 pindolol 13523-86-9 —0.2  0.993 9.54 275
cimetidine 51481-61-9 04 0271 6.97 e prednisolone 50-24-8 1.6 0.000 n/a
citalopram 59729-33-8 1.31 0.990 9.38 f prednisone 53-03-2 1.22 0.000 n/a
clomipramine 303-49-1 3.62 0.990 9.38 279 procainamide 614-39-1 —0.57 0.986 9.24 295
clonidine 4205-90-7 0.29 0.817 8.05 283 promazine 58-40-2 2.7 0987 9.28 277
clozapine 5786-21-0 3.38 0.629 7.63 e promethazine 60-87-7 3.33 0980 9.1 296
cocaine 50-36-2 0.48 0.952 8.7 284 propafenone 54063-53-5 1.49 0.987 9.27 e
codeine 76-57-3 0.39 0.863 8.2 282, 285 propofol 2078-54-8 419 0.000 n/a
colchicine 64-86-8 0.9 0.000 n/a propranolol 525-66-6 0.93 0.991 945 275
delorazepam 2894-67-9 3.16 0.000 n/a quinacrine 69-05-6 1.1 1.664 10.2 297
A9-THC 1972-08-3 6.99 0.000 n/a 7.73
desipramine 50-47-5 1.3 0999 10.23 e quinidine 56-54-2 151 0.817 8.05 298
desmethyldiazepam  1088-11-5 3.26 0.000 n/a ranitidine 66357-35-5 -0.5 0.922 8.47 e
dexamethasone 50-02-2 2.03 0.000 n/a remoxipride 80125-14-0 0.71 0.969 89 299
diazepam 439-14-5 2.98 0.000 n/a risperidone 106266-06-2 159 0888 83 f
diltiazem 33286-22-5 2 0.820 8.06 e rivastigmine 123441-03-2 0.37 0975 899 f
diphenhydramine 58-73-1 1.38 0.980 9.1 e sotalol 3930-20-9 —1.45 0.996 9.76 14,275
domperidone 57808-66-9 3.17 0.760 7.9 286 sufentanil 56030-54-7 3.34 0.738 7.85 e, 276
ergotamine 113-15-5 438 0.074 6.3 287 sumatriptan 103628-46-2 —0.4 0.992 95 300
estradiol 50-28-2 3.9 0.000 n/a tacrine 1684-40-8 0.17 0.996 9.8 301
felodipine 72509-76-3 452 0.000 n/a tebufelone 112018-00-5 5.63 0.000 n/a
fentanyl 990-73-8 239 00915 843 276 terbutaline 23031-32-5 —1.49 00952 87 278
flecainide 54143-55-4 0.49 0.988 9.3 288 testosterone 58-22-0 3.17 0.000 n/a
fluconazole 86386-73-4 0.66 0.000 n/a theophylline 58-55-9 0.49 0.000 n/a
flumazenil 78755-81-4 0.78 0.000 n/a timolol 26839-75-8 —0.39 0.962 88 275
galanthamine 357-70-0 0.21 0.893 8.32 289 tolamolol 38103-61-6 1.81 0.760 7.9 275
haloperidol 52-86-8 246 0947 865 e tolterodine 124937-51-5 1.04 0.996 9.8 e 302
hydrocortisone 50-23-7 1.49 0.000 n/a trazodone 19794-93-5 297 0.197 6.79 e
imipramine 50-49-7 1.97 0.991 945 e, 279 triazolam 28911-01-5 253 0.112 6.5 303
itraconazole 84625-61-6 5.9 0.000 n/a trimethoprim 738-70-5 0.61 0.420 7.26 e, f
labetalol 36894-69-6 157 0.500 7.4 275 trimipramine 739-71-9 3.1 0986 9.24 e
levomepromazine 60-99-1 3.04 0.984 9.19 277 venlafaxine 93413-69-5 0.87 0.992 9.5 292, f
lidocaine 137-58-6 129 0.776 7.94 282 verapamil 52-53-9 224 0971 8.92 304—305
lorazepam 846-49-1 2.8 0.000 n/a voriconazole 137234-62-9 2.15 0.000 n/a
lormetazepam 848-75-9 2.77 0.000 n/a zidovudine 30516-87-1 0.12 0.000 n/a

a As described in ref 15. P Fraction ionized at pH 7.4 calculated from experimental pK, values. ¢ Experimental pK, values. For compounds
having only a single pK, value and a value less than 5, the notation “not applicable” (n/a) is used. 9 References for experimental pK, data
reported. Available as Supporting Information. ¢ Potentiometri titration. f Capillary electrophoresis. ¢ Estimated to be similar to codeine

and morphine.

binding of cations (ionized basic compounds) to nega-
tively charged membranes in tissue and organelles. An
increase in lipophilicity would also decrease the amount
of the free drug in tissues and thus increase its VDsgs.
Thus, lipophilicity and ionic interactions capture the
nonspecific drug—tissue binding to a very large extent.?
The introduction of the predicted log fy values (as fut)
into the Oie—Tozer equation yielded a mean-fold error
of 2.08 for the prediction of VD for the training set,

and the corresponding plot of the predicted vs clinical
VDss data is shown in Figure 2.

To further explore the usefulness and ruggedness of
eq 2, we undertook additional statistical testing on the
basis of the adoption of a leave-class-out (LCO) approach
and the use of an external test set, and we used VDs;
as the end-point of the prediction. Tables 3 and 4 show
the results of these two tests. It can be seen from Table
3 that the statistical quality of the equation (eq 2) does
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Figure 1. Plot of predicted log fu: vs observed log f,: for the
120 compounds in the training set.
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Figure 2. Plot of predicted VDss vs observed VD for the 120
compounds in the training set. The dotted lines represent the
2-fold error limits.

Table 3. Leave-Class-Out Statistics
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Table 4. Physicochemical and Pharmacokinetic Parameters for
the Test Set Compounds

obsd predicted

VDss 9 VDsgs® fold

compd ElogD pKa fizg? fu® fue® (L/kg) (L/kg) errorf
1 0.79 6.99 0.280 0.120 0.055 0.7 093 1.33
2 4.44 7.2 0.387 0.001 0.000¢ 15 4.24 2.82
3 0.68 7.26 0.420 0.603 0.180 15 1.40 1.07
4 1.01 9.09 0.980 0.191 0.017 6.6 4.44 1.49
5 —0.09 8.98 0.974 0.603 0.085 5.5 287 191
6 2.99 7.24 0.409 0.010 0.001 1 2.71 2.71
7 0.53 1.76 0.000 0.891 0.667 0.7 0.67 1.04
8 1.54 8.66 0.948 0.020 0.002 15.1 426 355
9 1.00 7.13 0.349 0.427 0.130 15 1.36 1.10
10 —0.50 8.2 0.863 0.020 0.007 9 1.28 7.01
11 0.85 8.03 0.810 0.363 0.046 2.8 3.10 1.11
12 1.41 9.82 0.996 0.120 0.009 2.1 536 255
13 2.33 9.09 0.980 0.030 0.002 21 7.17 2.93
14 3.09 6.8 0.200 0.040 0.007 15 215 1.44
15 1.57 7.11 0.339 0.250 0.061 4.7 164 286
16 1.00 7.26 0.420 0.27 0.080 2.2 1.38 1.59
17 3.29 9.25 0.986 0.02 0.001 26 11.45 2.27
18 198 9.2 0.984 0.02 0.001 3 576  1.92

a Fraction ionized at pH 7.4. P Fraction unbound in human
plasma. ¢ Fraction unbound in tissues (fut) predicted from eq 2.
d Experimental VDss value from iv clinical studies. ¢ Calculated
VDss value from the predicted f, data in this table, using the Oie—
Tozer equation. f Mean-fold error is 2.26. No f, filter was used (see
text). 9 Actual value is 0.00009.

o
7
3
- 9
o,
Al
°
o
5 ! 0 %12
8
B o S 06
5 ®y
o
jd
I
¥ .,
l‘? -
(? —
T T T T T T T
-6 -5 -4 -3 -2 -1 0

no. of

R2 of

compds predictive mean-fold error

class inclass equation? of predicted VD
antipsychotics 4 0.8608 1.26
[-blockers 14 0.8604 1.54
steroids 8 0.8651 1.36
tricyclic antidepressants 7 0.8651 2.51b
morphine analogues 4 0.8659 1.41
benzodiazepines 12 0.8737 1.86¢
fentanyl analogues 3 0.8690 2.10

a Based on 120-N observations and calculated for the log fut
regression as in eq 2. P Desipramine, imipramine, and trimi-
pramine were underestimated by greater than a 3-fold factor. See
text. ¢ Chlordiazepoxide was overestimated by a factor of 4.2.

not depend on any particular class of analogues, since
the removal of each class yields predictive equations of
similar statistical power, together with allowing the
prediction of the VDss for each class very close to or
within a factor of 2. The fact that this method remains
robust after LCO testing is important in the investiga-
tion of new compounds. In most drug discovery efforts,
researchers are working with novel classes of structures
and they must be confident that a predictive approach
based on well-established classes of drugs will be

Observed logfut

Figure 3. Plot of predicted log f.: vs observed log f,: for the
18 compounds in the test set.

applicable to novel structural classes. We observed some
significant deviations for some tricyclic antidepressants,
and we shall return to this point later, since these
deviations might be due to tight and specific binding to
cellular organelles, membranes, or DNA or to active
influx or efflux mechanisms, while this method, as
described earlier, assumes passive diffusion as the only
mechanism of tissue penetration and “average” binding
in all tissues.

Table 4 shows the prediction of VDs, Vvia eq 2 and
the Oie—Tozer equation, for a set of 18 structurally
unrelated proprietary compounds, while Figures 3 and
4 show, respectively, the predicted vs calculated (Oie—
Tozer, from clinical data) log f,: and the predicted vs
clinical VDs;s plots. Despite a very significant deviation
(a factor of 7) for compound 10, the mean-fold error is
2.26, or slightly above a factor of 2. No allowance was
made in this case for the removal of the compounds
having a fraction unbound in plasma (f,) lower than
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Figure 4. Plot of predicted VDs; vs observed VDgs for the 18
compounds in the test set. The dotted lines represent the 2-fold
error limits.

0.02, by adopting the “f, filter” as discussed in our
previous work, but the removal of compound 10 as a
possible outlier would yield a mean fold-error of 1.98.
We do not have an explanation for the significant
underprediction of VDss for compound 10, but it is
possible that specific binding in selected tissues may
have occurred. The next largest deviation was observed
for compound 8, which is also underpredicted. Both
compounds, however, are highly bound to plasma pro-
teins, and some error may be introduced, as we postu-
lated in our previous work, from the determination of
fu and the technical challenges associated with accurate
measurement of the free fraction for very highly protein-
bound drugs. It is important to emphasize that while
plasma represents a small fraction of the total body
mass (~4%),%? the accuracy of f, determinations has
important consequences for VDsg.

Specific binding, resulting in underprediction, could
be invoked for several drugs used in this study and
range from quinacrine, well-known for binding to DNAZ23
and some peptide hormone producing cells,?* to imi-
pramine, reported to have high affinity for lysosomes
and potentially susceptible to binding to lipophilic
substances and to aggregation within lysosomes.25-27
Furthermore, the structurally very similar trimi-
pramine and desipramine, also underpredicted, may be
specifically sequestered in lysosomes, and this aspect
may contribute to explain the significant deviation
observed. However, we do not have strong evidence
allowing us the removal of those compounds or of the
overpredicted chlordiazepoxide.

As a final comparison, we present the results obtained
by comparing several methods based on animal phar-
macokinetic data® with our physicochemical parameters
and f, approach based on eq 2. Table 5 shows the
predicted VD values in humans using those methods
and compares those values to the predictions reported
in Table 4 and based on the present method. For 14 out
of the 18 compounds in the present test set, the results
are comparable, and in some cases the prediction yields
essentially the same result than the more resource-
demanding PK methods as in the case, for example, of
compounds 1, 3, 4, and 7. Compound 2 is overpredicted
by the present method, but it is underpredicted by a

Lombardo et al.

Table 5. Comparison of VD Predictions Using Animal PK or
Physicochemical Data

via v2b V3¢ VDss 9 VDgs (0bsd)
compd (L/kg) (L/kg) (L/kg) (L/kg) (L/kg)
1 0.5 0.5 0.9 0.7
2 0.3 04 04 4.2 15
3 11 15 0.9 1.4 15
4 41 5.7 7.2 4.4 6.6
5 2.9 4.9 2.7 2.9 55
6 1.6 1.8 15 2.7 1
7 0.6 0.7 0.6 0.7 0.7
8 9.3 11.0 43 15.1
9 15 17 1.2 14 15
10 11.0 13.0 18.4 1.3 9
11 2.7 31 2.6 3.1 2.8
12 2.6 3.0 25 5.4 2.1
13 253 30.0 423 7.2 21
14 1.3 15 2.2 2.2 15
15 1.8 1.3 0.8 1.6 47
16 1.9 14 11 14 2.2
17 23.6 41.7 61.8 115 26
18 4.0 4.8 3.3 5.8 3

a Calculated via the Oie—Tozer equation, using a mean f; value
derived from animal data and f, in humans. P Dog—human
proportionality method, corrected for f,. ¢ Allometric scaling, with
correction for interspecies differences in f,. 4 Calculated from eq
2 and the Oie—Tozer equation using the parameters from Table 4
(this work).

larger extent by all PK-based methods. For compound
15, the first two methods yield the same level of
accuracy as the present method, while the method based
on allometric scaling yields a mean-fold error of about
6. Thus, the present method, based only on in vitro
parameters and with the caveats discussed above in
terms of specific binding and efflux/influx phenomena,
performs comparably to the more resource-demanding
PK-based methods.

Conclusion

We have confirmed our previous findings and dis-
cussed a facile method for the prediction of VDss in
human that does not require animal PK data. It is
therefore more amenable to faster screening approaches,
is less resource-demanding, and requires much smaller
guantities of compound than previously described VD
prediction methods.>2®2 We have confirmed with ex-
tended training and test sets and with a leave-class-
out approach the good predictive power of this method,
with particular regard to the actual work of drug
metabolism scientists aimed at differentiating com-
pounds belonging to similar classes, with a general
equation. The method yields a mean-fold error close to
2.

This method should find application in the prediction
of VDss in man and therefore should contribute to the
prediction of half-life (t12) and dosing regimen. The
extension of this method to the prediction of VDgs of
acidic compounds, the application of computational
methods to these predictions, and further extension of
the scope of these methods are among the future
objectives of our work.

Experimental Section

Materials and Methods. Most of the drugs were purchased
directly from commercial sources (Aldrich, Fluka, ICN, RBI,
Sigma, Tocris) and used as received in all cases. In several
cases they were available through our Materials Management
Group as either proprietary compounds or samples extracted
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from commercial formulations. The ElogD data were deter-
mined using our recently published method,*® which is based
on a linear regression of capacity factors (as log k') obtained
from polycratic RP-HPLC determinations and extrapolated to
0% of organic solvent. Its ruggedness, and similarity to the
balance of forces present in classical “two-phase” systems, has
been discussed in detail in the original work. In some cases,
newer determinations were made even for compounds previ-
ously reported and then averaged, or some of the ElogD data
were recast using the equation from our published ElogD
work.*® The data range spans over 7 units. The pK, data were
either taken from the literature or determined in house from
potentiometric or CE determinations, either via a single
capillary instrument or using a CombiSep 96-channnel CE
instrument (CombiSep, Inc., Ames, 1A). In several instances
they were obtained from potentiometric determinations per-
formed by plon Inc., Woburn, MA, either on commercial or
proprietary samples. When more than one source was avail-
able, the pK, data were averaged. The fjz.4 values were then
determined using the pK,, and the data range spans from O
(neutral) to approximately 2 (dication).

Volume of Distribution and Plasma Protein Binding
Data. Volume of distribution and plasma protein binding data
for the 120 compounds constituting the training set were
obtained in all cases from the original references, and they
are reported in the Supporting Information. The f, data for
tebufelone and quinacrine were determined in-house using
equilibrium dialysis. The f, data range spans from 0.0002
(amiodarone) to 1 (acetaminophen). The VDss data, in either
the training or the test set, comprise only data from studies
in which a systemic dose was administered, since the accurate
measurement of volume of distribution requires the entire dose
to be completely available to the systemic circulation. If more
than one reference was available, a weighted average based
on the number of subjects in each reported study was used.
In a few cases, VD data for the compounds used for the
calculation of fy; had been reported as VDy values rather than
VDss, and they were used as such. In a few other cases the
VD values were calculated from data extracted from the plot
or available in tabular form. The data range spans from
volumes well below 1 L/kg (e.g., hydrocortisone) to 124 L/kg
in the case of quinacrine. In cases when only a volume of
distribution in liters was reported, an average body weight of
70 kg for each study subject was assumed. The literature data
used for the correlation are listed in Table 1.

Calculation of Fraction Unbound in Tissues. Literature
data for VDss and f, were used in the following rearrangement
of the Oie—Tozer equation:’

VRfu

f —
ut [VDss - VP - (quE)] -[a- fu)REIIVP]

In this equation, fy is the fraction unbound in tissues, fy is
the fraction unbound in plasma, VDss is the steady-state
volume of distribution, and Rg, refers to the ratio of binding
proteins in extracellular fluid vs plasma (1.4). Ve, Vg, and Vg
refer to the volumes of plasma, extracellular fluid, and
“remainder fluid” with values of 0.0436, 0.151, and 0.380 L/kg
body weight, respectively, in human. In general, the use of
logarithmic values is the most common means of data trans-
formation. Veng-Pedersen!® has discussed means of data
transformation to linearize the response and stabilize the
variance points in some detail. Therefore, we applied this
transformation to the f,; and f, values. It is also worth
mentioning that several other possible forms of the regression
equation, using VDss or VDss,unbound OF their respective loga-
rithmic values as the dependent variables as well as f, instead
of its logarithmic value as one of the independent variables,
were tested but yielded significantly inferior statistics. The
original form of the Oie—Tozer equation (eq 1) was used to
calculate the VDss for the compounds in the test set, knowing
their calculated fu (from eq 2) and experimental f,.
Statistical Analysis. The statistical analysis was per-
formed using S-PLUS 2000 (MathSoft, Inc.) and JMP, version
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3.2.6 (SAS Institute Inc.). Ordinary least-squares method was
used to fit the regression model for predicting f, yielding eq
2.

All the predictor variables in the equation are statistically
significant. We also examined the correlation between the
predictor variables and noticed that the sample correlation
coefficient between ElogD and log fy was — 0.8393. We
subsequently performed a principal component regression
analysis, and observed that all three principal components
derived from the three variables were statistically significant.
This indicates that all three predictor variables contribute
significantly in predicting log f,.. We would have obtained the
same regression equation by principal component regression
analysis.

Randomization experiments on the training set and the use
of an independent test set of 18 proprietary compounds were
also part of the statistical assessment of the model, as
described in Results and Discussion.

Leave-Class-Out Approach. We performed the leave-
class-out cross-validation of our approach. We have identified
seven classes of analogues in our data set. In the leave-class-
out cross-validation exercise, we left out one class from our
data set at a time and fit the regression model for log fut
prediction based on the remaining data. We then used the
model to predict log f,: for compounds in the class being left
out. Following that, we used the obtained predicted log f.; in
the Oie—Tozer equation to predict VDs. The results are
discussed in the text and presented in Table 3.
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