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A virtual screen of a subsection of the AstraZeneca compound collection was performed for
checkpoint kinase-1 (Chk-1 kinase) using a knowledge-based strategy. This involved initial
filtering of the compound collection by application of generic physical properties followed by
removal of compounds with undesirable chemical functionality. Subsequently, a 3-D pharma-
cophore screen for compounds with kinase binding motifs was applied. A database of
approximately 200K compounds remained for docking into the active site of Chk-1 kinase,
using the FlexX-Pharm program. For each compound that docked successfully into the binding
site, up to 100 poses were saved. These poses were then postfiltered using a customized
consensus scoring scheme for a kinase, followed by visual inspection of a selection of the docked
compounds. This resulted in 103 compounds being ordered for testing in the project assay,
and 36 of these (corresponding to four chemical classes) were found to inhibit the enzyme in a
dose-response fashion with IC50 values ranging from 110 nM to 68 µM.

Introduction

Many of the proteins involved in the regulation of the
cell cycle are interesting targets for the development of
therapeutics for cancer.1 In particular, DNA damage
checkpoint kinases have recently emerged as attractive
targets for cancer therapy.2 The checkpoint kinase-1
(Chk-1 kinase) prevents cells with damaged DNA from
entering mitosis by arresting them at the G2/M check-
point. DNA damage activates the ATM/ATR pathway,
allowing the cells to arrest and repair their DNA. ATR
kinase activates Chk-1 kinase, which then phosphoryl-
ates the phosphatase Cdc25C, which in turn inactivates
cdc2. Inactivation of cdc2 leads to arrest at the G2/M
checkpoint.3 It has therefore been suggested that inhibi-
tion of Chk-1 kinase would lead to abrogation of the
G2/M checkpoint, allowing cells to enter a lethal mitosis
with damaged DNA. Recently, the Chk-1 inhibitors
UCN-01 and SB-218078, staurosporine analogues, have
been reported to abrogate the G2/M arrest induced by
DNA-damaging agents in vivo and thus to enhance the
cytotoxicities of the DNA-damaging agents.4,5 Therefore,
Chk-1 kinase inhibitors are potential sensitizing agents
to be used in combination with standard therapies that
induce DNA damage. In this paper a virtual screening
strategy that was used to identify inhibitors of the
Chk-1 kinase is described.

Virtual screening is a technology that is gaining
increased use in drug discovery.6-9 It is seen as a
complementary approach to experimental screening
(high-throughput screening) and, when coupled with
structural biology, promises to increase the number and
enhance the success of projects in the lead identification

stage of the discovery process. Virtual screening involves
analyzing large collections of compounds with compu-
tational methods with a view to identifying a small
subset of compounds either for testing in an assay or
for synthesis and eventual biological testing. Structure-
based virtual screening involves explicit molecular
docking of each ligand into the binding site of the target,
producing a predicted binding mode for each database
compound together with a measure of the quality of the
fit of the compound in the target binding site. This
information is then used to rank the compounds with a
view to selecting and testing experimentally a small
subset for biological activity.

A number of studies aimed at validating approaches
to virtual screening have been published. These have
focused on an evaluation of the docking methodologies
employed in virtual screening experiments with respect
to reproduction of known crystal structure binding
modes or to enrichment of hit lists from databases of
decoys.10-13 In addition, there have been some examples
published of successful applications of structure-based
virtual screening in a drug discovery project.14-17

There are many challenges associated with the tech-
nology employed in virtual screening. The process of
docking large databases containing on the order of 105-
106 compounds dictates that a number of approxima-
tions in describing the nature of the interactions be-
tween a protein and a ligand need to be made in order
for the virtual screen to be completed in a timely
manner. Approximations in the scoring functions em-
ployed,7,18 the lack of a proper treatment of solvation,
the neglect of protein flexibility, poor assessment of the
protonation states of active site residues or ligands, and
occasionally (admittedly, rarely) incorrect or ambiguous
X-ray assignment of protein side chains (such as rota-
mer positions or the orientations of an amide side chain
of Gln or Asn) are all potential sources of error in the
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docking process and contribute to the identification of
false positives and false negatives in virtual screening.
Virtual screening, however, can avail itself of additional
knowledge about a specific receptor and use this infor-
mation to guide the docking and selection process.

Protein kinases are currently a source of many targets
of interest to the pharmaceutical industry19,20 and are
attractive targets for virtual screening because of the
wealth of structural and binding information available
for protein-inhibitor complexes.21 In this paper a
strategy for a virtual screen of Chk-1 kinase is described
that exploits the structural and chemical information
available for kinase inhibitors. The strategy was to dock
only those compounds in the corporate database that
have a minimal kinase binding motif and to guide the
docking to specific hot spots common to all kinase ATP
binding sites. Subsequently, the docked compounds were
rescored using a scoring scheme customized for a kinase,
and finally compounds were selected for screening on
the basis of the rescored list and visual inspection of
the docked poses. The approach proved to be very
successful with 36 of 103 compounds tested found to
inhibit the enzyme in a dose-response fashion with IC50
values ranging from 110 nM to 68 µM (a 35% hit rate).
The hits found by the virtual screen corresponded to four
chemical classes, with each class deemed attractive for
further investigation by the medicinal chemistry team.

Methods

Database Preparation. The original source of all
the compounds considered was in SMILES format.22

Initially, the database was prefiltered to remove com-
pounds with molecular weight greater than 600 Da or
with greater than 10 rotatable bonds. Protonation and
tautomeric states were generated with Leatherface, an
in-house molecular editor coded using the Daylight
programming tool kits. Leatherface modifies molecular
connection tables according to rules specified in SMARTS
notation.23 Leatherface is also capable of enumerating
forms that are appropriate for representing relatively
unbiased equilibria. A 3-D version of the database was
then generated using Corina,24,25 with explicit enumera-
tion of stereocenters (generating a maximum of eight
stereoisomers per molecule). A conformational version
of the database was then generated using the program
Omega,26 with default parameters. A primary virtual
screen was applied to the database using Plurality, an
in-house 3-D pharmacophore screening program.

Plurality allows the specification of a 3-D pharma-
cophore query in terms of combinations of SMARTS
targets such as hydrogen-bond donors and acceptors,
ring centroids, etc. A multiconformational database,
such as those produced by Omega, may be searched to
find compounds matching the pharmacophore, with the
option of the hits being overlaid onto the query phar-
macophore. It may be run in parallel over a large
computer network with very short search times (for
example, a simple four-point pharmacophore search on
150 million conformations takes approximately 15 min
on a 50 processor Linux farm).

Plurality was used in this instance to filter out
compounds that did not have an appropriate kinase
binding motif. This motif was defined as a hydrogen
bond donor and acceptor pair with a distance range of

1.35-2.40 Å. It is well-known that there are examples
of kinase inhibitors that can bind to the adenine binding
subsite by forming one, two, or three hydrogen bonds.
A two-point pharmacophore was employed here because
it was felt that a one-point pharmacophore (requiring
molecules to have a hydrogen bond acceptor) was far
too lenient and that a three-point pharmacophore
(donor-acceptor-donor) was too restrictive. This left
approximately 200K compounds (single conformers per
molecule) to dock into the ATP binding site of Chk-1
kinase.

Protein Preparation. The crystal structure of the
Chk-1 kinase domain was used. The protonation states
of residues in the binding site were adjusted to the
dominant ionic forms at pH 7.4. The crystallographic
waters were removed, and the bound ligand was used
to define the active site for the docking run, with
residues within 6.5 Å of the bound inhibitor included
in the active site definition. The bound inhibitor was
not included in the docking run.

Docking Protocol. A guided docking strategy was
employed using the FlexX-Pharm27 program to exploit
the large volume of internally and publicly available
data on kinase inhibition. FlexX-Pharm employs a
docking algorithm that takes account of ligand flexibility
but keeps the protein rigid. On the basis of several X-ray
structures of protein kinases, it is known that kinases
adopt a common fold and that the structure of the ATP
binding pocket is highly conserved. The ATP binding
pocket of kinases may be considered to comprise five
specific subsites (see Figure 1).28,29 One subsite, the
adenine binding region, recognizes the purine group of
ATP through the formation of hydrogen bonds to the
N1 and N6 atoms of adenine. In almost all known
complexes of kinases bound to ATP competitive inhibi-
tors, the inhibitors mimic the purine of ATP by binding
to the adenine binding subsite of the kinase. For the
purposes of the virtual screen, this was considered an
essential interaction, and the docking of the compounds
in the database was biased to ensure that these hydro-
gen-bonding interactions were satisfied by specifying
that an interaction be made with the backbone NH of
Cys87 and the backbone carbonyl of Glu85. Other
subsites found in the kinase active site include the
phosphate binding site, the sugar binding site, the
selectivity pocket, and the solvent channel. A study of
protein structures of kinase-inhibitor complexes reveals
that usually one of these subsites interacts with the
inhibitor in addition to the interactions with the adenine
binding region. To account for this, the docking of
compounds was guided by having optional interactions
with the side chains of Lys33, Tyr86, Glu91, Asp94, or
Ser147. In each case, a maximum of 100 poses were
saved for each docked compound, although typically
many fewer were saved because biased sampling was
used in the docking process.

Postprocessing and Compound Selection. The
poses for each docked compound were rescored according
to a consensus scoring scheme derived from an enrich-
ment study for Cdk-2. A popular strategy for postpro-
cessing the results of a virtual screen is to use the
concept of consensus scoring.30 In this approach, the
poses generated from a docking program are then
rescored using multiple scoring functions. Only com-
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pounds that score well with each scoring function (the
consensus) are considered further for biological testing.
Retrospective virtual screening studies have shown that
this approach can improve the enrichment of true
hits.10,11,30 The exact nature of the consensus scoring
scheme used is dependent on the target being consid-
ered.7 For the purposes of the virtual screen against
Chk-1 in this study, Cdk-2 was chosen as a surrogate
for Chk-1 in determining the consensus scoring scheme
because at the time there was a much richer set of
activity data for the Cdk-2 project available. A database
of 8000 compounds containing 100 known Cdk-2 inhibi-
tors were docked into the active site of Cdk-2 with
FlexX. For the purposes of rescoring, up to 300 poses
per molecule were saved. Typically docking methods
identify the correct experimental pose as the top pose
on average 50% of the time. This is based on published
docking evaluations by several groups using many
different docking methods against a wide range of
protein structures.12,13,31 There is no systematic way of
telling, for any specific situation, if the correct experi-
mental pose will be found in the top 10, top 50, or top
100 of the poses generated by a docking program. To
offset this uncertainty, it was decided to keep 300
docked poses for each molecule in the hope that the
correct pose would exist among that set.11 The saved
300 poses per docked compound were rescored using the
Cscore module of Tripos. The Cscore module includes
versions of the FlexX,31 Dock (electrostatic),32 Gold,12

PMF,33 and ChemScore34 scoring functions. All possible
combinations of these scoring functions were used to
determine enrichment curves for Cdk-2.

For any combination of scoring functions, the consen-
sus score of a pose, Z, was defined as

where zi is the normal deviate score z for a pose with a

specific scoring function i. z is defined as

x is the raw score (for example, the Chemscore or
Goldscore), xj is the average raw score for all the poses,
and σ is the standard deviation of the raw scores for all
the poses. It is assumed that for each individual scoring
function the raw scores for all the poses are ap-
proximated by a normal distribution. The enrichment
curves found for all the consensus schemes are shown
in Figure 2. For the case of Cdk-2, it was determined
that the consensus scoring combination of the PMF and
FlexX scoring functions gave the best enrichment
curves. The compounds docked into Chk-1 kinase were
rescored with the PMF and FlexX consensus score, and
the distribution of scores is shown in Figure 3. Also
indicated on the distribution are the scores of known
micromolar inhibitors of Chk-1 that were used to guide
the cutoff employed for selecting compounds for visual
inspection. On the basis of the observed distribution and
the locations of the known compounds, a cutoff of 2.5
was used, giving approximately 250 compounds for
visual inspection. The visual inspection step identified
compounds that exhibited unfavorable interactions with
the binding site or compounds that adopted unrealistic
conformations when docked into the active site. Removal
of those compounds resulted in a final list of 103
compounds being selected for testing.

Chk-1 Kinase Assay. Chosen compounds were pro-
filed, and IC50 values were determined in a scintillation
proximity assay using purified human Chk-1 and a
biotinylated cdc25c peptide substrate. In brief, N-
terminal GST-Chk-1 protein was expressed in baculovi-
ral infected insect cells and purified using glutathione
sepharose resin. Purified protein and peptide in HEPES-
based buffer were added to a 384-well plate containing

Figure 1. Structure of a kinase domain highlighting the five subsites present in the ATP binding site.

Z ) ∑
i

zi

z ) x - xj
σ
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diluted compounds (final eight-point concentration range
from 100 µM to 10 nM). Reactions were initiated by
adding a mix of nonradiolabeled ATP and [33P]ATP.
Plates were then incubated for 2 h at room temperature,
and reactions were terminated by addition of EDTA,
SPA beads, and CsCl. Plates were then read in a
Topcount NXT microplate scintillation counter. IC50
values were determined using XLFit within Activity
Base.

Results

A tiered approach for virtual screening (Figure 4) was
employed with the aim of enriching subsets with kinase-
like inhibitors initially and with specific Chk-1 kinase

inhibitors at later stages of the process. The approach
capitalized on a rich source of structural information,
available publicly and internally, on kinase-inhibitor
complexes and on a scoring scheme that has been
demonstrated to give superior enrichments for a kinase
(Cdk-2) in pilot virtual screening studies. The virtual
screen successfully enriched with hits the small subset
of the corporate database that was selected for testing
in the project assay, with 36 hits out of 103 screened
ranging in potency (IC50 data) from 110 nM to 68 µM.
In general, in drug discovery projects attrition rates in
the lead optimization process due to poor cellular
efficacy, poor DMPK profiles, or poor physical properties
of the leads are particular challenges that project teams
face. As a consequence, it is desirable to have several

Figure 2. Enrichment curves for Cdk-2 using a number of consensus scoring schemes: P ) PMF; D ) Dockscore; C ) Chemscore;
F ) FlexXscore; G ) Goldscore.

Figure 3. Frequency distribution of consensus Z scores for
compounds docked into Chk-1 kinase. The arrows indicate the
scores of known Chk-1 inhibitors (Z = -2.2), and the solid line
indicates the cutoff (Z ) -2.0) chosen for visual inspection.

Figure 4. Cartoon illustrating the tiered approach taken to
the virtual screen of a subset of the AZ corporate database for
Chk-1 kinase inhibitory activity.
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chemical series represented in the hits that are carried
forward by the project team. The hits found by the
virtual screen correspond to four chemical classes (some
examples are shown in Figure 5), each deemed by the
medicinal chemistry team to have desirable leadlike
properties for further synthetic investigation as lead
series, and they have been shown to be ATP-competitive.
A frequency distribution of the pairwise Tanimoto
similarities of the hits is shown in Figure 6. The mean
pairwise Tanimoto similarity for the active compounds
is 0.35 with a standard deviation of 0.12.

Discussion
Molecular docking programs face several challenges

in trying to predict correctly the binding mode of a
protein-inhibitor complex and to predict the relative
affinities of a set of compounds for a specific target. The
docking problem comprises sampling of the binding site,
sampling of the conformational space of the ligand, and
a prediction of the interaction energy of every pose found
for a given ligand in the binding site. The form of the
scoring function employed is necessarily approximate,
and as a consequence, docking programs are often not
very accurate at reproducing the correct binding modes
or predicting the relative affinities of inhibitors for a
specific target.7,18,35 In general, it has been observed in

several in-house projects that many of the standard
docking methods perform particularly poorly for kinase
targets. Usually the top pose identified does not involve
interactions with the adenine binding region but is often
drawn toward the phosphate or sugar binding pockets.
The ATP binding site of kinases is highly conserved with
specific residues in the binding site being conserved
absolutely across the whole gene family. The binding
site is predominantly hydrophobic in nature, but it does
have charged or highly polar regions. One charged
region that is invariable across the whole gene family
is a lysine (Lys33 in Chk-1) that binds the γ-phosphate
of ATP. The sugar binding region is polar in nature and
often is lined by the acidic residues Asp or Glu. These
highly charged regions in the binding site of kinases are
often the source of error in docking methods that are
guided by optimizing polar interactions between a
ligand and the protein or that have simplistic treat-
ments of electrostatic interactions in their scoring
functions. This results in poses biased toward this
region of the binding site, without making interactions
to the adenine-binding region.

Almost all known kinase-inhibitor crystal structures
demonstrate that the adenine-binding region is a key
molecular recognition motif in the binding sites of
protein kinases. As a consequence, it is reasonable to
impose a constraint on the docking procedure in the
virtual screening to diminish the deficiencies in the
scoring function employed. In general, applying con-
straints to a specific subsite of a protein binding site
might result in certain compounds being misclassified
as not being inhibitors, but in the specific case of
applying a constraint to the adenine-binding region of
kinase targets, this risk is small.

Similarly, since the bias of the virtual screen is to
identify inhibitors of Chk-1 kinase that bind in the ATP
pocket while making interactions to the adenine-binding
region, there is no need to dock the full corporate
collection because not every compound will have the
necessary chemical functionality to interact with the
adenine-binding region. By employment of a modest
pharmacophore filter for a kinase binding motif, the size
of the database was reduced by half to the chemistry
space known to be relevant to kinase inhibition. This
rational approach saved time in the docking and enabled
more poses to be saved for the postscoring stage of the
screen.

Taking the poses generated from the docking stage
of a virtual screen and rescoring them according to a
consensus scoring scheme is a common tactic employed
in virtual screening.10,30 The philosophy behind this
approach is to use several different types of scoring
function to arrive at a consensus of which compounds
bind well to the protein, in an attempt to overcome the
well-known deficiencies associated with individual scor-
ing functions.18 Typically, the scoring functions em-
ployed in the consensus scoring scheme are represen-
tatives of the three main classes of scoring function,
namely, empirical-based scoring functions (Goldscore,12

Chemscore,34 FlexX,31 Ludi,37 PLP38), force-field-based
scoring functions (Dock Energy Score),32 or knowledge-
based scoring functions (PMF,33 Drugscore,39 Bleep40).
Usually the consensus uses five or six scoring functions

Figure 5. Examples of the hits found by the virtual screen.
The activities reported are dose-response data, measured in
triplicate.

Figure 6. Frequency distribution of the pairwise Tanimoto
similarities of the 36 active hits using Daylight fingerprints.
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together, as implemented in the Cscore module provided
by Tripos, for example. However, it is more prudent to
identify which combination of scoring functions used as
a consensus performs best for the specific system at
hand because it is conceivable that the standard com-
bination of several scoring functions in the consensus
may not give the best enrichment. As described in the
Methods, the optimal consensus scoring scheme was
identified for a related cell cycle kinase, Cdk-2, and this
was then applied successfully to rescoring the docking
poses generated for Chk-1.

The data presented in Table 1 illustrate that the
identification of true-positive hit compounds was de-
pendent on retaining a large number of docked poses
and rescoring these on the basis of the consensus scoring
scheme outlined above. For the 36 active compounds
found by the virtual screening, only five were found in
the top three poses generated by FlexX-Pharm alone
(without postscoring analysis). These are the results for
this specific study, and it is not anticipated that the
exact distribution of poses and active hits found here is
what would be found in general with virtual screening.
However, this and related studies11 do suggest that the
strategy employed here may be useful in other virtual
screening campaigns.

In conclusion, a successful virtual screen of the Chk-1
kinase was performed, capitalizing on in-house experi-
ence and publicly available information in the field of
protein kinase inhibition with ATP competitive com-
pounds. A hit rate of 36% was achieved by screening
103 compounds. The hits corresponded to four chemical
series with correct modes of action (ATP competitive),
and in some instances, the binding mode has been
confirmed by X-ray crystallography. The knowledge-
based virtual screening strategy employed here could
in principle be applied to the identification of ATP
competitive inhibitors of other kinases.
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