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The majority of drug targets for small molecule therapeutics are proteins whose three-
dimensional structure is not known to sufficient resolution to permit structure-based design.
All three-dimensional QSAR approaches have a requirement for some hypothesis of ligand
conformation and alignment, and predictions of molecular activity critically depend on this
ligand-based binding site hypothesis. The molecular similarity function used in the Surflex
docking system, coupled with quantitative pressure to minimize overall molecular volume, forms
an effective objective function for generating hypotheses of bioactive conformations of sets of
small molecules binding to their cognate proteins. Results are presented, assessing utility of
the method for ligands of the serotonin, histamine, muscarinic, and GABAA receptors. The
Surflex similarity module (Surflex-Sim) was able, in each case, to distinguish true ligands from
random compounds using models constructed from just two or three known ligands. True
positive rates of 60% were achieved with false positive rates of 0-3%; the theoretical enrichment
rates were over 150-fold compared with random screening. The methods are practically
applicable for rational design of ligands and for high-throughput virtual screening and offer
competitive performance to many structure-based docking algorithms.

Introduction

Discovery of novel lead compounds through compu-
tational exploitation of experimentally determined pro-
tein structures, either derived from screening of data-
bases or through focused design exercises, is well
established.1 However, it is more frequently the case
that a discovery effort lacks a high-resolution structure
of the target protein. For example, membrane spanning
G-protein-coupled receptors (GPCRs) or ion channels
were the targets for nine of the top 20 selling prescrip-
tion drugs worldwide in the year 2000,2 and it is
unlikely that general methods for solution of structures
of these protein classes will be developed in the short
term. Other classes of targets for which structure-based
approaches will be challenging, such as membrane
transporters, also form important targets for modeling.
It is no less important in these cases to have predictive
models of ligand activity than in the cases for which
protein structure is known.

In these cases, predictive models of ligand binding to
target active sites can be useful in at least two situa-
tions: (1) where many existing ligands are known but
where they share side-effects or biological properties
that limit their biological utility, and (2) where a small
number of ligands have been discovered for a target (e.g.
by high-throughput screening) that has not been exten-
sively probed and augmentation of the set is a primary
goal of a medicinal chemistry effort. In either case,
improvements in potency, selectivity, or ADME char-
acteristics may be required. Such improvements often
require different chemical scaffolds, so computational
approaches that are not strongly scaffold-dependent are

preferable. The fundamental problem is to generate a
hypothesis for how the ligands must be binding to their
target, which then can be exploited through computa-
tional means. The focus of the work reported here is on
the automatic construction of such models based on
small numbers of competitive noncovalently binding
ligands. The goals is to induce models that are specific
enough to distinguish true competitive ligands from
large pools of nonbinding ligands. Precise quantitative
prediction of binding affinities is not the focus of this
effort, since a number of approaches to that problem
exist. But those approaches, whether they are grid-
based as in the seminal work of Cramer et al.3, multi-
point pharmacophore-based,4-6 or surface-based,7-9 all
depend on some hypothesis of the joint molecular poses
of input molecules.

Given a small number of potentially quite flexible
molecules of diverse chemical structures, one must
generate a hypothesis consisting of a single pose for each
input molecule such that the joint superposition of all
molecules will lead to predictive models of biological
activity. Instead of quantifying performance using sets
of ligands whose protein-bound structure was known,
the approach here was to take four therapeutically
interesting targets with unknown three-dimensional
structure (the muscarinic, serotonin, histamine, and
GABAA receptors) and generate molecular superposi-
tions using two or three known ligands for each.
Evaluation of correctness follows recent molecular dock-
ing literature in quantitatively assessing theoretical
screening utility, expressed as the degree to which
ligands of the respective receptors can be distinguished
from random compounds.10-13 There are a large number
of methods for computing molecular similarity and for
producing molecular superpositions (Lemmen and Len-
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gauer have published an excellent review14), but most
of these methods have not been evaluated for screening
utility.

The methods for molecular similarity and alignment
optimization used in the Surflex docking system10,15

were coupled with a functional term to minimize the
volume of molecular superpositions to construct an
objective function for scoring superpositions of multiple
molecules. Molecular superpositions that maximized the
objective function were used as targets for virtual
screening. Performance was comparable to many dock-
ing methods, with true positive rates of 60% at false
positive rates of 0-3%. Many ligands of the target
receptors with widely differing underlying chemical
scaffolds were detectable at false positive rates of less
than 1%.

Surflex’s similarity module (referred to as Sur-
flex-Sim in what follows), which implements the algo-
rithms described here, is available free of charge to
academic researchers for noncommercial use (see http://
jainlab.ucsf.edu for details on obtaining the software).
Molecular data sets presented herein are also available.

Methods

The methodology reported here takes a small number
of input molecules and yields a superposition of the
molecules that optimizes an objective function that is
composed of a molecular similarity component,15 a
restraint against excessive volume that enforces parsi-
mony, and a restraint against ligand self-clashing
(inappropriate atomic overlap between nonbonded at-
oms). In assessing performance of such methods, there
are two main criteria: (1) assessment of the degree to
which the predicted overlap matches with experimental
observation; and (2) assessment of the utility of the
model comprised by the overlap in identifying novel
ligands with high sensitivity and specificity.

Since the focus of this paper is on applications to
proteins whose structure is not known, the emphasis is
on the second criterion. However, since benchmarks for
screening utility exist for structure-based docking meth-
ods,10,11 these are also used for direct comparison. Note
that there is an intrinsic difficulty in assessing ligand-
based models and in comparing them with protein
structure-based methods. Since models are based on
ligand structures, there is an inherent inductive bias
in their construction that favors molecules that are
highly similar to those molecules used for model con-
struction. Consequently, molecular series should be
employed which allow for extrapolation beyond the
underlying chemical scaffolding used in the input
molecules.

GPCR and GABAA Data Sets. Serotonin, muscar-
inic, histamine, and GABAA ligands (shown in Figure
1) were used to generate optimal molecular superposi-
tions, which were then used to score other known
ligands of the receptors relative to a background of
random molecules. The two serotonin ligands (molecules
A and B) were initially reported by Lin et al.16,17 and
were the subject of an extensive 3D QSAR study using
Compass.9 These ligands were chosen since they rep-
resent a snapshot in time of a particular group’s
medicinal chemistry efforts, which resulted in a molec-
ular series that is quite different than many other

ligands of the same cognate receptor. Binding affini-
ties for the series were determined by radioligand
displacement and were 0.1 nM for A and 17 nM for B.
Since the tertiary amine nitrogen of each molecule is
expected to be protonated at physiological pH, but the
proton can be oriented in two ways, there are several
potential superpositions of the molecules, despite their
relative rigidity. There is a significant difference in their
binding affinities, but they are known to be competi-
tive for the same binding site. The three muscarinic
antagonists (molecules C-E) include tolterodine, an
approved therapeutic for urge-based urinary inconti-
nence, and two quinuclidinene-based ligands developed
by the same company.18-20 Again, these represent a very
small space of muscarinic antagonist scaffolds, and they
also represent a single company’s efforts. By contrast,
the histamine antagonists (molecules F-H: bromo-
diphenhydramine, pyrilamine, and azatadine) represent
first-generation antihistamines (respective US patent
years: 1950, 1950, and 1967).21 Molecules I-K are
GABAA receptor agonists, all of which bind at the
benzodiazepine binding site. Molecules I and J are

Figure 1. Molecules used for generation of GPCR and
benzodiazepine binding site structural hypotheses. Molecules
A and B are 5-HT1A ligands from a family of linear and
angular tricyclic compounds that include both agonists and
antagonists of both the serotonin and dopamine receptors (A
has 0.1 nM binding affinity for 5-HT1A, B 17 nM). Molecules
C (tolterodine), D, and E are muscarinic antagonists (respec-
tive affinities of 0.3 nM, 9 nM, and 59 nM; functional inhibition
of guinea pig urinary bladder contraction of 14 nM, 3 nM, and
33 nM). Molecules F-H (bromodiphenhydramine, pyrilamine,
and azatadine) are H1 receptor antagonists (respective affini-
ties of 13 nM, 2 nM, and 11 nM). Molecules I-K are GABAA

receptor agonists (diazepam, alprazolam, and zopiclone) with
nanomolar binding affinities.
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classically structured agonists, and K is the first of a
family of nonbenzodiazepine agonists displaying similar
pharmacology to the classic agonists.21

To test the models that resulted from these input
structures, GPCRDB (www.gpcr.org)22 was used to
identify GPCR ligands with measured binding affinity
to any of the receptors within a particular family of
better than 500 µM (muscarinic receptor types M1-5,
serotonin receptor types 5-HT1-7, and histamine recep-
tor types H1-4). The Merck Index was used to identify
benzodiazepine receptor agonists.21 Reasonable effort
was made to be complete, with the resulting name list
being cross-referenced against the Current Medicinal
Chemistry database to yield 85 GPCR ligands of widely
varying chemical structure and 15 GABAA agonists, of
which nine were variations on the classic benzodiaz-
epine scaffold and six were of varying chemotypes. Table
1 lists the names and annotated target specificity for
all 100 molecules. As a negative control for all cases,

ACD screening molecules were used, following two
recent docking benchmarks.10,11

All of the molecules above were subject to the same
preparation procedures, which involved automatic pro-
tonation, ring search, protonated nitrogen inversion,
and minimization using a Dreiding-type force-field.
Redundant conformations (those that did not have
different ring geometries) were eliminated. Of these, the
lowest energy conformations were retained (up to a
maximum of 10) for each molecule. Note that typically,
larger and more complex ring systems resulted in more
unique conformations than smaller ones. These starting
conformations accounted for alternative ring conforma-
tions and protonation geometries, with the flexibility
due to acyclic bonds to be addressed by the optimization
algorithms discussed below. The ACD screening set11

originally contained 990 molecules, and of these, 850
were correctly processed and used as a negative control.
The search and minimization procedure had a signifi-

Table 1. The 100 Positive Molecules Used to Test the Models, with Annotation of Known Targets. Note: bcce Is Ethyl
â-Carboline-3-carboxylate

molecule Ser Musc Hist GABAA molecule Ser Musc Hist GABAA

abecarnil x methscopolamine x
alosetron x methysergide x
alpidem x metitepine x x
amitriptyline x x x mianserin x x x
amoxapine x x midazolam x
astemizole x molindone x
atropine x nefazodone x
bcce x nortriptyline x x x
benztropine x x olanzapine x
bethanechol x ondansetron x
bromolysergide x oxetorone x
brompheniramine x x oxybutynin x
bupropion x perospirone x
carbachol x perphenazine x x
carbinoxamine x phenindamine x
cetirizine x phenoxybenzamine x
chlorpheniramine x x pilocarpine x
chlorpromazine x x x pimozide x
clemastine x pindolol x
clobazam x pizotyline x
clomipramine x x prazepam x
clozapine x x x prochlorperazine x x
cocaine x procyclidine x
cyproheptadine x x promethazine x x
darifenacin x protriptyline x x
desipramine x x quazepam x
dicyclomine x ramosteron x
dolasetron x risperidone x x
dotarizine x ritanserin x x
doxepin x x sertindole x x x
estazolam x suriclone x
fluphenazine x x telenzipine x
flutoprazepam x terfenadine x
granisteron x tetrazepam x
halazepam x thiethylperazine x
haloperidol x thioridazine x x
hydroxyzine x thiothixene x x
iloperidone x tiotropium x
imipramine x x trazodone x
itasetron x triazolam x
ketanserin x trifluoperazine x x
levocabastine x triflupromazine x x
lidocaine x trimipramine x x
loratadine x tripelennamine x
loxapine x x triprolidine x
maprotiline x x tropisetron x
meclizine x zaleplon x
mesoridazine x x ziprasidone x
metergoline x zolpidem x
methotrimeprazine x zotepine x
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cant impact on model generation, since molecules A, B,
H, I, and J have flexible rings and the first three have
asymmetric nitrogens that are subject to inversion. The
total number of conformations was 78 for the 11 input
molecules, 350 for the 85 novel GPCR ligands, 43 for
the 15 GABAA agonists, and 1349 for the 850 screening
molecules. It is important to stress that the molecular
superposition methods described below sample the
conformational space of the ligands much further than
this initial sampling, but the on-line search is currently
limited to acyclic bonds, necessitating this two-step
approach.

Docking Data Sets. To provide a direct test of
superposition accuracy and a direct comparison to the
utility of structure-based screening methods, the estro-
gen receptor and thymidine kinase benchmarks from
Bissantz et al.11 were used. These consisted of 10 known
ligands for each protein target and 990 compound ACD
screening set mentioned above. The issues of inductive

bias are present to a greater extent in these cases
compared to the GPCR and GABAA sets, since the
known ligands from the benchmarks have a relatively
high degree of scaffold similarity. For the ER case, a
very old nonsteroidal estrogen antagonist (centchroman)
was used in conjunction with 4-hydroxytamoxifen to
generate a molecular superposition. The additional ER
ligand centchroman was subject to ring search and
minimization as for the GPCR data sets, resulting in
10 initial conformations for model induction. For the TK
case, deoxythymidine and acyclovir (the oldest among
the purine nucleoside HSV TK inhibitors) were used.
Figures 2 and 3 show the ligands for both cases and
highlight the pairs chosen for model induction. To
provide a direct comparison to the docking benchmark
from which these examples were derived, the molecules
were used unmodified from the original paper.11 For
computational efficiency, molecules with greater than
21 rotatable bonds in the screening set were excluded,

Figure 2. Estrogen receptor ligands used for protein-structure independent test of screening sensitivity. Centchroman and
4-hydroxytamoxifen were used to generate a ligand-based hypothesis. The remaining nine molecules are shown in the order in
which they ranked in a screen including 941 random compounds. The ranks of the nine compounds were: 1, 2, 3, 4, 5, 6, 7, 62,
135.
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resulting in 941 of the 990 molecules being used in the
negative control experiments. This exclusion had neg-
ligible impact on the computed statistics. Note also that
while 21 rotatable bonds is large with respect to
druglike molecules, fewer than 100 of the molecules had
more than 15 rotatable bonds.

Computational Methods. As discussed previously,
the focus of this work is on the first step of the 3D QSAR
problem: finding a superposition of active molecules
that is sufficiently reflective of the true relative binding

modes that construction of predictive models is possible.
The method makes use of the morphological similarity
approach15 that is used in the Surflex molecular docking
system.10 The goal is to find a molecular superposition
that maximizes the joint similarity of a set of N input
molecules by varying their molecular poses, subject to
the constraint that superpositions with smaller volumes
are favored over those with nominally equivalent simi-
larity but which occupy more space. The procedure is
incremental in nature, building upon high-scoring pair-
wise superpositions one molecule at a time.

Procedures such as the MultiSEAL method of Feher
and Schmidt23 and the SQ method of Miller et al.24 are
similar in approach. The former method extends SEAL
by using a greedy build-up to augment pairwise super-
positions. The latter uses a genetic algorithm to search
the space of fit molecular alignments. The Surflex-Sim
methodology differs primarily in the choice of objective
function and in that the alignment optimization relies
less strongly on atom-based matching in favor of match-
ing molecular surfaces, as described below.

Molecular Similarity and Superposition. Surflex-
Sim utilizes the morphological similarity function and
fast pose generation techniques described previously15

to generate putative alignments of molecules or molec-
ular fragments to other molecules. Briefly, morphologi-
cal similarity is defined as a Gaussian function of the
differences in molecular surface distances of two mol-
ecules at weighted observation points on a uniform grid.
The surface distances computed include both distances
to the nearest atomic surface and distances to donor and
acceptor surfaces. Since the function is dependent on
the relative alignment of two molecules, the problem of
optimizing the similarity of one molecule to the fixed
conformation of another efficiently is a critical issue.
Both the alignment and conformation of the molecule
must be optimized.

The alignment problem can be addressed with an
efficient algorithm because the molecular observations
that underlie the similarity function are local and are
not dependent on the absolute coordinate frame. So, two
unaligned molecules or molecular fragments that have
some degree of similarity will have some corresponding
set of observers that are seeing the same things.
Optimization of the similarity of two unaligned mol-
ecules is performed by finding sets of observers of each
molecule that form triangles of the same size, where
each pair of corresponding points in the triangles are
observing similar features. The transformation that
yields a superposition of the triangles will tend to yield
high-scoring superpositions of the molecules. Figure 4
illustrates the similarity function and alignment opti-
mization method. This function is able to separate pairs
of molecules known to bind the same proteins from
random pairs of molecules much better than methods
based on 2D graph-theoretic measures of molecular
similarity.15

The problem of flexibly aligning one molecule onto
another is addressed as described previously15 and is
very briefly summarized below. The overall approach
is a divide and conquer algorithm, making use of
molecular fragmentation and incremental construction
to ameliorate the exponential dependence of conforma-
tional space on number of rotatable bonds.

Figure 3. HSV-1 Thymidine kinase inhibitors used for
protein-structure independent test of screening sensitivity. The
abbreviations are as follows: dT, deoxythymidine; idu, 5-io-
dodeoxyuridine; hpt, 6-(3-hydroxypropylthymine); ahiu, 5-io-
doracil anhydrohexitol nucleoside; mct, (North)-methanocarba-
thymidine; hmtt, (6-[6-hydroxymethy-5-methyl-2,4-dioxo-hexa-
hydro-pyrimidin-5-yl-methyl]-5-methyl-1H-pyrimidine-2,4-
dione; dhbt, 6-(3-hydroxy-2-hydroxymethylpropyl)-5-methyl-
1H-pyrimidine-2,4-dione; acv, aciclovir; gcv, ganciclovir; pcv,
penciclovir. Deoxythymidine and acyclovir were used to gener-
ate a ligand-based hypothesis. The remaining eight molecules
are shown in the order in which they ranked in a screen
including 941 random compounds. The ranks of the eight
compounds were: 1, 5, 6, 7, 8, 9, 10, 15.
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Molecular Fragmentation. Molecular flexibility is
addressed by molecular fragmentation. Molecules are
fragmented by breaking acyclic rotatable bonds. Each
such break eliminates a bond for conformational search
and eliminates the need to cross the conformations of
the two fragments. So, a molecule with seven rotatable
bonds, where each bond is sampled at six rotameric
positions, is reduced from 67 (>250 000) conformations
to 63 + 63 (432) conformations, a reduction by nearly 3
orders of magnitude. In practice, a heuristic set of rules
are employed in conformational sampling, where two,
three, or six rotamers are used for each bond (e.g. 3 for
sp3-sp3 bonds). Also, a maximum number of conforma-
tions per fragment can be specified (default 20), and the
algorithm selects the most different conformations based
on rmsd. Following completion of fragmentation and
conformational search (and fast internal clash relax-
ation), the resulting molecular fragments are aligned
to the target molecule. Those aligned fragments that
score the best are retained and serve as input to the
next step in the procedure. Note that the procedure of
fragmentation, search, alignment, and scoring is com-
pletely automatic.

Incremental Construction. The highest scoring
aligned fragments from above are used as “heads”, from
which a directed alignment of the “tail” (next molecular
fragment) occurs by aligning each conformation of the
appropriate fragment based on similarity to the target
molecule, but subject to the constraint that the align-
ments generated must place the connector atom proxi-
mal to where it must be to make a connection to the

head. As fragments are added to the growing partial
molecules, similarity to the target molecule is optimized
by gradient descent. In this process, a term to penalize
internal clashes (taken directly from the Hammerhead
scoring function) is employed. The process of incremen-
tal construction iterates on the best partial solutions
until the molecule to be aligned has been fully recon-
structed, resulting in fully optimized poses of the input
molecule relative to the fixed conformation of the target.

Superposition of Multiple Molecules. The forego-
ing has addressed the superposition of one molecule onto
a fixed pose of another. The joint superposition of
multiple molecules is significantly more difficult than
the superposition of one molecule onto a specific pose
of another. The obvious difficulty is the combinatorial
problem, since the number of configurations increases
multiplicatively with additional molecules. For a mol-
ecule pair, given a sufficiently dense sampling of the
conformations of the target molecule, the optimal mu-
tual superposition of the two molecules is tractable.

Another difficulty is more subtle. Given four mol-
ecules, where each of two pairs are highly similar, there
may exist a superposition of all four that yields very
good matches within each similar pair, but which does
not address the overlap between the two sets of pairs
well. The obvious objective function for superimposing
N molecules is the sum of all pairwise molecular
similarities,15 but it suffers from this deficiency. An
additional term, which seeks to overlay the notion of
parsimony appears to alleviate this problem. Surflex-

Figure 4. Left: Similarity between molecules is defined as a function of the differences in surface measurements from observation
points. Ligands shown are nicotine and a competitive nicotinic agonist. While the pyridine and oxazole are very different based
on a 2D graph-based assessment, they display very similar hydrophobic and polar surfaces. The similarity is a Gaussian function
of the differences in the distances from the observation points to the surfaces. It is the difference in the distances to the blue
surface shapes that drives the similarity metric. Right: The alignment optimization procedure seeks to identify corresponding
triplets of observer points of the two molecules subject to two constraints: (1) the triangles must be of similar size, and (2) each
of the points must be “seeing” similar molecular features. That is, an observer point of molecule 1 that is 2 Å from a hydrogen-
bond acceptor oriented toward it must be corresponded with such an observer point of molecule 2. Triangle matches (such as the
match between the blue and purple triangles) are accumulated and tested by applying the transformation to one molecule that
superimposes the triangles of both.
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Sim employs a joint similarity objective function that
is the product of (1) the sum of all pairwise similarities
and (2) the total empty volume in a sphere of fixed size
centered on the superimposed ligands. This biases the
solutions of joint superposition to the smallest possible
volume, given equivalent joint similarities.

Using this function, Surflex-Sim employs a greedy
strategy to identify superpositions of N molecules that
maximize the function. First, all pairwise superpositions
are explored, beginning from a sampling of conforma-
tional space for each of the N molecules. The best of
these (100 by default) based on the objective function
are retained. For each of these partial structural
hypotheses, the remaining N - 2 molecules are aligned
to each of the molecules within the superimposed pair,
and the overall score is computed. The best hypotheses,
which have grown by one molecule (each now containing
three molecules), are retained, and the process repeats,
with superimpositions increasing by one molecule per
iteration, until all hypotheses have N molecules.

Overall Objective Function. The overall objective
function is the product of the mean pairwise similarity
and the volume component, which is computed as
follows. Given an alignment of N molecules, an amount
proportional to the excluded volume of a sphere of radius
10.0 Å is computed. This volume is approximated by
uniform tesselation of the sphere by 66 points. The
minimum distance from each point to any of the
molecules in the alignment is computed (just as in the
molecular similarity computations). The sum of all 66
such distances is computed and scaled down by a
constant (528.398). The constant was chosen so that the
nominal excluded volume for CH4 is 1.0. So, molecular
superpositions that occupy small volumes score high,
and those occupying larger volumes score low. The
overall objective function that drives the superposition
algorithm is the mean pairwise similarity of a set of
molecules in their alignment multiplied by this factor.
A restraint against ligand self-clashing, taken from
Surflex-Dock, is imposed during gradient-based confor-
mational optimization.

Procedure. The following describes the overall pro-
cedure for generating an optimal superposition. There
are two phases to the algorithm:

(1) Pairwise superposition: The best pairwise super-
positions of all input ligands are generated. The result-
ing set of high-scoring superpositions is input to the next
phase of the algorithm.

(1.1) Input: (a) M input ligands that are assumed to
be protonated corresponding to aqueous solution at
physiological pH. (b) Search depth to control the degree
to which conformations of whole molecules are sampled
and to control the degree to which conformations of
molecular fragments are sampled (default 20).

(1.2) Output: A list of the N best (default 100)
pairwise superpositions, as scored by the objective
function, which includes a term that minimizes volume.

(1.3) Procedure:
(1.3.1) All input ligands are searched to some maxi-

mum number of diversely chosen conformations (default
20). Each conformation of each ligand will be used as a
target to which all other ligands are flexibly aligned, to
maximize their molecular similarity.

(1.3.2) For each conformational target from 1.3.1, each
molecule is flexibly aligned to that target to maximize
molecular similarity. The score of the superposition is
computed according to the objective function.

(1.3.3) Each result of 1.3.2 is added to a list of the N
best scoring (default 100) partial superpositions.

(2) Hypothesis augmentation: The partial hypotheses
that serve as input to this step are augmented by
addition of a single new molecule. The procedure
maintains a constant list of the N best hypotheses of a
given length (default 100) and repeats until all hypoth-
eses contain poses for all input ligands.

(2.1) Input: Set of N partial hypotheses each contain-
ing Q aligned molecules.

(2.2) Output: The N best hypotheses each containing
Q + 1 molecules.

(2.3) Procedure (for each hypothesis in the input set):
(2.3.1) For each aligned molecule of the current

hypothesis, each molecule not already in the hypothesis
is flexibly aligned to maximize molecular similarity. The
score of the superposition is computed according to the
objective function.

(2.3.2) Each of the resulting hypotheses (now Q + 1
aligned molecules) is added to a list of the N best
hypotheses of length Q + 1.

(2.3.3) The hypothesis augmentation step is repeated
until Q + 1 is equal to M (i.e. all input ligands are
present in all N hypotheses). The process typically takes
from a few to several hours of real time on standard
desktop computers.

Given a molecular superposition, which will also be
referred to later as a model or binding site hypothesis,
the procedure for computing the score of a new ligand
is as follows:

(1) Input: (a) M ligands comprising the model. (b) A
new ligand, protonated per expectation at physiological
pH.

(2) Output: (a) a score between 0 and 1, and (b) the
pose of the input ligand that gives rise to the reported
score.

(3) Procedure:
(3.1) For each of the M ligands in the model:
(3.1.1) The input ligand is flexibly aligned to the

model ligand to maximize similarity to the model ligand,
resulting in 10 poses.

(3.1.2) For each of the 10 optimized poses of the input
ligand:

(3.1.2.1) The similarity score to each of the M model
ligands is computed.

(3.1.2.2) The mean score is computed.
(3.1.2.3) If the mean score exceeds the current maxi-

mum mean score, the maximum is modified and the
ligand pose is saved.

(3.2) The maximum mean score is returned along with
the corresponding pose.

So, the score of a new ligand is intended to reflect its
ability to mimic, in a single pose, the model represented
by the joint superposition of M molecules. No penalty
is imposed on excessive volume, since it would amount
only to a bias against large molecules.

Computational Procedures. Following preparation
of the molecular data, as described above, Surflex-Sim
was run to generate molecular superpositions for the
five test cases described (“surflex-sim -maxconfs 100
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hypo InputMoleculeList log”). For each case, this re-
sulted in up to 100 scored superpositions. The top five
scoring were further optimized by gradient descent, and
the highest scoring hypothesis was selected, subject to
the constraint that the reported level of ligand internal
clashing was not substantially higher than the other
high-scoring hypotheses. The final molecular superposi-
tions for each ligand set were then treated as quantita-
tive models of the binding determinants of the respective
proteins. To evaluate the utility of these models, known
ligands and random ligands were scored for their degree
of fit, using similarity optimization. The score of a ligand
against a model was simply the maximum (over differ-
ent poses of the ligands) mean similarity of a single pose
of the ligand to the individual molecules comprising the
model. So, the scores reflect the extent to which a ligand
could best mimic the joint superposition of molecules
within a model. The 2D graph-based Tanimoto molec-
ular similarity method was used as a control for
purposes of comparison (as implemented in Cambridge
Software’s ChemFinder program).25

Results and Discussion

Clearly, the goal of methods to superimpose ligands
is 2-fold: (1) to make an accurate prediction of the
relative conformation and alignment of the ligands as
they are bound in the native protein; and (2) to generate
models that can be exploited for computational assess-
ment of potential candidate molecules. In what follows,
the ER and TK data sets described earlier will serve to
address both issues and provide a direct comparison
with docking methods. The GPCR and GABAA receptor
ligand-based models will be used to probe the second
issue both with respect to utility in screening databases
of compounds and in terms of selectivity among related
receptors. The serotonin case will also be used to
consider whether direct prediction of relative potency
is possible using such sparse models.

Comparison to Docking-Based Methods: ER
and TK. Figure 5 shows the optimal superpositions of
ligands for the ER and TK proteins (see the boxed
compounds from Figures 2 and 3) along with relative
crystallographic alignments. In the ER case, a structure

Figure 5. Panel A: Optimized molecular superpositions for ER ligands 4-hydroxytamoxifen and centchroman (left) and
experimentally derived relative alignment of 4-hydroxytamoxifen and raloxifene (right). Panel B: Optimized molecular
superpositions for TK ligands deoxythymidine and acyclovir (left) and crystallographic relative alignment of the same two ligands
with protein residues Gln125, Ala124, and Met128 (right). In the ER case, judging by analogy to raloxifene, which is structurally
related to centchroman, the correct correspondence of structural ligand features was achieved, with the unconstrained pendant
ether substituent varying in absolute configuration from experiment. In the TK case, the induced relative alignment of the ligands
is clearly incorrect, in a direct sense. However, since Gln125 makes a substantial change on binding pyrimidines versus purines,
the correspondence of hydrogen bonding features in the induced alignment is correct. The indicated carbonyl oxygen and proton
on the left are making the same contacts on the right. Note: nonpolar hydrogens have been suppressed in the similarity-based
superpositions for clarity, but they are used in the underlying computation.
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of centchroman bound to ER was not available, so
raloxifene was used as a surrogate. The predicted
correspondence on the left is mirrored quite nicely by
experiment, with the notable exception that the pendant
functionality of the ether, which is important in binding,
does not have the correct absolute conformation. This
is a limitation of ligand-based methods; where flexibility
among several ligands occurs in the same place, there
is no constraint on the induced overlap. Surflex-Sim in
such cases will be biased based on minimizing the
overall volume. Automatic detection of such cases with
explicit modeling of the pendant substituents is an area
for further exploration.

In the case of TK, the relative alignment of the two
ligands is clearly incorrect with respect to the overlap
of the heterocycles. However, there is a subtlety with
respect to conformational adaptation on the part of TK
in binding different classes of nucleoside analogues:
Gln125 is flipped in orientation and shifted in binding
acyclovir versus deoxythymidine. The indicated carbonyl
oxygen and proton in the induced alignment each make
contact with the same heavy atoms of the protein. So,
in a sense, the induced alignment on the left is a
reasonable approximation to the actual alignment on
the right. However, while the correspondence of the
indicated atoms is appropriate, the tight spatial cor-
respondence of the other carbonyl and the NH2 is wrong.
This illustrates another limitation of ligand-based meth-
ods: given a case where a protein active site undergoes
significant conformational adaptation on binding dif-
ferent ligands, particularly similar ones, it is generally
not possible to induce a geometrically accurate super-
position of ligands since the underlying assumption is
that the ligands are binding to highly similar sites. This
is not to say that methods dependent on alignments for
making quantitative predictions will necessarily be
inaccurate, just that certain predictions predicated on
the juxtaposition of two molecules whose cognate bind-
ing pockets are different may be inaccurate.

Given that the geometric overlaps in the ER and TK
cases were only correct to a degree, it is interesting to
consider how well the two molecular superpositions,
when used as binding site models, ranked the remaining
known ligands among the random screening compounds
(nine actives for ER, eight for TK, with 941 random
compounds screened against each). For the ER case, the
cognate ligands were ranked: 1-7, 62, and 135 (Figure
2). For the TK case, the cognate ligands were ranked:
1, 5-10, and 15 (Figure 3). Table 2 shows the false
positive rates corresponding to 80% and 100% true
positives along with the results for multiple docking
techniques.10,11 With the exception of Surflex-Dock’s
performance on ER at the 100% TP level, Surflex-Sim
performs uniformly better than the docking techniques
in both the TK and ER cases.

It is very important to reiterate that this is not a fair
direct comparison to the docking methods, due to the
problem of inductive bias. Whereas the docking methods
are essentially parameter free and have no knowledge
of the ligands under study, the construction of ligand-
based models embeds knowledge of at least some
structural types of true ligands. In the TK case, where
the ligands used to construct the model contain the
same two heterocycles as all of the test ligands, the
Surflex-Sim approach does extremely well. However, it
is likely that even very naı̈ve methods would perform
well, given information about the two major structural
types of ligands. Still, it is interesting that the nominally
inaccurate geometric overlap was not an important issue
in achieving low false positive rates. In the ER case, of
the nine ligands used for testing only three (nafoxidine,
LY-326315, and raloxifene) might be considered highly
structurally similar to either of the two parent com-
pounds. Of the remaining six, only the bottom two from
Figure 2 were ranked out of the top group. The remain-
ing four ligands (EM-343, Sumitomo biphenol, ZK-
11901, and LY-357489) represent different chemotypes
from the two molecules used to construct the model and
were correctly recognized as being highly similar to the
induced model.

GPCR and GABAA Models. A more relevant situ-
ation for drug discovery is represented by targets such
as GPCRs and ion channels, where structure determi-
nation is challenging. To explore these protein classes,
four models were constructed, representing putative
binding site ligand geometries for the serotonin, mus-
carinic, histamine, and GABAA receptors (see Figure 1
for the ligands used for model construction). For each
ligand set an optimal superposition was generated by
Surflex-Sim using identical parameters and procedures
(as detailed above).

Figure 6 shows the final models for the serotonin,
muscarinic, and histamine receptors. The independently
derived models are oriented to reflect their remarkable
degree of coincidence. The right-hand sides are the
bottom view of the respective left-hand sides. In the case
of the molecules A and B from Figure 1 (the 5-HT1A

ligands), the resulting alignment perfectly superimposed
the positively charged amine protons in terms of both
position and orientation. The oxygens are both capable
of accepting hydrogen-bonds from protons in a single
location, and the hydrophobic envelopes of the molecules
are remarkably similar. This is almost identical to the
alignment that resulted in a highly predictive quantita-
tive model of multiple 5-HT1A chemotypes using the
Compass method.9 However, the Compass work utilized
somewhat ad hoc methods for generating superposi-
tions, and it took much longer than the current ap-
proach.

Table 2. Comparative False Positive Rates for Screening: Similarity versus Docking (note that true positive rate (TP) of 80% Means
8/10 for the Docking Approaches, but 7/9 and 6/8 for the ER and TK Similarity Cases, Respectively)

false positives from random ligands, %

thymidine kinase estrogen receptor

TP, % Surflex-Sim Surflex-Dock DOCK FlexX GOLD Surflex-Sim Surflex-Dock DOCK FlexX GOLD

80 0.3 0.9 23.4 8.8 8.3 0.0 1.3 13.3 57.8 5.3
100 0.7 3.2 27.0 19.4 9.3 13.4 2.9 18.9 23.4
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In the case of the muscarinic antagonists (molecules
C-E from Figure 1), significant molecular flexibility of
tolterodine coupled with very different underlying chemi-
cal scaffolds combine to present a more challenging case.
Panel B of Figure 6 shows the highest-scoring hypoth-
esis, which is remarkable in that such different chemo-
types can be so convincingly superimposed. As with the
5-HT1A case, the polar and hydrophobic moieties of the
molecules agree in position, orientation, and volume
occupancy. The substituted furan (molecule D) and
benzofuran (molecule E) each account for different
hydrophobic aspects of tolterodine (C).

In the case of the first-generation histamine antago-
nists (molecules F-H from Figure 1), we see a super-
position that is reminiscent of the model for the anti-
muscarinics. This is not terribly surprising, since many
compounds are known to antagonize both receptor
types. Of the 44 known antimuscarinics and 48 anti-
histamines used to test the models, 28 are annotated
as having effects against both types of receptors. All

three GPCR ligand-based models exhibit similar struc-
tures, with a requirement for a protonated amine,
preference for a proton acceptor, and variable require-
ments for hydrophobic shape. Note, however, that the
detailed orientation of the generally hydrophobic por-
tions of the ligands have somewhat different relative
orientations among the different models.

The GABAA receptor benzodiazepine binding site
model (constructed from molecules I-K) has different
requirements, which are illustrated in Figure 7. The
overlay of diazepam and alprazolam (molecules I and
J) is uncontroversial. However, it is not clear that the
superposition of zopiclone (molecule K) is obviously
correct, though it does largely agree with previously
published models of the benzodiazepine binding site
pharmacophore.26 Exploration of GABAA receptor in-
teractions with classic benzodiazepine agonists versus
other chemotypes using photoincorporated ligands sug-
gests that conformational adaptation may play an
important role in recognition of ligands in this recep-

Figure 6. Optimized molecular superpositions for serotonin, muscarinic, and histamine receptor ligands (panels A, B, and C,
respectively). Molecule carbons are colored according to column position from Figure 1 (first ) gray, middle ) yellow, last )
green). Views on the right are rotated to show the left views from the bottom.
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tor.26,27 So, the observations above with respect to
thymidine kinase may also be relevant in this case.

Quantitative Evaluation of Structural Hypoth-
eses. While Figures 6 and 7 offer some support that the
computational procedures produced intuitively sensible
results, quantitative evaluation of the models is critical.
Figure 8 shows ROC curves comparing the performance
of Surflex-Sim to the 2D-based Tanimoto similarity
method for each of the ligand-based hypotheses, il-
lustrating enrichment of cognate ligands over random
screening molecules. All of the known and random
ligands were processed, aligned, and scored to the
models using identical procedures and parameters for
Surflex-Sim. Procedures for the 2D method were also
uniform, and the method performed best by using
maximum score over the model ligands. For the sero-
tonin, muscarinic, and histamine receptor cases, Sur-
flex-Sim performed uniformly better than the 2D method.
Given a fixed true positive rate for one method, we can
compare the methods by considering the true positive
rate for the other method at an equivalent false positive
rate. The true positive rates for the 2D method corre-
sponding to 90% TP for Surflex-Sim were 72%, 20%, and
22%, respectively, for the serotonin, muscarinic, and
histamine receptor cases.

In the GABAA case, where 9/15 of the test ligands had
classic benzodiazepine scaffolds (as did 2/3 of the
molecules for model induction), the 2D method was able
to achieve 100% TP with Surflex-Sim at 90%. Overall
performance for the GABAA case was quite similar for
the two methods. Surflex-Sim was able to retrieve all
nine test benzodiazepines with no false positives com-
pared with 15/850 false positives for the 2D method
(1.8%). The binding of GABAA ligands to the benzodi-
azepine binding site has been extensively modeled by
other researchers; Huang et al.28 have made a compre-
hensive study and suggest multiple binding modes for
different classes of ligands. While the superposition
produced by Surflex-Sim was similar to that illustrated
by Davies et al.,26 the six test molecules that were not
benzodiazepines may bind differently. The Surflex-Sim
model makes a strong implicit assumption of similarity
of binding mode, which complicates retrieval in cases
where the assumption may be false. There was a sharp

drop-off in scores going from the lowest scoring benzo-
diazepine (quazepam 0.78) to the highest scoring non-
benzodiazepine (zolpidem 0.67).

For Surflex-Sim, 60% recovery of known cognate
ligands resulted between 0 and 3% of the random
ligands being found as false hits. For 70% and 80%
recovery, the respective false positive rates were 2-6%
and 3-11%. The recently published fFLASH method29

reported nominally comparable results on a screening
benchmark (3% FP rate for a 50% TP rate) using the
structure of folate bound to DHFR as an alignment
target. However, 50/51 of the test molecules were
quinazoline-based DHFR inhibitors, which presented
very little significant structural divergence from the
parent molecule.

The problem of inductive bias is less of an issue with
the ligand-based models discussed here, compared with
either the TK/ER cases or the fFLASH study. The
molecules chosen for model construction were either
from the limited series of single medicinal chemistry
groups (serotonin and muscarinic) or are very old
examples of ligands in their target classes (histamine
and GABAA). Consequently, a large number of the test
ligands represent different structural types than those
used for model construction (though this was less true
for the GABAA receptor ligands). Figure 9 shows the
structures of selected cognate ligands that scored very
high relative to random molecules for each of the four
models. In the serotonin and muscarinic cases, there are
a number of novel ligands that are recognized as very
high scoring which have little obvious structural simi-
larity to the ligands used for model induction. Using the
respective background score distributions, it is possible
to compute a percentile-based score for the ligands,
which are shown under the ligand names. Six of the
twelve molecules shown are within the top 1% of
random scores for each respective model. Ten of the
twelve are within the top 2%, with only zolpidem (96.8)
and zaleplon (87.1) being lower. Clearly, molecules with
diverse and novel scaffolds can be distinguished from
random molecules based on small numbers of known
ligands.

While the notion of structural similarity of scaffolds
is somewhat subjective, it is probably safe to character-
ize the ligands represented in Figure 9 as being quite
substantially more different from the corresponding
molecules in Figure 1 than was the case for the ER and
TK model induction cases. Given that the issue of
inductive bias is somewhat reduced compared with the
results presented above, we see that across all four pure
ligand-based cases, a false positive rate of 0-3% cor-
responded to a true positive rate of about 60%. Recall
the results from Table 2 for ER and TK (which depended
on the same population of random ligands) that the best
of the docking methods achieved roughly 80% true
positive rates at a similar level of false positives. The
next best docking method yielded about 5-8% false
positives for an 80% true positive rate, which is quite
similar to what was observed for Surflex-Sim in these
four cases (3-11%). So, while it is clearly possible to
achieve better performance with structure-based tech-
niques, depending on the docking method chosen, a pure
ligand-based approach such as Surflex-Sim can achieve
competitive screening performance.

Figure 7. Optimized molecular superposition for the benzo-
diazepine binding site of the GABAA receptor (molecules I-K
from Figure 1). Carbons are colored as in Figure 6.
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Theoretical enrichment rates (the fold excess of
observed hits to expected hits given a selected subset
of a library) are computable from the data presented
above. They are dependent on the proportion of the
library chosen for screening, which is based on the score
threshold applied to define the subset. With a library
of (N + M) molecules where M are true hits and N are
not (N . M), we choose a score threshold T that picks
some proportion of molecules of the (N + M). If we make
the assumption that the distribution of scores for true
positives and random compounds is close to the distri-
butions that underlie the ROC computations, we will
observe the computed true positive rate (TP) and false
positive rate (FP) at threshold T. So, we will observe
TP‚M hits from a total number of tested compounds
equal to TP‚M + FP‚N. Our expected number of hits is
then ((TP‚M + FP‚N)/(N + M))‚M). Our enrichment rate
is the ratio of the actual number of hits to the expected
number: TP/((TP‚M + FP‚N)/(N + M)). For N . M (e.g.
100 000 nonhits and 50 hits), this simplifies to TP/FP.
With score thresholds that select a large proportion of
libraries, the enrichment rate will tend toward 1.0, since
both the TP and FP rates will tend toward unity (upper
right corner of ROC plots). But with very small propor-
tions of a library selected based on a high score

threshold (left edge of ROC plots), high enrichment is
possible. For the muscarinic and histamine models, at
score thresholds that select about 0.2-0.5% of a library,
we observed theoretical enrichment rates slightly over
150-fold in both cases. For the GABAA case, which was
skewed by the presence of a large number of analogues
of the modeled ligands, the enrichment rate was higher
(over 250-fold). For the serotonin case, which was built
on just two ligands of vastly different structure than
the test ligands, the enrichment rate was lower (about
50-fold). These observations are in rough agreement
with a published application of Surflex-Sim in screening
for inhibitors of PARP (poly ADP ribose polymerase).30

In that application, a single rigid compound was used
as a target for similarity-based screening (obviating the
need for construction of a multi-ligand hypothesis), and
6 of 22 selected compounds from a large screening
library were shown to be specific inhibitors of PARP.
The library’s proportion of true positives was 10/16 000
(determined by high-throughput screening), and the
corresponding enrichment rate was therefore about 450-
fold.

Selectivity and Potency. The foregoing has ad-
dressed a more or less binary characterization of potency
and selectivity: the difference between known ligands

Figure 8. ROC curves GPCR and GABAA receptor models (solid lines for Surflex-Sim and dotted lines for the 2D Tanimoto
similarity method). In each case, for both methods, there is a highly significant enrichment of cognate over random ligands (p ,
0.001 in all cases by ROC area). For the serotonin, muscarinic, and histamine cases, Surflex-Sim performs significantly better
than the 2D method. In the GABAA case, where a large proportion of the test ligands were of highly similar structural similarity
to the molecules used for model construction, there is little difference in performance.
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of a protein and ligands thought not to bind at all. In
that domain, the ligand-based structural hypotheses are
effective, both qualitatively with respect to plausibility
of molecular superpositions as well as quantitatively in
virtual screening. However, it is useful to consider to
what degree such simple models can address more
subtle distinctions involved in ligand binding. Figure
10 shows ROC plots muscarinic, histamine, and GABAA

models that include enrichment versus noncognate
ligands from the GPCR ligand set of the respective
receptor model. Plot A shows that GPCR ligands and
random screening ligands both had very similar separa-
tion from the cognate ligands against the GABAA model.
This observation should ease concerns that the random
screening library may be biased toward “nondruglike”
molecules since it cannot be argued that the GPCR

ligands are not druglike, as most of the examples are
human or animal therapeutics. Note also that the
GABAA model included a ligand with a protonated
tertiary amine, which would have enriched for high
scores among ligands of the other three receptors.

Differences among GPCR ligands are much more
subtle than differences between GPCR ligands and other
drugs. Plot B of Figure 10 shows no separation between
the scores for muscarinic ligands and the remaining
GPCR ligands not annotated as having muscarinic
effects. Both annotated muscarinic receptor ligands and
those with no annotated muscarinic effects fit the model
equally well, with the exception that the subset of other
GPCR ligands with annotated serotonin receptor effects
was slightly separated (data not shown). By contrast,
the histamine model, shown in Plot C, makes a signifi-

Figure 9. Examples of high-scoring ligands against each of the four ligand-based models. Under the name of each ligand is the
percentile rank of its score relative to random molecules within its cognate model.

Figure 10. ROC curves illustrating selectivity for GABAA, histamine, and muscarinic models (solid lines for cognate versus
random compounds and dotted lines for cognate versus other decoy sets).
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cant separation between ligands of the histamine recep-
tor and those GPCR ligands not thought to bind the
histamine receptor. It is quite possible that the musca-
rinic model is inadequate, either based on the objective
function used to choose the optimal model, the method
of scoring new molecules against the model, or based
on the choice of molecules from which to induce the
model (which represent smallish muscarinic antago-
nists). However, since it is likely that the annotation
data that underlies the molecular classes is incomplete,
some proportion of molecules not listed as having
muscarinic effects, in fact, may have such effects. As
mentioned earlier, a large proportion of muscarinic
ligands in the testing set are also identified as having
histamine effects, and vice versa. Since one of the
primary side-effects of anithistamines derive from mus-
carinic origins (dry mouth, blurred vision, and dysfunc-
tional urine voiding),31 it appears that ligands with
primarily antihistaminic effects are a priori likely to
affect muscarinic receptors. The primary data source
used to derive annotations was GPCRDB,22 and there
are a number of examples of histamine receptor ligands
lacking specific binding data for muscarinic receptors,
but which are known to have such effects based on
pharmacology. For example, all three molecules used
for histamine model construction (bromodiphenhy-
dramine, pyrilamine, and azatadine) have side-effects
related to muscarinic activity. Several molecules used
for model testing (e.g. hydroxyzine, astemizole, carbi-
noxamine, and triprolidine) also have documented mus-
carinic pharmacological effects, despite lacking such
annotation in GPCRDB. However, similar inspection of
the muscarinic ligands does not reveal histaminergic
pharmacological effects. So the apparent lack of specific-
ity in the muscarinic model may reflect biological
reality. Regardless, the selectivity exhibited by the
histamine model in distinguishing among different
classes of GPCR ligands is encouraging.

Quantitative prediction of potency using 3D ap-
proaches begins from an alignment such as the ones
produced here. In the case of the serotonin model, there
are an additional 53 molecules in addition to the two
used for construction of the serotonin model whose
binding affinity to the 5-HT1A receptor is known.9
Figure 11 shows the relationship between the score

using the simple two-molecule model and the measured
pKd of these 53 molecules. The data exhibit a lower right
triangular shape. Molecules that are very active tend
to have high scores (5/5 with pKd g 9.0 have scores g
0.85, p ) 0.03 by exact binomial); molecules that are
inactive have lower scores than the active group (scores
of molecules with pKd e 7.0 vs pKd g 9.0, p , 0.01 by
t-test); molecules that have high scores have widely
varying binding affinities (pKd of molecules with scores
g 0.85 vs < 0.85 are not different by t-test). This is not
surprising, since the model was constructed only from
active molecules. So, while the model is able to capture
some aspects of what is required for binding, it is unable
to induce constraints regarding detriments to binding,
and thus many high-scoring ligands have poor binding
affinity. Previous work with Compass7 on this data set
validates the two-molecule hypothesis, since it is nearly
identical to the overlay that resulted in a quantitatively
predictive model of binding affinity. Compass and
related methods build upon the initial alignments in
large part by learning the excluded volume of interac-
tion, essentially finding the “walls” of a protein binding
site.

Conclusions

The work presented here offers a generally applicable
method for producing ligand-based binding site hypoth-
eses, which can be used directly for high-throughput
virtual screening or to form the basis on which to
construct more detailed models of molecular activity.
The algorithms implemented within Surflex-Sim are
capable of addressing molecules with conformational
flexibility that is typical of what is found in therapeuti-
cally interesting small molecules. Performance in terms
of screening utility is comparable to that of many
structure-based molecular docking techniques, but the
best docking methods are capable of better sensitivity
and specificity. From small sets of known ligands, it is
possible to induce molecular superpositions that form
the basis for predictive models of molecular activity.
These models are sufficiently accurate and scaffold-
independent that structures with widely varying chemo-
type can be recovered from screening libraries at very
low false positive rates. Theoretical enrichment rates
of 150-fold over random screening are possible using just
three ligands for model construction.

There are a number of purely methodological im-
provements that will be a focus of future work, including
more efficient hypothesis generation, development of
means by which to objectively select from multiple
hypotheses which score equally well, and full induction
of quantitatively predictive models of activity. However,
given that the methods presented are general and fully
automatic, direct application of the existing methods in
high-throughput to construct models of large numbers
of therapeutically relevant targets will be a high prior-
ity. It should be possible to enable rapid virtual screen-
ing against many tens of biological targets, which might
prove to be of use in suggesting potential side-effect
modulators of molecules undergoing development to-
ward clinical application. Such an effort will also
produce a large set of benchmarks for quantitative
evaluation of many problems in the 3D QSAR field.

Figure 11. Plot of model score versus 5-HT1A binding affinity
for 53 novel molecules from six molecular series.
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