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Glide’s ability to identify active compounds in a database screen is characterized by applying
Glide to a diverse set of nine protein receptors. In many cases, two, or even three, protein sites
are employed to probe the sensitivity of the results to the site geometry. To make the database
screens as realistic as possible, the screens use sets of “druglike” decoy ligands that have been
selected to be representative of what we believe is likely to be found in the compound collection
of a pharmaceutical or biotechnology company. Results are presented for releases 1.8, 2.0, and
2.5 of Glide. The comparisons show that average measures for both “early” and “global”
enrichment for Glide 2.5 are 3 times higher than for Glide 1.8 and more than 2 times higher
than for Glide 2.0 because of better results for the least well-handled screens. This improvement
in enrichment stems largely from the better balance of the more widely parametrized GlideScore
2.5 function and the inclusion of terms that penalize ligand-protein interactions that violate
established principles of physical chemistry, particularly as it concerns the exposure to solvent
of charged protein and ligand groups. Comparisons to results for the thymidine kinase and
estrogen receptors published by Rognan and co-workers (J. Med. Chem. 2000, 43, 4759-4767)
show that Glide 2.5 performs better than GOLD 1.1, FlexX 1.8, or DOCK 4.01.

1. Introduction
The previous paper1 introduced Glide,2 a new method

for rapidly docking ligands to protein sites and for
estimating the binding affinities of the docked com-
pounds. That paper described the underlying methodol-
ogy and showed that Glide achieves smaller root-mean-
square (rms) deviations in reproducing the positions and
conformations of cocrystallized ligands than have been
reported for GOLD3 and FlexX.4 Better docking accuracy
is important in its own right in lead-optimization stu-
dies, where knowledge of the correctly docked position
and conformation (pose) of a novel ligand can be crucial.
In lead-discovery studies, however, docking accuracy is
relevant mainly to the degree that it contributes to
obtaining high enrichment in database screening. We
believe that accurate scoring requires accurate docking,
though accurate docking is not enough in itself.

This paper investigates the ability of Glide 2.5, run
in “standard-precision” mode,1 to identify known binders
seeded into database screens for a wide variety of
pharmaceutically relevant receptors. We present com-
parisons with earlier versions of Glide and show that
very substantial progress has been made. Rigorous
comparisons with other virtual screening methods are
difficult for us to make because we generally do not have
access either to the identical sets of decoy ligands or to
other docking codes. However, we have been given
access to the thymidine-kinase and estrogen-receptor
datasets employed by Bissantz, Folkers, and Rognan5

and offer comparisons to the results they published for
GOLD, FlexX, and DOCK.6

The paper is organized as follows. In the section 2,
we characterize our data sets and protocols for evaluat-
ing database enrichment. This section describes the
receptors and ligands to be used, discusses certain
issues concerning preparation of the receptor (most
importantly, the use of reduced van der Waals radii,
which is essential to achieve reasonable results in some
cases), and defines the quantitative measures used to
assess performance in database screening. Section 3
presents enrichment factors obtained using default
parameters and describes the individual screens. Com-
parisons to published results for GOLD, FlexX, and
DOCK for the thymidine kinase and estrogen receptors
are then presented in the fourth section, and Glide’s
sensitivity to the choice of certain input factors is
explored in section 5. Finally, the sixth section sum-
marizes the results and discusses future directions.

2. Virtual Screening Protocol

Ligand Databases and Receptors Used. We have
chosen the following nine receptors for our initial
studies, five of which are represented by two or more
alternative cocrystallized receptor sites:

1. thymidine kinase (1kim)
2. estrogen receptor (3ert, 1err)
3. CDK-2 kinase (1dm2, 1aq1)
4. p38 MAP kinase (1a9u, 1bl7, 1kv2)
5. HIV protease (1hpx)
6. thrombin (1dwc, 1ett)
7. thermolysin (1tmn)
8. Cox-2 (1cx2)
9. HIV-RT (1vrt, 1rt1)
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The receptors for these screens cover a wide range of
receptor types and therefore provide a proper test of a
docking method. All were prepared using the procedure
described in the preceding paper1 or an earlier version
of that procedure.

The known binders for the first two systems were
specified by Rognan and co-workers,6 while ligands for
the CDK-2 kinase receptor screens and for p38 MAP
kinase were provided by pharmaceutical and biotech
collaborators. For thrombin, 12 of the 16 known binders
were taken from the studies by Engh et al.7 and by von
der Saal et al.8 Others are ligands for the same target
protein taken from our docking-accuracy test set1 or
were developed from multitple sources in the literature.

As database ligands, we employed “druglike” decoys
that averaged 400 in molecular weight (the “dl-400”
dataset) in most cases. For thymidine kinase (1kim),
which has a very small active site, however, we used a
similar (but in this case more competitive) set with an
average molecular weight of 360 (the “dl-360” dataset).
The property distributions of these databases were
characterized in the preceding paper.1 We believe these
compounds to be representative of the chemical sample
collections of pharmaceutical and biotechnology com-
panies. As such, they should provide a fair, and strin-
gent, test of the efficacy of the docking method.

Each screen used 1000 database ligands and between
7 and 33 known actives. All compounds considered have
20 or fewer rotatable bonds and 100 or fewer atoms.
Like the database ligands, the known binders were also
MMFF94s-optimized, but in these cases, we used un-
biased input geometries obtained via a MacroModel
conformational search, as previously described for ligands
taken from cocrystallized complexes.1

Glide’s use of reduced atomic van der Waals radii to
mimic minor readjustments of the protein (these should
be distinguished from the more substantial induced-fit
rearrangements modeled by the use of multiple receptor
conformations) is an important issue in the setup of the
docking runs. Glide currently supports uniform van der
Waals scaling of the radii of nonpolar protein and/or
ligand atoms. To characterize the performance that can
be expected when Glide is run “out of the box”, the
principal results presented in this paper use default 1.0
protein scaling (which means that the OPLS-AA van der
Waal (vdW) radii are not changed) and 0.8 ligand
scaling; the same scalings were used to assess docking
accuracy.1 In the fifth section, we compare these results
with results obtained using scaling factors identified in
earlier docking studies with Glide as giving optimal
results. The comparisons show that default scaling
performs well, though optimizing the scaling factors can
improve the performance in some cases.

Measures of Virtual Screening Effectiveness. To
quantify Glide’s ability to assign high ranks to ligands
with known binding affinity, we report enrichment
factors in graphical and tabular form and present
accumulation curves that show how the fraction of
actives recovered varies with the percent of the database
screened. Following Pearlman and Charifson,9 the
enrichment factor can be written as

Equivalently, this can be written as

Thus, if only 10% of the scored and ranked database
(i.e., Ntotal/Nsampled ) 10) needs to be assayed to recover
all of the Hitstotal actives, the enrichment factor would
be 10. But if only half of the total number of known
actives are found in this first 10% (i.e., if Hitssampled/
Hitstotal ) 0.5), the effective enrichment factor would
be 5.

Equation 2 is useful when sampling an initial, small
fraction of a database, but to measure performance for
recovering a substantial fraction of the active ligands,
we prefer to modify the definition of enrichment as
follows:

In this equation, APRsampled is the average percentile
rank of the Hitssampled known actives. Intuitively, this
makes sense: if the actives are uniformly distributed
over the entire ranked database, the average percentile
rank for an active would be 50% and the enrichment
factor would be 1. Unlike eqs 1 and 2, however, this
formula considers the rank of each of the Hitssampled
known actives, not just the rank of the last active found
(which is what Nsampled is likely to be). As a result, the
enrichment factor will be larger than the value com-
puted from eq 1 or 2 if the actives are concentrated
toward the beginning of the Nsampled ranked positions
but will smaller if the actives are grouped toward the
end of this list. This is appropriate because a key
objective in database screening is to find active com-
pounds as early as possible in the ranked database; the
new definition is better at indicating when this is
happening.

3. Virtual Screening Results
Overview of Glide’s Performance in Database

Screening. Table 1 compares the performance of Glide
1.8, 2.0, and 2.5 SP (standard-precision)1 using as
definitions of enrichment EF′(70), which measures the
enrichment for recovering 70% of the known actives, and
EF(2%), which measures enrichment for assaying the
top 2% of the ranked database. These represent “global”
and “early” enrichment, respectively. Though 70% re-
covery is arbitrary, we feel this is a realistic standard
for docking into a rigid protein site, given that such a
site is unlikely to be properly shaped to house all the
known actives when the site is relatively plastic. For
use in virtual screening, it can be crucial to concentrate
as many active ligands as possible in the topmost
portion of the ranked database. Because the present
screens use only ∼1000 ligands, however, 2% (20 ranked
positions or so) is about the smallest percentage we can
examine, given that we have roughly 10-30 known
actives to place. We also report enrichment factors
EF(5%) and EF(10%) for Glide 2.5. Note that the max-
imum attainable enrichment factors are 50, 20, and 10,
respectively, for EF(2%), EF(5%), and EF(10%). Also
listed are average enrichment factors computed using
a generalized geometric mean that weights the smaller
enrichment factors more heavily.10 (For example, the
geometric mean of 1 and 25 is 5, not 13.) This weighting

EF )
Hitssampled/Nsampled

Hitstotal/Ntotal
(1)

EF ) {Ntotal/Nsampled}{Hitssampled/Hitstotal} (2)

EF′ ) {50%/APRsampled}{Hitssampled/Hitstotal } (3)
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is appropriate because what is most needed is a method
that can be counted on to always perform reasonably
well rather than one that does very well for some
systems but is useless for others.

Table 1 shows that Glide 2.5 is much better than its
predecessors at identifying active ligands. Because of
improvements to the more difficult screens, both global
and early enrichment have tripled since the release of
Glide 1.8. The CDK-2 and p38 screens are still prob-
lematic, but thymidine kinase now does well, and
thrombin, HIV protease, thermolysin, Cox-2, and HIV-
RT all have improved substantially.

Figure 1 summarizes Glide’s ability to rank active
ligands in the first 2%, 5%, and 10% of the scored and
ranked database. In many, though not all, cases, a
significant fraction of the actives are found in the top
2% of the database.

Finally, Figure 2 displays the percent of known
actives recovered as a function of the percent of the
ranked database sampled for Glide 1.8, 2.0, and 2.5.
This complementary view also shows that Glide 2.5
performs exceedingly well for many of the targets and
also highlights cases in which further improvement is
particularly desirable.

Detailed Results for Database Screens. The re-
mainder of this section describes the individual data-
base screens and presents graphical depictions of en-
richment for Glide 1.8, 2.0, and 2.5. Detailed listings of
the ranks of the active ligands, their GlideScore values,

their hydrogen-bonding scores, and their Coulomb-vdW
interaction energies with the protein site are available
in Supporting Information (Tables S1-S15).

1. Thymidine Kinase (1kim). Rognan and co-
workers studied the binding of 10 known thymidine
kinase ligands to the protein from the 1kim complex.6
For database ligands, they used 990 randomly chosen
compounds from a filtered version of the ACD database.
Only the 1kim ligand (dT) and one other ligand (idu)
are reported to be submicromolar binders. The others
(five are also pyrimidine derivatives and three are
purines (acv, gcv, pcv)) range in activity from 1.5 to 200
µM. Realistically speaking, computational screening of
compound databases usually can only hope to discover
micromolar ligands. This poses a stiff challenge because
Charifson et al.11 found that the docking methods they
surveyed performed reasonably well at finding low-
nanomolar binders seeded into a database screen but
fell off rapidly in efficacy as the activity of the known
binders decreased. The ability to identify micromolar
binders in a database screen is therefore a stringent and
relevant test.

Figures 2a and 3 examine the thymidine kinase
screen. In this case, Figure 3a uses the seven pyrimidine
and three purine-based ligands defined by Rognan and
co-workers as known actives while Figure 3b uses only
the seven pyrimidines. Comparison of the lowest bar
segments shows that Glide 2.5 is significantly more
effective than Glide 1.8 or 2.0 at concentrating known

Table 1. Comparison of Enrichment Factors for Glide 1.8, Glide 2.0, and Glide 2.5a

EF′ (eq 3)
70% recovery

EF (eq 2)
2% of database

EF (eq 2)
5% 10%

screen site GS 1.8 GS 2.0 GS 2.5 GS 1.8 GS 2.0 GS 2.5 GS 2.5 GS 2.5

thymidine kinase (tk) 1kim 4.2 7.6 17.2 0.0 10.0 25.0 12.0 9.0
tk-pyrimidine ligands 1kim 4.5 6.7 20.4 0.0 7.1 28.6 14.3 8.6
estrogen receptor 3ert 88.4 79.8 66.9 35.0 35.0 35.0 14.0 8.0
estrogen receptor 1err 88.4 37.5 46.7 35.0 30.0 30.0 14.0 9.0
CDK-2 kinase 1dm2 3.6 3.9 6.8 5.0 10.0 15.0 10.0 6.0
CDK-2 kinase 1aq1 2.1 3.8 5.4 5.0 15.0 10.0 8.0 6.0
p38 MAP kinase 1a9u 2.0 1.8 2.5 0.0 2.9 5.9 4.7 2.4
p38 MAP kinase 1bl7 1.8 2.9 3.5 2.9 5.9 8.8 3.5 4.1
p38 MAP kinase 1kv2 4.5 2.9 4.8 8.8 11.8 8.8 8.2 4.1
HIV protease 1hpx 10.8 7.8 47.6 30.0 13.3 36.7 17.3 8.7
thrombin 1dwc 5.8 2.8 12.1 6.2 3.1 15.6 11.2 8.1
thrombin 1ett 5.2 5.6 38.0 12.5 3.1 34.4 16.2 9.4
thermolysin 1tmn 1.6 15.2 24.5 5.0 15.0 25.0 18.0 9.0
Cox-2 1cx2 3.6b 3.4b 5.0b 7.6 3.0 13.6 7.9 5.2
Cox-2 (site-1 ligands) 1cx2 5.7 5.7 13.9 10.9 4.3 19.6 11.3 7.4
HIV rev. transcriptase 1rt1 4.6 3.2 8.2 3.0 0.0 12.1 10.3 6.4
HIV-RT 1vrt 1.8 2.0 7.1 0.0 0.0 7.6 9.1 5.8

av enrichment factor: 5.3 6.5 14.8 6.0 7.1 18.6 11.4 7.0
a Enrichment factors can be at most 50 for 2% sampling, 20 for 5% sampling, and 10 for 10% sampling. b EF′(60) value.

Figure 1. Percent of actives recovered with Glide 2.5 for assaying 2%, 5%, and 10% of the ranked database for the screens
considered in this paper. The PDB codes are defined in Table 1.

1752 Journal of Medicinal Chemistry, 2004, Vol. 47, No. 7 Halgren et al.



actives in the first 2% of the ranked database for both
the mixed and pyrimidine-only screens; better perfor-
mance relative to earlier verisons of Glide is also shown
in Figure 2a for the mixed screen.

The reason for separating out the pyrimidines is that
a labile Gln 125 side chain undergoes a 180° rotation

on going from 1kim, a pyrimidine site, to one of the
purine sites (2ki5, 1ki2, 1ki3). This rotation essentially
exchanges the terminal NH2 and CdO groups and
means that purines cannot dock properly into a pyri-
midine site, nor can pyrimidines dock properly into a
purine site; in each case, the geometry that is correct
for the parent site has an acceptor-acceptor and/or a
donor-donor clash in the alternative site. This incom-
patibility results in larger rms deviations for cross-
docking, as reported by Rognan and co-workers,6 by
Jain,12 and by us.1 Nevertheless, the misdocked purines
find many favorable interactions and score well (Table
S1, Supporting Information) because the terms in the
standard-precision version of GlideScore 2.5 that penal-
ize breaches of complementarity are too small to sig-
nificantly penalize the misdocked purine structures. In
contrast, Extra-Precision docking13 imposes larger pen-
alties for docking mismatches and therefore is more
likely to be capable of rejecting ligands that do not dock
properly into the site.

2. Estrogen Receptor (3ert, 1err). The target
proteins for the estrogen receptor (ER) screen are the
3ert receptor site studied by Rognan and co-workers6

and the 1err site used by Stahl and Rarey;14 the native
ligands are 4-hydroxytamoxifen and raloxifene, respec-
tively. Both sites are open enough to dock antagonists
as well as agonists. Our studies used the 10 low-
nanomolar ERR antagonists that Rognan selected as
active binders. This is one case in which the nonbonded
radii need to be scaled down to allow the known binders
to dock correctly. For example, five of the known binders
had positive Coulomb-vdW interaction energies when
no scaling was done. For Glide 1.8 and 2.0, we originally
used 0.9 protein/0.8 ligand scaling, but we employ the
default 1.0/0.8 scaling here.

Figures 2b,c and 4 show that both estrogen-receptor
sites are treated very well by all three scoring functions.
Tables S2 and S3 (Supporting Information) list the Glide
2.5 rankings.

Figure 2. Percent of known actives found (y axis) vs percent
of the ranked database screened (x axis) for Glide 2.5 (solid
green), Glide 2.0 (blue dashed), and Glide 1.8 (red dot-dashed).
Black dotted lines show results expected by chance. The listed
PDB codes are defined in Table 1.

Figure 3. (a) Percent of thymidine kinase (1kim) actives
recovered with Glide 1.8, 2.0, and 2.5 for assaying the first
2%, 5%, and 10% of the ranked database. (b) Percent recovered
using only the seven pyrimidine-based ligands as actives.

Figure 4. Percent of estrogen receptor actives recovered for
assaying the top 2%, 5%, and 10% of the ranked database: (a)
3ert site; (b) 1err site.
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3. CDK-2 Kinase (1dm2, 1aq1). The CDK-2 kinase
site is highly flexible. A key issue is the length of the
rather narrow binding cavity, which if insufficient will
prevent many active ligands from correctly docking.
After examining superimposed structures for five co-
crystallized PDB complexes, we chose a site from the
1dm2 complex that is more elongated than most, though
not the most generous. To investigate the sensitivity of
the docking to the choice of receptor site, we chose the
slightly more open 1aq1 receptor as a second site. In
each case, we used default 1.0/0.8 scaling.

Figures 2d,e and 5 show that Glide 2.5 outperforms
its predecessors for the 1dm2 site and greatly outper-
forms them for 1aq1. The Glide 2.5 rankings and
scorings are given in Tables S4 and S5 (Supporting
Information).

4. p38 MAP kinase (1a9u, 1bl7, 1kv2). The p38
active site is particularly prone to alter its shape upon
ligand binding. Therefore, we studied three different
PDB receptor structures: 1a9u, 1bl7, and 1kv2. The
1kv2 site exhibits a particularly large alteration of the
ligand-free structure in that a long loop undergoes a
substantial change in conformation when its native
ligand binds.15 This screen employs 14 known p38
binders supplied by a colleague from the biotechnology
industry in addition to the cocrystallized ligands from
the 1a9u, 1bl7, and 1kv2 structures.

The plasticity of the p38 active site makes it difficult
to dock a large number of active compounds properly
into any single version of the receptor structure and
hence leads to relatively small values of global enrich-
ment such as EF′(70). Figures 2f-h and 6 show that
the 1kv2 site is the most amenable one for the particular
selection of active compounds used in this study. Glide
2.5 achieves relatively little improvement over previous
versions in this case, in part because the p38 site is large
and requires a very hydrophobic binding mode (in
general, only one to two hydrogen bonds are made by
correctly docked p38 actives). Such sites represent a
severe challenge for most empirical scoring functions.

We can report, however, that we have made significant
progress in handling sites of this nature in the ongoing
development of Extra Precision Glide.13

Detailed results for Glide 2.5 are shown in Tables S6-
S8 (Supporting Information).

5. HIV Protease (1hpx). Our screening database
contains 15 ligands from cocrystallized HIV-1 protease
complexes included in our docking-accuracy test set.1
Here, we focus on 1hpx as the target. The 1hpx complex
retains the usual water under the “flaps” that enclose
the active site, but we removed it so that ligands that
displace this water, such as XK263 (from the 1hvr
complex) and A-98881 (from 1pro), could dock. The
removal of this water raises the question of whether the
resultant overly generous site might recognize a large
number of false positives. However, this proved not to
be the case.

As with the estrogen-receptor screen, our original
docking experiments used 0.9 protein/0.8 ligand scaling.
However, this site is not especially “tight” and default
1.0/0.8 scaling works quite well, especially for Glide 2.5
(cf. Figures 2i and 7). Indeed, 7 ligands are found in
the top 10 ranked positions and 12 are found in the top
20 (Table S9, Supporting Information). This is good
performance by any standard.

6. Thrombin (1dwc, 1ett). Our docking-accuracy
test set1 contains five unique thrombin inhibitors (1dwc,
1etr, 1dwb, 1dwd ) 1ets ) 1ppc, and 1ett). However,
only four are highly active because the 1dwb ligand,
benzamidine, is too small to bind tightly (the experi-
mental binding affinity is -5.4 kcal/mol 1). To supple-
ment these four binders, we included the 12 thrombin
inhibitors from Engh et al.7 and von der Saal et al.8 that
have reported binding affinities of 10 µM or better,
bringing the total number of actives to 16.

To prepare for the original 1dwc screen for Glide 1.8,
we found that all combinations of 0.8, 0.9, and 1.0 vdW
scaling for nonpolar protein and ligand atoms gave
strongly negative Coulomb-vdW energies for the known
actives and afforded reasonably negative GlideScores.
However, the model that used unscaled vdW radii for
both the protein and the ligand gave the best overall
GlideScores and yielded an unfavorable hydrogen-
bonding score for only one ligand. We therefore chose
to not scale the vdW radii. The present results, however,
use default 1.0 protein/0.8 ligand scaling. Thus, this
screen differs in the opposite sense from the estrogen-
receptor and HIV-protease screens, which originally
used greater scaling than the current default. As we
show in the section 5, the two scaling models yield
comparable results. Thus, employing larger scaling than
is needed to allow the known actives to fit into the site

Figure 5. Percent of CDK-2 kinase actives recovered for
assaying the top 2%, 5%, and 10% of the ranked database: (a)
1dm2 site; (b) 1aq1 site.

Figure 6. Percent of p38 MAP kinase actives recovered for
assaying the top 2%, 5%, and 10% of the ranked database: (a)
1a9u site; (b) 1bl7 site; (c) 1kv2 site.

Figure 7. Percent of actives recovered for assaying the top
2%, 5%, and 10% of the ranked database for the 1hpx site of
HIV protease.
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did not degrade Glide’s ability to rank the known
binders highly in this case.

Figures 2j,k and 8 show that Glide 2.5 performs bet-
ter than either Glide 1.8 or 2.0. The same qualitative
trend is seen in the EF′(70) and EF(2%) enrichment
factors reported in Table 1. The comparisons show that
the 1ett site consistently yields better results. Tables
S10 and S11 (Supporting Information) list the Glide 2.5
rankings.

7. Thermolysin (1tmn). As target receptor, we chose
the protein from the 1tmn complex. The 1tmn ligand,
known as CLT for “carboxy-leu-trp”, coordinates with
the active-site Zn2+ ion via a carboxylate group and
places its leucine side chain into a hydrophobic pocket.
Including 1tmn, the docking-accuracy test set contains
13 thermolysin complexes, including one, 1lna, in which
Co2+ replaces Zn2+. However, the 2tmn, 4tln, and 1hyt
ligands have only about 25 atoms (including hydrogens)
and are too small to bind tightly; for example, the
measured binding affinities for 2tmn and 4tln are only
-5 to -7 kcal/mol.1 In this study, we use the 10 larger,
drug-sized ligands. Thermolysin is known to have a rigid
active site, so the choice of target structure is probably
unimportant in this case.

As for thrombin, preliminary studies suggested a
preference for using unscaled radii for both the protein
and the ligand (i.e., 1.0/1.0 scaling), but the results
presented here use default 1.0/0.8 scaling. That unscaled
radii yield good results seems clearly related to the rigid
and open nature of the site. In this case, somewhat
better results are obtained with 1.0/1.0 scaling (see
section 5), but default scaling also does well. As Figures
2l and 9a show, Glide 2.5 performs much better than
Glide 1.8 and somewhat better than Glide 2.0. For Glide
2.5, 5 of the 15 top-ranked ligands are known binders
(Table S12, Supporting Information).

One key to the improved performance is that Glide-
Score 2.5 specifically rewards metal ligation by anionic
ligand functionality. We made this change on the basis
of experimental evidence that metalloproteases strongly

favor anionic ligands.16,17 A second element is that
GlideScore 2.5 considers only the single strongest
interaction when the ligation is bi- or multidentate. A
third is that Glide 2.5 reduces the net ionic charges for
most charged-charged and charged-polar interactions
but leaves them unchanged for metal-ligand interac-
tions. Thus, the Coulombic contribution to GlideScore
2.5 uses the full Zn2+-ligand interaction energy, further
helping to differentiate anionic ligands.

These elements were also included in GlideScore 2.0,
but GlideScore 2.5 goes one step further by recognizing
that neutral ligands such as imidazoles can be effective
binders when Zn2+ and the “tripod” of protein residues
on which it sits are net neutral (e.g., when Zn2+ is
coordinated by two glutamates and a histidine, as in
farnesyl protein transferase,18 rather than by one
glutamate and two histidines, as in thermolysin). In
such cases, the term in GlideScore 2.5 that rewards a
geometrically appropriate metal ligation by -2.0 kcal/
mol when the ligand functionality is anionic is omitted
when the apo site is net-neutral. While this modification
seems appropriate, further studies will be needed to
determine whether it gets the “balance” right for net-
neutral sites.

8. Cox-2 (1cx2). We obtained structures for 33 known
binders from the literature. These include the native
1cx2 ligand (SC-558, ligand 24), celecoxib (ligand 2),
rofecoxib (ligand 3), indomethacin (ligand 10), deproto-
nated indomethacin (ligand 26), flurbiprofen (ligand 25),
deprotonated flurbiprofen (ligand 33), ML-3000 (ligand
11), and deprotonated ML-3000 (ligand 31). Examina-
tion of various combinations of protein and ligand
scaling factors using Glide 1.8 led us to select 1.0
protein/0.8 ligand scaling, which we also used here and
for Glide 2.0.

These Glide dockings have one unusual feature,
namely, that only 23 of the 33 known actives dock with
negative Coulomb-vdW energies, even with relatively
heavy scaling of protein and ligand nonpolar vdW radii,
when a “normally sized” docking box centered around
the 1cx2 ligand is used. When the docking box is made
much larger, the remaining 10 ligands dock “success-
fully” but occupy a site that is displaced by 10-12 Å
from the primary site. However, the “site 2” ligands
have relatively poor Coulomb-vdW interaction energies
and often make no hydrogen bonds. It thus seems
unlikely that these Cox-2 ligands actually dock into this
second site. The most likely explanation is that some
variable element in the site geometry is responsible and
that the limitations of docking to a rigid site are
particularly extreme in this case.

Figures 2m and 9b show that Glide 2.5 performs much
better than Glide 1.8 or 2.0. It does particularly well
for early enrichment, as indicated by the lowest seg-
ments of the bar chart in the latter figure. Indeed, Glide
2.5 places 9 of the actives in the first 20 positions in
the ranked database (Table 13S, Supporting Informa-
tion). Figure 9b and Table 1 show that the calculated
enrichment factors are relatively low when based on all
33 Cox-2 ligands. When recomputed to count only the
23 “site 1” ligands as actives, however, Glide 2.5 yields
a quite decent EF′(70) value of 14.2. Thus, Glide 2.5 is
effective at finding active Cox-2 ligands; it just cannot

Figure 8. Percent of thrombin actives recovered for assaying
the top 2%, 5%, and 10% of the ranked database: (a) human
thrombin, 1dwc site; (b) bovine thrombin, 1ett site.

Figure 9. Percent of actives recovered for assaying the top
2%, 5%, and 10% of the ranked database: (a) thermolysin,
1tmn site; (b) Cox-2, 1cx2 site.
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dock and score all of them well when the 1cx2 site is
used.

9. HIV-RT (1vrt, 1rt1). For HIV reverse tran-
scriptase, we docked a set of 33 active ligands into the
non-nucleoside binding site used by nevirapine, Sustiva,
and other NNRTI compounds. The active ligands, taken
from a variety of literature sources, include nevirapine
and MKC-442. We used both the nevirapine site (1vrt)
and the MKC-442 site (1rt1) as targets. On the basis of
the dockings of the active ligands, we chose 0.9 protein/
0.8 ligand scaling for 1rt1 and 1.0 protein/0.8 ligand
scaling for 1vrt when testing Glide 2.0. The present
results, however, use default 1.0/0.8 scaling for both
sites.

Table 1 and Figures 2n,o and 10 show that Glide 2.5
greatly outperforms the earlier releases for these two
HIV-RT sites. This site is also very hydrophobic and
offers few hydrogen-bonding opportunities (cf. the hy-
drogen-bonding scores in Tables S14 and S15, Support-
ing Information). It therefore qualifies as a difficult site
for an empirical scoring function such as GlideScore 2.5.
In such a site it is crucial to recognize and penalize
mismatches in complementarity in the docked poses.
The improved performance relative to the earlier ver-
sions of Glide reflects the better balance of the more
widely parametrized GlideScore 2.5 function as well as
the inclusion of desolvation penalties; these terms play
an even larger role in the Extra-Precision Glide 2.5
scoring function.13

4. Comparison to Other Methods

Comparisons usually are difficult for us to make
because we do not have access to other docking codes
and because published comparisons often use propri-
etary datasets.11,14,19 In this section, however, we present
comparisons to published results for GOLD 1.1,3 FlexX
1.8,4 and DOCK 4.0120,21 for the thymidine kinase and
estrogen receptors6 using datasets provided to us by D.
Rognan.5 We caution that the earlier versions of GOLD,
FlexX, and DOCK used by Rognan and co-workers may
not be representative of the current capabilities of these
methods. However, the same comparisons were also
used by Jain in his recent paper introducing the Surflex
method.12

Their study used GOLD, FlexX, and DOCK as docking
engines and employed ChemScore,22 FlexX, the DOCK
energy score,23 GOLD, PMF,24 Fresno,25 and Score26 to
rank the docked poses. The best result, obtained by a
few of the 21 combinations of 3 docking engines and 7
scoring functions, found 8 of 10 actives in the first
8-10% of the ranked database. Given that only 0.8-
1.0 actives would be found by chance, this performance

corresponds to an enrichment factor of roughly 10. The
best single models were DOCK with PMF scoring, FlexX
with PMF scoring, and GOLD with GOLD scoring.
Many models performed poorly, however. For example,
when GOLD was used as the docking engine, Chem-
Score, the DOCK energy score, and Fresno all found just
one active in the first 60% of the database, whereas six
would be found by chance. Rognan and co-workers also
found that some of the docking-method/scoring-functions
combinations did poorly for the estrogen receptor,
though others did well.

Our calculations used Rognan’s receptor and ligand
preparations and employed the 0.9 protein/0.8 ligand
scaling of nonpolar vdW radii we recommend for use
when the protein site has not been relaxed to remove
possible steric clashes (see section 5). We also used
docking and scoring grids of the same size employed in
section 3. As previously noted, Rognan and co-workers
randomly selected the 990 database ligands from a
filtered version of the ACD database. They employed
various scoring functions in conjunction with each of the
docking methods, but we focus here on the native
GOLD-docking/GOLD-scoring, FlexX-docking/FlexX scor-
ing, and DOCK-docking/DOCK-scoring combinations.
These are the ones most likely to be used in a pharma-
ceutical setting, where project needs may not permit
extensive explorations of alternative docking/scoring
combinations to be carried out.

Comparisons of docking results for Glide, GOLD,
FlexX, and DOCK are presented in Table 2 and in
Figures 11 and 12. These comparisons show that DOCK
docking followed by DOCK-energy scoring is the worst
model. Glide 2.5 appears to be the best model overall
by virtue of its superior performance for thymidine
kinase, though Surflex does even better for this recep-
tor12 and though Glide 1.8 and 2.0 do better for the
estrogen receptor (cf. Figure 12 and Table 2). The latter
may reflect the better balance of the Glide 2.5 scoring
function, which often yields better results for poorly
treated screens at the cost of some degradation in
performance for well-handled screens. FlexX and GOLD
show decent enrichment, but neither is as effective as
Glide.

5. Sensitivity to vdW Scaling Parameters
As noted previously, Glide by default leaves the

protein radii unchanged but scales the nonpolar ligand
radii by 0.8; we refer to this as 1.0/0.8 scaling. Scale
factors smaller than 1.0 make the protein site “roomier”

Figure 10. Percent of HIV reverse transcriptase actives
recovered for assaying the top 2%, 5%, and 10% of the ranked
database: (a) 1rt1 site; (b) 1vrt site.

Table 2. Comparison of Enrichment Factors EF′(70)a for Glide,
GOLD, FlexX, and DOCK for the Thymidine Kinase Receptor
(1kim) and the Estrogen Receptor (3ert), Using Data Sets of
Rognan and Co-workers5,6

EF′(70), 70% recovery of known actives

Glide Glide Glide GOLDb FlexXb DOCKb

screen 1.8 2.0 2.5 1.1 1.8 4.01

thymidine
kinase
(1kim)

4.2 11.7 19.3 8.2 11.1 3.0

estrogen
receptor
(3ert)

70.0 72.1 47.1 28.5 8.9 6.7

av (geometric
mean)

17.1 29.0 30.2 15.3 9.9 4.5

a Equation 3. b Reference 6.

1756 Journal of Medicinal Chemistry, 2004, Vol. 47, No. 7 Halgren et al.



by “moving back” the surface of nonpolar regions of the
protein and/or ligand. These adjustments emulate to
some extent the effect of “breathing” motions a protein
site might make to accommodate a tight-binding ligand
that is slightly larger than the native, cocrystallized
ligand. Cross-docking tests have consistently shown that
it is important to modify the final vdW surface in this

manner. Too much scaling, however, is detrimental be-
cause active ligands may no longer make suitably spe-
cific interactions with the receptor if the cavity is too
large. Moreover, ligands that are too large to bind to
the physical receptor may begin to dock and score well
computationally, swelling the ranks of the false posi-
tives. The object is to find a “happy medium” between
too little scaling and too much.

Table 3 shows how the choice of scaling factors effects
the enrichment obtained in the database screens de-
scribed in section 3. Thermolysin is an example of a
rigid, open site, while the p38 MAP kinase site is highly
mobile and the estrogen receptor contains a tightly
enclosed hydrophobic channel. Alternative scalings are
shown for cases in which the preferred scaling previ-
ously found for Glide 1.8 or 2.0 differs from the current
default scaling. The table shows that the new default
scaling works as well as or better than the previously
identified preferential scaling in six of the eight cases.
The original scaling gives substantially better enrich-
ment factors for 1err and performs somewhat better for
1tmn, but the enrichment factors are high in these cases
and the default enrichments are also good.

Table 4 shows that 0.9/0.8 scaling occasionally allows
one or two additional actives to dock. Moreover, the
more generous scaling almost always produces a sig-
nificantly lower rank for the last “common” active found
(e.g., the 8th for 3ert, the 9th for 1err, or the 21st for
1cx2). This, too, indicates that 0.9/0.8 scaling produces
a better physical model when the fit is tight. The 1rt1
screen is an exception because 0.9/0.8 is not in fact the
optimal scaling for Glide 2.5.

The conclusion we draw is that use of optimal scaling
factors should be considered for “high-performance”
screens. When active ligands are unavailable or will not
be used to determine the scaling factors, the current
default should normally be used. However, if the protein
heavy atom coordinates are taken directly from the
X-ray structure, it may be better to use 0.9/0.8 scaling
to reduce the effect of unresolved steric clashes. This
more generous scaling should also be used in cases in
which it is known that the active-site region is tight and
enclosed (an example being the hydrophobic channel of
the estrogen receptor) because it will be difficult in such
cases for certain active ligands to avoid serious steric
clashes with the rigid site. Conversely, a lesser degree
of scaling might be tried if the site is open and is known
to be relatively rigid.

6. Discussion and Conclusions

This paper has presented results for 15 database
screens covering 9 widely varying receptor types. Using
recovery of 70% of the known actives as a benchmark,
Glide 2.5 yields enrichment factors of at least 10 for all
but CDK-2, p38, Cox-2, and HIV-RT and of less than 5
for only the 1a9u, 1bl7, and 1kv2 sites for p38. For Cox-
2, the modest EF′(60) value found when all 33 actives
are considered is mitigated by the finding that Glide
2.5 places 9 of the 33 known binders in the first 20
ranked positions. HIV-RT has long been problematic,
but Glide 2.5 treats it considerably better than did its
predecessors. Two of the most troublesome remaining
screens are p38 and CDK-2, but progress is observed
here, too, when XP Glide is employed.13

Figure 11. Percent of actives recovered by Glide 1.8, 2.0, and
2.5 and by GOLD, FlexX, and DOCK for assaying the first 2%,
5%, and 10% of the ranked database, using the datasets of
Rognan and co-workers:5,6 (a) thymidine kinase (1kim); (b)
estrogen receptor (3ert).

Figure 12. Percent of known actives found (y axis) vs percent
of the ranked database screened (x axis) for Glide 2.5 (green),
Glide 2.0 (blue), and Glide 1.8 (red) and for GOLD (purple),
FlexX (orange), and DOCK (black) using the datasets of
Rognan and co-workers:5,6 (a) thymidine kinase (1kim); (b)
estrogen receptor (3ert).
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Comparison to results obtained for Glide 1.8 and 2.0
shows that average measures for both early and global
enrichment are 2-3 times higher for Glide 2.5. Most
importantly, Glide 2.5 performs significantly better for
many of the more difficult screens; this qualitative
improvement should be borne in mind when assessing
comparitive studies based on Glide 1.8 or 2.0, which
have begun to appear.19 The improved enrichment
stems partly from the inclusion of scoring-function
terms that penalize ligand-protein interactions that
violate established principles of physical chemistry,
particularly as it concerns the exposure to solvent of
charged protein and ligand groups. Given reports we
have received from users that earlier versions of Glide
were at least competitive in database enrichment to
other commercially available methods, these results
suggest that Glide 2.5 may represent a qualitative
advance in scoring accuracy and virtual screening
efficiency. Comparisons made to GOLD 1.1, FlexX 1.8,
and DOCK 4.01 for the thymidine kinase and estrogen
receptors using datasets prepared by Rognan and co-
workers support this view, though we again caution that
these comparisons may not be representative of the
current capabilities of these methods.

Glide 2.5 has a number of advantages relative to pre-
vious versions. One is that generally good results are
obtained with the new default 1.0 protein/0.8 ligand
scaling. Calibrating the scale factors can lead to im-
proved performance, but this may be less critical than
with earlier versions of Glide, which employed less well-
balanced scoring functions. A second advantage is that
hydrogen-bond filters (i.e., imposition of a cutoff on the
hydrogen-bond energy) and/or metal-ligation filters are

no longer necessary. These elements broaden the range
of applicability of Glide and simplify its use.

One theme that runs consistently through the results
is that Glide does best when the active ligands make
multiple hydrogen bonds to the receptor and does worst
when the site is hydrophobic and offers few such
opportunities. From what we have seen in the literature,
this behavior is not unique to Glide. One of the key
problems in database screening (one on which we have
made considerable progress in ongoing work with XP
Glide13) is how to properly model binding when it is
mainly hydrophobic in character. These new develop-
ments will be described in a subsequent paper.

The most challenging problem in the use of docking
methods in pharmaceutical applications is dealing with
protein flexibility. When the protein structures differ
by discrete, localized changes (protonation state modi-
fications, alterations of side chain rotamer states), it
should be possible to examine the variations in protein
structure directly in a single docking run with suitable
algorithms, thus saving considerable computational
effort. When there is a larger perturbation of protein
structure, however, as in cases such as 1kv2 in which
there is a significant induced-fit component of ligand
binding that results in substantial backbone or loop
movement, other approaches are needed. The simplest
approach is to carry out flexible docking into multiple
rigid protein structures and then to combine the screen-
ing results. When knowledge of the appropriate en-
semble of protein structures is available, this strategy
is likely to succeed. Examples of this approach will be
described in a subsequent paper in the context of Extra-
Precision Glide.

Ultimately, accurate molecular mechanics modeling
of the protein structure will be needed to enumerate the
variations in active-site geometry that can be accessed
at relatively low energies. Calculations along these lines,
if successful, would obviate the need for cocrystallized
examples. While modeling of this type is clearly quite
difficult at present, methods using continuum solvation
models such as those developed by Schrödinger in
principle can address this problem effectively. If this can
be accomplished, it would greatly enhance the effective-
ness of any docking methodology in a wide range of
practical applications. Efforts along these lines are

Table 3. Sensitivity of Calculated Enrichment Factors to vdW Scaling Sactorsa

vdW scaling enrichment factor

screen site protein ligand EF(2%) EF(5%) EF(10%) EF′(70)

thymidine kinase (tk) 1kim 1.0 0.9 20.0 12.0 9.0 17.9
1.0 0.8 25.0 12.0 9.0 17.9

tk-pyrimidinea 1.0 0.9 21.4 14.3 8.6 21.9
1.0 0.8 28.6 14.3 8.6 22.5

estrogen receptor 3ert 0.9 0.8 40.0 16.0 8.0 70.7
1.0 0.8 35.0 14.0 8.0 75.0

estrogen receptor 1err 0.9 0.8 35.0 18.0 9.0 60.4
1.0 0.8 30.0 14.0 9.0 41.2

thrombin 1dwc 1.0 1.0 12.5 10.0 6.9 10.3
1.0 0.8 15.6 11.2 7.5 11.6

HIV protease 1hpx 0.9 0.8 36.7 18.7 9.3 40.1
1.0 0.8 40.0 17.3 8.7 46.0

thermolysin 1tmn 1.0 1.0 25.5 20.0 10.0 30.5
1.0 0.8 25.0 18.0 9.0 24.5

HIV-RT 1rt1 0.9 0.8 6.1 7.9 6.4 6.4
1.0 0.8 13.6 10.9 6.4 9.1

a In each case, the preferential scaling model used with Glide 2.0 is listed first.

Table 4. Number of Known Actives Docked with Negative
Coulomb-vdW Interaction Energies as a Function of the
Protein and Ligand vdW Scale Factors for Nonpolar Atoms

no. docked

rank of
last common

active
screen site

no. of
actives 1.0/0.8 0.9/0.8 1.0/0.8 0.9/0.8

estrogen receptor 3ert 10 8 9 58 17
estrogen receptor 1err 10 9 9 87 43
HIV protease 1hpx 15 15 15 408 204
Cox-2 1cx2 33 21 23 490 355
HIV-RT 1rt1 33 30 30 632 735
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currently underway at Schrödinger and have yielded
promising early results.
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