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A conformer- and alignment-independent three-dimensional structure-activity relationship
(3D-QSAR) model has been derived that is based on flexible molecular interaction fields
calculated in GRID and the subsequent description of these fields by use of alignment-
independent descriptors derived in ALMOND. The training set consisted of 22 diverse and
flexible competitive inhibitors of the drug-metabolizing enzyme CYP2C9 and generated a model
with r2 of 0.81 and q2 of 0.62. The predicitive capacity of the model was externally evaluated
with a test set of 12 competitive inhibitors and 11 out of 12 were predicted within 0.5 log unit.
The most relevant points of interaction in the model correlated well to the amino acids involved
in CYP2C9-substrate/inhibitor binding in the active site of a CYP2C9 homology model, further
validating the mechanistic sense of our model.. This approach offers the possibility to derive
predicitve 3D-QSAR models without the need for an alignment rule for chemically diverse
ligands and in the absence of target protein crystal structure information.

Introduction
Computational methods are increasingly being used

in all phases of drug discovery and development to
understand ligand-receptor interactions. Their initial
use was in understanding and improving pharmacologi-
cal potency and selectivity. Lately, however, these
methods have been extended to investigations of how
new chemical entities interact with proteins important
for ADME-Tox (Absorption, Distribution, Metabolism,
Excretion-Toxicology) properties.1 Many 3-D structure-
activity relationship (3D-SAR) models have been pro-
posed for the interaction of drugs with the major
drug-metabolizing enzyme system, cytochrome P450
(CYP).2-16

The success or failure of a 3D-SAR depends on a
number of factors such as the quality of the target
protein crystal structure or homology model, the ac-
curacy with which one can describe the compound’s
bioactive conformer(s), and the ability to find superim-
position rules of the bioactive conformer(s) consistent
with ligand-protein interactions. Further development
of the 3D-SAR to a quantitative model, 3D-QSAR,
depends on additional factors such as quality of biologi-
cal measures of ligand-receptor interaction (Ks, Ki, or
Km) and on finding chemical descriptors that are related
to these constants. All these factors have proved chal-
lenging in understanding 3D-SAR and 3D-QSAR in
predicting compounds that would be substrates or
inhibitors of CYP450s.7 In our previous work, we have
addressed some of these challenges by using a homo-

logy model of one of the human CYPs, CYP2C9, for
conformer selection3 and by using an alignment-
independent approach to derive a 3D-QSAR for CYP2C9
inhibitors.2 In those studies, we also put emphasis on
high-quality data by uniform derivation of Kis and
determination of the mechanism of inhibition.

The work on CYP2C9 benefited from the first reported
mammalian CYP450 crystal structure, the CYP2C5
from the rabbit, with which it shows a high degree of
similarity.17 Recently CYP2C9 has been crystallized
(http://www.astex-technology.co.uk.servlet/astex), and a
higher resolution of CYP2C5 cocrystallized with ben-
zenesulfonamide (DMZ) has been published.18 Coordi-
nates for these crystals or co-complexes with substrates
and inhibitors will be invaluable in deriving good 3D-
SAR models. The challenge of conformer selection still
remains for CYPs for which there are no crystal
structures or co-complexes, hence the need to develop
methodologies that can simultaneously handle the lack
of good protein structural information and the ligand
diversity characteristic of the CYPs. In this study, we
explored such an approach using competitive inhibitors
of CYP2C9. We have used a data set of which we have
extensive knowledge, so as to simultaneously validate
our proposed approach.

Goodford19 recently published work on a GRID algo-
rithm for flexible molecules to handle flexible protein
side chains anchored to a protein backbone called the
CORE. We adapted this method for small molecules and
assigned the most rigid part as the CORE. The method
does not select a bioactive conformer. Instead the
conformational space for a ligand is explained as a
probability-of-interaction map. The resulting GRID
interaction fields are then analyzed by use of alignment-
independent descriptors in ALMOND. An approach
based on flexible ligand movements mimics the changes
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that occur when a ligand binds to a protein, where
energetically favorable effects such as dispersion and
induction interactions and hydrogen bonding tend to
compensate for any loss in energy due to the decrease
in freedom. Application of this method to CYP2C9
inhibitors resulted in a predictive 3D-QSAR model. The
model was further validated by comparison to the
homology model of CYP2C9. The inhibitor-enzyme
interactions were found to be consistent with the
enzyme active-site geometry and chemistry.

Materials and Methods
Equipment and Software. Enzyme kinetic analysis was

done with GraFit 4.0.12 (Erithacus Software Limited, Middle-
sex, U.K.) and SIMFIT 5.3.23 Molecular interaction fields were
calculated in an Irix environment on a Silicon Graphics O2

workstation (Silicon Graphics Inc., Mountain View, CA) and
in a Linux environment on a 32 Mb PC. The software utilized
in the computational analysis was GRID v20 and AL-
MOND3.2.0 (Molecular Discovery Ltd., http://www.moldiscov-
ery.com) and SYBYL 6.5.3 and CONCORD (Tripos Associates
Inc., St Louis, MO). Chemical structures were imported from
the ISIS-BASE database or drawn in ISIS-Draw (MDL Infor-
mation Systems Inc., San Leandro, CA).

CYP2C9 Biological Data. Biological data were determined
for a set of 34 inhibitors with Ki values ranging from 0.28 to
245 µM as described by ref 3. By use of the CYP2C9-catalyzed
diclofenac 4-hydroxylation, the mechanism of inhibition of the
compounds was found to be competitive. The Ki data was
randomly divided into a training set of 22 compounds (Table
1) and a test set of 12 different compounds (Table 2). The model

was validated by comparison with a previously reported
homology model of CYP2C9.3

Conformer Independence by Calculating Flexible
GRID Interaction Fields. GRID is a well-known methodol-
ogy for calculating molecular interaction fields.20 For a selected
conformer, favorable sites of interaction are explored with
different probes that are moved over a grid lattice that
surrounds the molecule. The program takes into account the
movement of tautomeric hydrogens, such as those in the
imidazole ring of histidine, and the torsional rotation of
aliphatic or phenolic hydroxyl or amino hydrogens but keeps
the heavy atoms of the target rigid throughout the calculations.
In a more recent version, a new option called flexible-GRID
was added.19 Flexible-GRID takes into account the flexibility
of some substituents and the associated movements of rigid
groups at the end of those chains (e.g., the terminal group of
an arginine side chain). The flexible algorithm was originally
designed to handle amino acid side chains anchored to a
protein backbone. In this study, we will explore its possible
application to small molecules.

This flexible option allows both the probe and the target to
respond to the environmental changes that occur upon moving
the probe between the different grid points. For each grid
point, the energetically optimal interaction of the flexible side
chain is calculated on the basis of interactions with the probe
and the entropic contribution due to the geometrical rear-
rangement of the side chain. The extent of the interactions
with the probe is evaluated by electrostatic, van der Waals,
and hydrogen-bond interactions after entropic effects are taken
into account. The resulting map for each probe describes the
most energetically favorable possibilities that a ligand has
when it is allowed to adjust to the surroundings. In this way,

Table 1. Training Seta

a Experimental Ki values are given as micromolar.
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the method mimics the adjustments that occur when a ligand
binds to a receptor.

GRID Setup. The molecules are assigned flexibility via the
GRIN directive MOVE ) 1. This is an automatic procedure
that is applied to the .mol2 files as they are converted into
.kout files, the GRID input format. Three different possibilities
are considered for each atom: (1) assignment to the rigid
CORE of the ligand, (2) assignment to a “BEAD” (which is also
rigid but smaller in size than the CORE), or (3) assignment
to flexibility (Figure 1, far left image of each panel). The CORE
does not change its position in space during the calculations
and each target can only have one CORE. A BEAD is allowed
to move to an extent determined by the length and flexibility
of the chains linking it to the CORE. Such movements can
result in the BEAD changing its position and orientation with
respect to the CORE in order to obtain an energetically
favorable state. There can be many BEADs in each target
molecule. The flexible atoms are allowed to move during the
calculations and will be positioned in the most energetically
favorable positions.

The GRID calculations were performed in a grid cage in
increaments of 0.5 Å. The number of planes per angstrom for
the grid box (NPLA) was set to 2. The GRID directive set at
MOVE ) 3 was used to expand the grid cage for each
individual compound to cover the increased chemical space into
which flexible chains could extend. The DRY probe was used
to describe hydrophobic interactions, the carbonyl (O) probe
was used to evaluate the hydrogen-bond donor capacity of the
target, and the amide (N1) probe was used to describe the
hydrogen-bond acceptor properties. The ALMD directive,
which memorizes the specific atoms influencing the main
interactions, was set to 1.

Validating the Flexible Fields. For each compound, a
random conformational search was performed in SYBYL with
defined chirality. The Tripos force field was used for at least

1000 iterations to obtain a maximum of 100 conformers/
compound. The conformers of each molecule were aligned in
SYBYL by the CORE atoms that were defined in the flexible
GRID calculations. This gave each conformer the same orien-
tation with regard to the CORE so that each individual grid
point could be compared between conformers. Thereafter,
GRID fields for all conformers were calculated with exactly
the same settings as for the flexible GRID calculations (DRY,
N1, and O probes; 0.5Å grid box size) except for the MOVE
directive that was set to 0 (rigid mode). Finally, for each grid
point, the most favorable energy obtained from any of the 100
conformers was put into a single “maximum interaction” file
referred to as the merged file.

The shape of the GRID fields based on the merged rigid
fields could then be compared to the field generated from the
flexible search. A preliminary comparison was made on the
basis of visual inspection of the GRID interaction fields to see
if any major features were treated differently in the different
cases (Figure 1). Alignment-independent descriptors were then
computed in ALMOND21 and compared for the three different
fields (DRY, O, and N1) by use of different similarity indices,24

the Carbó index (cosine similarity coefficient), the Hodgkin
index (Dice similarity coefficient), and the Tanimoto similarity
coefficient (Jaccard coefficient). Euclidean distances were also
calculated to evaluate the distribution in a PCA score plot
based on the ALMOND descriptors.

Alignment Independence by Use of GRIND Descrip-
tors in ALMOND. To obtain alignment independence, the
information from the flexible GRID calculations was com-
pressed into grid-independent descriptors by use of AL-
MOND.21 The degrees of freedom in the system are decreased
by using descriptors derived from auto- and cross-correlo-
grams. The interaction fields (Figure 2a) are described as the
distances between the most favorable GRID interaction points,
which are selected according to their energy of interaction and

Table 2. Test Seta

a Experimental Ki values are given as micromolar.
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separation distance (Figure 2c). Only negative values are
considered (Figure 2b), which results in some information
being lost during the compression. A smoothing window was
set as the default value of 0.8 grid unit. Since the gridbox is
0.5 Å, this generated bins of 0.4 Å each (0.8 × 0.5 Å). Distances
between all grid points were calculated, and each distance was
positioned within the correct bin. The most favorable energy
product within each bin was selected and plotted against the
distance, yielding the correlograms. Energies of interactions
were derived from three different probes (DRY, O, and N1),
generating the autocorrelograms explaining the DRY-DRY,
O-O, and N1-N1 interactions and the cross-correlograms
explaining the DRY-O, DRY-N1, and O-N1 interactions
(Figure 2e). The selection of points was made on the basis of
two criteria: the highest energy level and the greatest
diversity according to distance in space with each parameter
given equal importance (50%/50%). The number of points
selected in the filtering process can be optimized for the
individual data set.2,21

When the flexible GRID interaction fields were calculated,
certain defined side chains or single atoms were allowed to
move, which generated more extended fields of interaction
compared to the typical (rigid) GRID interaction fields. To
better describe the interactions available for a compound, a
directive called ALMD has been introduced in GRID. ALMD
registers the atom from which the largest contribution to the
energy originates for each selected point (Figure 2b). The

identity of that atom is stated in the output file and can be
visualized in the GRID package visualization interface GVIEW.
When the ALMOND program derives the grid-independent
descriptors, distances between points originating from the
same atom according to the ALMD directive are discarded.
Distances within the same field will thus not be reselected.
For example, the hydrogen in a hydroxyl group can only be
donated once. In other instances, it could be argued that
certain atoms can give rise to dual interactions such that the
two unshared electron pairs of a hydroxyl oxygen could accept
one hydrogen bond each. The benefit of discarding this possible
interaction is, however, considered greater than the loss when
disregarding cases such as that for the unshared electron pair.

ALMOND Model Derivation. The flexible fields were
imported into ALMOND. The default values were used except
that point selection was biased to select points based on higher
energy rather than the diversity of the points in space (75%/
25%).The number of points selected was set to 50 since this
generated the most predictive model. The number of planes
per angstrom for the grid box (NPLA) was set to 2. NOR
scaling was applied to normalize the values within each block
between 0.5 and 2 by use of the maximum value of product of
interaction found within the block (Figure 2f). The model was
built from the 22 compounds in the training set and their
distribution in space, and the variance was examined in a PCA
score plot together with the test set (Figure 3). Thereafter the
y-variable was introduced and a PLS analysis was performed.

Figure 1. Molecular interaction fields for (top panel) sulfaphenazole, calculated by use of the DRY probe; (middle panel) (R)-
pantoprazole, calculated by use of the O probe; and (bottom panel) (3R,5S)-fluvastatin, calculated by use of the N1 probe. For
each compound, the image on the far left visualizes the flexibility assigned (CORE ) red, BEAD ) pink, and flexible ) blue) for
each compound. The following fields show (from left to right) the grid molecular interaction fields for a rigid compound with
MOVE ) 0, a flexible compound with MOVE ) 3, and the merged fields based on 100 conformers, where each conformer has been
described with MOVE ) 0.
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A fractional factorial design was applied, where all uncertain

variables were removed. The model was then externally
validated with a test set of 12 molecules.

Model Interpretation. Further validation of the model
was made by comparison to a homology model of CYP2C9.3 A
CYP2C9 substrate, phenytoin, was docked into the active site
by use of GOLD. Selection of docked solutions was based on
knowledge of phenytoin’s orientation in the active site and its
limited conformational freedom. A solution with a favorable
distance and orientation between the site of oxidation and the
iron in the heme group (∼4 Å) was chosen. The Flexible-Grid/
ALMOND model was recomputed with the conformer from the
active-site docking procedure. This generated an identical
model with one compound, phenytoin, aligned to the protein,
which enabled a direct comparison of the pharmacophoric
distances to the active site.

The correlogram energies for phenytoin were multiplied by
the PLS coefficients of the model to identify distances that
were the main contributors to the activity of this compound.
The GRID interaction fields were then calculated for the
protein with the exact same settings as for the pharmacophore
(DRY, N1, and O probes, NPLA ) 2, MOVE ) 1). The most
favorable distances were then visualized in the protein to-
gether with the GRID interaction fields calculated for the
active site.

Results and Discussion

CYP2C9 Biological Data. The measured inhibition
constants for the present data set are given in Tables 1
and 2. They describe a large chemical space3 and include
rigid and flexible compounds, some with more than 20
rotatable bonds. It is thus a challenging data set to
model, but characteristic of CYP450 substrates and
inhibitors.

Conformer Independence by Use of Flexible
Fields. Since the flexible GRID algorithm was originally
designed to handle amino acid side chains anchored to
a protein backbone, an important part of our present
study was to evaluate its use for small molecules.

The automatically assigned flexibility was checked for
all molecules to ensure that the algorithm treated
similar cases in a comparable way. The flexibility
assigned to 21 CONCORD-generated structures showed
compound class consistency. Compounds belonging to
the same compound class, e.g., omeprazole derivatives,
were all assigned the same degree of flexibility.

The flexible fields cannot be interpreted in the same
way as rigid GRID interaction fields. The flexible fields

Figure 2. Flowchart describing the derivation of alignment-
independent descriptors in ALMOND.

Figure 3. x-Variance of the ALMOND descriptors, visualized
in a PCA score plot for the first and second component. The
training set is printed in boldface type and the test set is shown
in italic type, with the numbering from Tables 1 and 2. The
plot show that the test set is spread over the range of the
training set.
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are, in general, smoother and more extended since
flexible side chains may be able to stretch out in several
directions from the CORE of the molecule. When all the
lowest detectable interactions are visualized the fields
are almost spherical. Both rigid and flexible contours
were displayed at positive and negative energies, and
they were studied by use of the program GVIEW. The
rigid positive contours showed the arbitrary shape of
each molecule in the particular rigid conformation
chosen for display on GVIEW. However, the flexible
positive contours outlined the shape of the rigid core,
and this was, in itself, informative since the rigid CORE
is one part of a molecule whose shape cannot adapt to
protein active-site interaction constraints.

To evaluate how well the flexible algorithm could gen-
erate an overview of the interactions available to a mole-
cule over its conformational space, the flexible field maps
were compared to the merged field of 100 conformers
of the same compound. These fields should not be ident-
ical since they do not represent exactly the same infor-
mation. For any particular rigid conformer, the interac-
tions at each grid point are not optimized as they are in
the flexible algorithm. Instead the most favorable inter-
action for each grid point is taken from one or another
of the generated conformers. This particular geometry
does not have to be presented to the same grid point in
the flexible fields since another, possibly more favorable,
conformation might be available. Nevertheless, compar-
ing the overall shape of these fields should indicate
whether the new flexible method can describe the
conformational space comparable to 100 individual runs.

The validation of the flexible fields generated for small
molecules was accomplished in the following steps:
First, the overall properties of the fields were inspected
visually (Figure 1). The overall pattern was in good
agreement for most compounds. In some cases (Figure
1, middle panel), different atoms seemed to be respon-
sible for the most important energies of interaction.

Second, alignment-independent descriptors calculated
for the flexible fields and the merged fields were
compared via different measures of similarity. The

similarities between descriptors generated from both
fields, in this case, alignment-independent ALMOND
descriptors, should correlate well since they extract the
most valuable information from the fields.The results
from the analysis are presented in Table 3. The similar-
ity was high for all analyses with an average of 0.86 (
0.06 (Carbó), 0.83 ( 0.09 (Hodgkin), and 0.72 ( 0.12
(Tanimoto). None of the similarity indices reflected
changes in flexibility based on the number of rotational
bonds. This clearly shows that the differences do not
originate from changes in flexibility but reflect the
differences in calculated energy levels in the two
methods. The compounds were also evaluated in a PCA
score plot and the Euclidean distances between them
were determined in a four-dimensional space (Table 3).
The calculations based on merged versus flexible fields
do not group together in the PCA plot. Instead, for the
compounds that are explained by the first two compo-
nents the results for the flexible fields are often close
to their merged fields in space.

Quantitative Model. The flexible fields were calcu-
lated in GRID for the entire data set of 34 compounds.
The flexibility assigned to the molecules was carefully
checked and shown to be consistent throughout the data
set. These fields were then imported into ALMOND
where the ALMD directive was turned on.

The training set consisted of 22 compounds (Table 1).
The competitive inhibition constant, Ki, was introduced
as the y-variable. In the PLS analysis that followed, the
model was refined by a single factorial design variable
selection that removed uncertain variables and gener-
ated a predictive model explained by two components
(r2 ) 0.81 and q2 ) 0.62LOO, q2 ) 0.59randomgroups) (Figure
4). The model was externally evaluated with a data set
of 12 compounds (Table 2) with Ki values ranging from
2.5 to 140 µM. The test set was representative of the
PCA space described by the model according to the PCA
plot (Figure 3). The predictions yielded an SDEP value
of 0.42. In the validation set, nine out of 12 compounds
were predicted within 0.3 log unit and an additional two

Table 3.

MW rot. bonds Tanimotoa Hodgkinb Carbóc Euclidean

1 (3R,5S)-fluvastatin sodium 411 8 0.76 0.86 0.88 2.57
2 (3S,5S)-fluvastatin sodium 411 8 0.63 0.77 0.84 4.05
3 (R)-rabeprazole 359 8 0.78 0.87 0.87 1.82
4 (S)-rabeprazole 359 8 0.73 0.84 0.85 2.41
5 (S)-pantoprazole 383 7 0.54 0.70 0.79 5.09
6 (R)-pantoprazole 383 7 0.55 0.71 0.79 4.88
7 (S)-miconazole 416 6 0.44 0.61 0.70 3.71
8 phenylbutazone 308 5 0.86 0.92 0.95 0.71
9 omeprazolesulfone 361 5 0.68 0.81 0.83 2.08

10 (R)-warfarin 308 4 0.81 0.90 0.90 1.79
11 (S)-warfarin 308 4 0.84 0.91 0.92 1.91
12 quinine 324 4 0.61 0.76 0.85 3.78
13 sulfaphenazole 314 3 0.56 0.72 0.76 5.40
14 (3R,13S)-pyranocoumarin 322 3 0.81 0.90 0.90 1.03
15 dicoumarol 336 2 0.84 0.91 0.92 1.59
16 phenytoin 252 2 0.77 0.87 0.90 2.03
17 pyrimethamine 249 2 0.87 0.93 0.93 1.65
18 quercetin 302 1 0.88 0.94 0.95 1.85
19 progesterone 314 1 0.69 0.82 0.84 1.45
20 SFID 250 0 0.73 0.84 0.86 1.96
21 thiabendazole 203 0 0.74 0.85 0.86 1.29

average 328 4 0.72 0.83 0.86 2.53
a Range of the similarity coefficient was from -0.33 to 1. b Range of the similarity coefficient was from -1 to 1. c Range of the similarity

coefficient was from 0 to 1.
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within 0.5 log unit. One compound, kaempferol, had an
error of 0.97 log unit.

Model Interpretation. The most important dis-
tances (according to the model) for phenytoin were
visualized inside the protein together with the GRID
interaction fields calculated for the protein. Since the
pharmacophoric points are derived from the most favor-
able positions for the interacting GRID probe, these
points should be positioned at the same coordinates as
interacting amino acids. Exploring the dry interaction
fields together with points derived from auto- and cross-
correlograms revealed three distinct patches, one show-
ing a direct overlap to Ala297 and the second and third
within 1 Å distance from Phe114 and Leu366, respec-
tively (Figure 5). According to experimental data,
Phe114 is a major site of interaction in this isoform22

and the other amino acids are likely to have an
importance for phenytoin affinity to CYP2C9 and could
be suggested as targets for site-directed mutagenesis
studies. Another hydrophobic patch was found pointing
toward Phe476, which has also been shown to be
important for binding.20 This amino acid is, however,
too distant (5 Å) in its current conformation for signifi-
cant interactions with phenytoin, but the flexible inter-
action fields show that the side chain could move and
facilitate binding. Based on the model, there are also
two hydrogen-bond acceptor areas for interaction that

are important for the activity of the compounds. One of
the areas corresponds best to Asp293 (3.77 Å) and a
backbone interaction with Val292 (2.80 Å), while the
other one is in proximity to Glu300 (3.62 Å). Neither
the flexible side chain of Glu300 nor that of Asp293
points in a favorable orientation toward the pharma-
cophore. The flexible fields calculated for the active site,
however, clearly show the possibility of an interaction,
demonstrating that there might be room for the side
chains to adapt different conformations.

Conclusion

By using this novel approach, neither a bioactive
conformer nor an alignment rule needs to be de-
fined.This way, initial and possibly erroneous assump-
tions in modeling can be avoided. This method is of
particular value in cases where the lack of biological
data prevents one from making any valid assumptions
about possible bioactive conformations and where struc-
tural diversity hampers alignment assignment. The
validation shows that these new flexible molecular
interaction fields can explain the conformational space
described by 100 conformers.

An internally predictive model has been derived that
is externally able to predict other flexible compounds
based only on the alignment-independent descriptors
derived from the conformer-independent flexible inter-
action fields generated by GRID. A particularly impor-
tant advantage is the way in which one can backtrack
all the interactions to the original filtered GRID fields.

Several compounds predicted by the model are clini-
cally important inhibitors of CYP2C9, such as micona-
zole, warfain, and zafirlukast, indicating a potential for
a wider usage.

Furthermore, the impressive correlation between the
pharmacophoric points and amino acids in the active
site, some of which are known to be involved in the
interactions, show that the model corresponds very well
with experimental evidence.
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Figure 4. Correlation between model and predicted biological
data in logarithmic units, with r2 ) 0.8 and q2 ) 0.6. (9)
Training set; (O) test set.

Figure 5. Docking of phenytoin into the homology model of CYP2C9. (Left) In gray are the most favorable hydrophobic interactions
points, and in red are the most important polar interaction points. They are derived on the basis of the most important interactions
for phenytoin according to the model. The heme group (not visualized) provides the rear wall in the projection. (Right) Docked
solution of phenytoin used for the projection of pharmacophore distances into the model. The illustration is rotated 90° compared
to the left picture, and here the heme group make up the left wall of the active site.
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Note Added after ASAP Posting. This manuscript
was released ASAP on 1/13/2004 with errors in the
designation of Glu300 in the Model Interpretation
paragraph before the Conclusion. The correct version
was posted on 1/22/2004.
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