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Both quantitative and qualitative chemical function based pharmacophore models of endot-
helin-A (ETA) selective receptor antagonists were generated by using the two algorithms
HypoGen and HipHop, respectively, which are implemented in the Catalyst molecular modeling
software. The input for HypoGen is a training set of 18 ETA antagonists exhibiting IC50 values
ranging between 0.19 nM and 67 µM. The best output hypothesis consists of five features:
two hydrophobic (HY), one ring aromatic (RA), one hydrogen bond acceptor (HBA), and one
negative ionizable (NI) function. The highest scoring Hip Hop model consists of six features:
three hydrophobic (HY), one ring aromatic (RA), one hydrogen bond acceptor (HBA), and one
negative ionizable (NI). It is the result of an input of three highly active, selective, and
structurally diverse ETA antagonists. The predictive power of the quantitative model could be
approved by using a test set of 30 compounds, whose activity values spread over 6 orders of
magnitude. The two pharmacophores were tested according to their ability to extract known
endothelin antagonists from the 3D molecular structure database of Derwent‘s World Drug
Index. Thereby the main part of selective ETA antagonistic entries was detected by the two
hypotheses. Furthermore, the pharmacophores were used to screen the Maybridge database.
Six compounds were chosen from the output hit lists for in vitro testing of their ability to
displace endothelin-1 from its receptor. Two of these are new potential lead compounds because
they are structurally novel and exhibit satisfactory activity in the binding assay.

Introduction

The endothelins (ET) are 21 amino acid peptides that
are mainly released by vascular endothelial cells.1 There
are three known subtypes, namely, ET-1, ET-2, and ET-
3, binding to at least two types of G-protein-coupled
receptors, ETA and ETB.2

Although ETA and ETB share great structural homol-
ogy, these receptors have diverse affinity to the three
types of endothelin. Whereas the ETA receptor has a
higher affinity to ET-1 and ET-2 than to ET-3, the ETB
receptor binds all three peptides equally strong.3 Prin-
cipally located on vascular smooth muscle cells,4 the ETA
receptor mediates vasoconstriction by activation of
phospholipase C5 and induces vascular smooth muscle
cell proliferation.6 The ETB receptor is abundantly
expressed on vascular endothelial cells. Depending on
its tissue location, it mediates vasorelaxation by release
of nitric oxide and prostacyclin or vasoconstriction.7-10

Furthermore, it participates in regulating the endog-
enous endothelin levels by inducing its elimination.11

ET-1 is the most potent endogenous vasoconstrictor
known so far. Elevated levels of ET-1 and of cardiac ETA
receptors and down-regulation of ETB receptors were

verified in disease states such as essential and pulmo-
nary hypertension, congestive heart failure, and arte-
riosclerosis, which are associated with excessive vaso-
constriction and smooth muscle cell proliferation.10,12-17

Therefore, antagonism of the ETA receptors is expected
to be an effective way for treating these diseases. A
comprehensive overview on the diverse classes of ET
antagonists is given in refs 18 and 19.

Oral administration of the unselective ET antagonist
Bosentan to patients suffering from severe chronic heart
failure resulted in an acute improvement of hemody-
namic parameters.20 However, as far as morbidity and
mortality are concerned, no long-term benefits could be
achieved.21 Nevertheless, ET antagonists are of great
benefit in treatment of pulmonary hypertension, which
cannot be relieved with conventional therapies.22 Fur-
thermore, selective ETA blockers have shown more
benefiting hemodynamic effects than their unselective
analogues.23,24 These findings could lead to new indica-
tions, e.g., chronic heart failure or hypertension.

To gain more insight into structure-activity relation-
ships and to obtain access to new potential lead candi-
dates by using in silico screening techniques, we gen-
erated chemical feature based pharmacophore models
of ETA selective antagonists by using Accelry’s Catalyst
software.25 The models were validated and finally used
as queries for 3D database mining.

General Methodology

For the generation of our chemical function based ETA
models, we applied HypoGen26 and HipHop,27,28 the two
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hypothesis generation algorithms implemented in the
Catalyst software package. HypoGen tries to construct
a pharmacophore that correlates best the three-dimen-
sional arrangement of features in a given set of training
compounds with the corresponding pharmacological
activities. To ensure the statistic relevance of the
calculated model, this training set should contain at
least 16 compounds together with their activity values.
These should originate from comparable binding assays
and spread equally over at least 4 orders of magnitude.
The resulting hypotheses are three-dimensional ar-
rangements of several default feature types (e.g., hy-
drogen bond acceptor, hydrogen bond donor, hydropho-
bic, ring aromatic, positive ionizable) located at defined
positions (location constraints). These are surrounded
by certain spatial tolerance spheres, assessing the area
in space that should be assigned by the corresponding
chemical functions of the matched molecule. Each of the
features occupies a certain weight that is proportional
to its relative contribution to biological activity. Hydro-
gen bond acceptors, donors, and aromatic rings ad-
ditionally include a vector, defining the direction of the
interaction.

The HypoGen algorithm tries to find hypotheses that
are common among the active compounds of the training
set but do not reflect the inactive ones. It observes the
principle of Ockham’s razor, “plurality should not be
posited without necessity”,29 thus constructing a model
that correlates best with measured activities and that
consists of as few features as possible.

During a HypoGen run, three phases are passed
through: (a) Pharmacophores that are common among
the most active compounds are elaborated in the con-
structive phase. (b) Those pharmacophores that fit the
inactive training set members are abolished in the
subtractive phase. (c) The remaining hypotheses are
refined in the optimization phase. Thereby random
translations of features, rotations of vectored features,
and the removal or addition of features from the models
are performed. Each perturbation is evaluated by
consideration of three cost components, the Error, the
Configuration, and the Weight Cost, which will be
pointed out later. The 10 hypotheses with the lowest
cost are printed to the output file. HypoGen pharma-
cophores can estimate the activity values of compounds
by regressing their geometric fit value versus -log-
(activity).

If there is not enough suitable biological data avail-
able to accomplish the considerably high demands of a
HypoGen training set, one can apply the HipHop
process. This algorithm calculates hypotheses by align-
ing those features that are common to the molecules of
a given training set. It must contain the conformational
models of preferably diverse and highly active com-
pounds; exact activity values are not needed for model
generation. The feature-based 3D pharmacophoric align-
ments are computed in a three-step procedure: (a) Each
generated conformer is examined for the presence of
chemical features. (b) Three-dimensional configurations
of chemical features, common to the input molecules,
are determined. (c) The hypotheses are ranked on the
basis of the portion of training set members that fit the
proposed pharmacophore and the frequency of its oc-
currence. The better the hypothesis fits the training set

compounds and the more frequently it occurs, the higher
is the probability that it is not a result of a random
correlation.

Both HypoGen and HipHop deliver plausible models
of a pharmacophore, conclusively termed as hypothesis
in Catalyst. These do not render coercively the true
pharmacophore but can only correlate the information
given by the training set. Thus, the quality of the output
strongly depends on how comprehensively the reality
is reflected by the input data. There are several tech-
niques to verify the reliability of the calculated hypoth-
eses, e.g., estimation of test compounds activities,
retrieval of active candidates from 3D molecular struc-
ture databases, or analysis of the hypotheses cost
parameters printed to the output file. Many successful
applications confirm that Catalyst is a useful tool for
the discovery of new leads, acting on specific pharma-
cological targets.30-39

Important Output Parameters. The HypoGen
process provides a multiple hypothesis output for prov-
ing the reliability of the outcome data. An essential
evaluation criterion is the hypothesis cost analysis that
is applied by HypoGen to rank the generated pharma-
cophores. As default, the 10 lowest cost hypotheses are
written to the output file.

A Weight, an Error, and a Configuration Cost value
are summed up to the Total Cost value. These three
components could be described as follows: Each feature
of a hypothesis represents certain orders of magnitude
of the compounds’ activity. With the default setting of
0.302, the represented orders of magnitude are kept as
close to 2 as possible. The weight component is a value
that increases in a Gaussian form as these function
weights in a model deviate from the ideal value of 2.
Increase of the root-mean-square (rms) divergence
between estimated and measured activities for the
training set molecules leads to a higher Error Cost
value. The Configuration Cost is a Fixed Cost that
quantifies the entropy of the hypothesis space. That
means that if the input information is too multiplex
(e.g., training set molecules are too flexible and/or have
too many features), this would lead to an effusive
number of hypotheses as outcome of the subtractive
phase of the hypothesis generation process. In the
standard HypoGen mode, the configuration cost should
not exceed a maximum value of 17 (corresponds to a
number of 217 pharmacophore models). Higher values
would lead more likely to a chance correlation of the
generated hypothesis, since Catalyst cannot consider
more than 217 models in the optimization phase and so
the rest is left out of the process. The HypoGen module
performs two additional theoretical cost calculations
(represented in bit units) to help the user in assessing
the statistical significance of the generated hypothesis.
The Fixed Cost is the lowest possible cost representing
a hypothetical, simplest model that fits all data per-
fectly. It is calculated by adding the minimum achiev-
able Error and Weight Cost and the constant Configu-
ration Cost. The Null Cost represents the maximum cost
of a pharmacophore with no features and estimates
activity to be the average of the training set molecules’
activity data. Its absolute value is equal to the maxi-
mum occurring Error Cost. The greater the difference
between these two cost values and the closer the cost
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of the generated hypothesis (Total Cost) is to the Fixed
Cost, the more statistically significant the hypothesis
is supposed to be. According to randomized studies, a
cost difference of 40-60 bits between the Total Cost and
the Null Cost indicates a 75-90% chance of represent-
ing a true correlation in the data.26

Results and Discussion

1. HypoGen Model. Recently Ishizuka et al. reported
a novel class of ETA receptor antagonists that were
derived from an angiotensin (AT) receptor antagonist.42

Compound A shown in Figure 1 was the starting AT-
antagonistic structure to be modified. The inhibitory
activities had been tested by displacement of [125Ι]ET-1
from the rat ETA receptor expressed in rat aorta smooth
muscle cells. The compounds of this test series are well
suited for an application to Catalyst because of their
rather rigid structures. This enhances the probability
of obtaining a pharmacophore that matches closely the
actual spatial arrangement of the particular functions,
though the structure of the receptor is not known. The
structure-activity relationship (SAR) study revealed
that the most important substituents on the 2H-
chromene skeleton are the m,p-methylenedioxyphenyl,
the carboxyl, the hydrophobic residue, and the isopro-
poxy group at positions 2, 3, 4, and 6. In relation to the
m,p-methylenedioxy moiety, there is very little toler-
ance. All performed structural variations induced a loss
in activity. These underlying interactions cannot be
explained solely by distinct chemical functions. Rather,
there are additional spatial effects that increase the
ligands’ activity by 2 orders of magnitude. Probably at
this part of the receptor site, there is a binding pocket
that is exactly filled in with the m,p-methylenedioxy
group and that contains a hydrogen bond donor inter-
acting with the electron lone pair of the perfectly
positioned para oxygen atom. Since HypoGen cannot
deal with these kinds of spatial problems yet, the
program has to carry out a simplification of the actual
binding relations in generating pharmacophore models.
At the position within the binding site corresponding
to substituents at position 6, there seems to be a binding
pocket that interacts very specifically with the isopro-
pyloxy group, since the slightest variation reduced the
compounds’ ability to displace ETA. However, according
to former SAR studies,43-45 in this region of the receptor
there seem to be multiple hydrophobic areas to bind
diverging hydrophobic substituents. The carboxyl group
may be exchanged by any negative ionizable function
without great loss of activity. There has to be an ion-
ion interaction, since only compounds bearing functions
that are charged negatively at physiologic pH values
show high affinity to the receptor. At the 4-position,
various linear, branched, and cyclic aliphatic or substi-

tuted and unsubstituted aromatic groups with an
optimum length of 6-9 Å are crucial for ETA receptor
affinity. They may vary in a wide range as far as steric
extent and spatial arrangement are concerned. Best
activities are achieved by a p-anisyl residue (e.g.,
compound 1), but also an n-butyl group (e.g., compound
2) is accepted with only a minimal loss in activity. The
wide tolerance of spatial extent and arrangement of
substituents at position 4 indicates a considerable
flexible hydrophobic binding pocket in the corresponding
receptor site.

We chose 18 of the tested structures as the training
set for a HypoGen run. Their molecular structures and
ETA antagonistic activity values are listed in Table 1.
For editing of the molecules, the Catalyst 2D/3D sketcher
was used. Since molecules can adjust their conforma-
tions in order to bind to a receptor site, conformational
models were generated to ensure a maximum coverage
in feature space. Therefore, the “best quality” confor-
mational search option was applied. The energy tresh-
old, kept during the calculation, was set to 20 kcal/mol
above the global energy minimum. Catalysts conforma-
tional search is based on CHARMM force field param-
eters46 and a Poling technique47 that promotes confor-
mational variation within the accessible space by
penalizing a newly generated conformer if it is too
similar to any other conformer in the set. For the
selection of the training set compounds, we took into
account that there was no redundancy in the input
information concerning both structural features and
activity ranges. Hence, the chance of obtaining a phar-
macophore model with high statistical relevance in
predicting biological activity of ETA antagonists was
increased. The selected compound activity is spread
equally over a range of 6 orders of magnitude (i.e., 0.19-
67 000 nm).

The training-set was applied to a run with the
HypoGen algorithm. The “catHypo.forceAbsoluteStere-
ochemistry” parameter was set to 1 to force the auto-
matic hypothesis routines to consider only the supplied
configurations and no enantio- or diastereomers.

The uncertainty of the compounds’ activity input was
adopted from the Catalyst 4.7 manual. The herein
recommended value of 3 represents the ratio range of
uncertainty in the measured activity values due to
statistical straggling. For the construction of hypoth-
eses, a set of default chemical feature templates exist.
The sulfonamide function (pks ≈ 7-8) is an important
part of several ETA antagonists, but it does not satisfy
the negative ionizable function provided within Catalyst
by default. Thus, we added this feature by applying the
Exclude/Or Quick Tool in order to make the program
recognize all kinds of acidic sulfonamides as acidic
functions.

As mentioned before, four chemical feature types such
as hydrogen bond acceptor, hydrophobic, ring aromatic,
and negative ionizable are of crucial relevance for the
displacement of ET from its receptor. Hence, these
feature types were used in the HypoGen run. The
spacing parameter was set to 5. This enables HypoGen
to consider features of the training set molecules with
a minimum distance of 5 pm (default value: 297 pm)
as two distinct functions. Hence, for example, the two
oxygen atoms of a carboxyl group may be recognized as

Figure 1. AT-antagonistic lead structure (A) modified in the
SAR studies reported by Ishizuka et al.42
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two hydrogen bond acceptors. All other parameters were
kept as default. Among the outcome 10 lowest cost
hypotheses, only hypothesis 3 has two hydrophobic, one
hydrogen bond acceptor, one ring aromatic, and one
negative ionizable feature in a spatial arrangement that
was expected because of preceding SAR analysis. The
HypoGen algorithm does not set a feature onto the
central 2H-chromene skeleton, since this moiety is also
present in the inactive molecules. The pharmacophore
consists only of those features that contribute mainly
to the increase of activity. Thus, such a model is able to
detect preferably diverse structures in a database
mining experiment. Figure 2 shows the mapping of one
of the most active training set compounds 3 on the best
hypothesis of the second HypoGen run, obtained by

using the best fit compare option on the Generate
Hypothesis Workbench. The model shows a good cor-
relation between the measured and the estimated
activity values of the training set (0.953) but high rms
(0.856) and bad Configuration Cost values (18.77). Since
the maximum Configuration Cost of 17 was exceeded,
it has to be considered that not all hypotheses were
regarded in the optimization phase. To achieve further
improvement, a second HypoGen run was carried out
with constraints on the numbers of the regarded func-
tions as follows: hydrophobic, min 2, max 2; hydrogen
bond acceptor, min 1, max 1; ring aromatic, min 1, max
1; negative ionizable, min 1, max 1. All other parameters
were kept as pointed out before. Thereby the correlation,
rms, and Configuration Cost values of the initial hy-

Table 1. Chemical Structuresa of the 18 Training Set Moleculesb Applied to HypoGen Pharmacophore Generation (ETA Activities Are
Given as IC50 Values)

a All 2D chemical structures were edited with ISIS/Draw 2.1 software (MDL Information Systems, ISIS/Draw 2.1, 1990-1996). b Ishizuka
et al.42
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pothesis were found to be improved by the resulting best
pharmacophore from 0.953 to 0.981, from 0.856 to 0.574,
and from 18.77 to 14.97, respectively.

2. Evaluation of the HypoGen Model. 2.1. Cost
Analysis. The total Fixed Cost of the run is 76.6, and
the cost of the Null Hypothesis is 131.13. The cost
ranges between the best hypothesis (Total Cost: 81.69),
the Null Hypothesis, and the Fixed Cost amount to
49.44 and 5.05. As mentioned before, because of the fact
that the best hypothesis’ Total Cost is much closer to
the Fixed Cost than to the Null Cost, the high correla-
tion coefficient of 0.981 and the low rms value of 0.574
indicate a reliable ability of the generated pharmaco-
phore model to predict training set compounds activities
and confirm that it did not come about by chance.

2.2. Score Hypothesis. The training set was submit-
ted to a score hypothesis process. Within this procedure

the activity of every single training set member is
estimated by the hypothesis. The result exhibited a
correlation of 96% between measured and predicted
activities. The hypothesis can discriminate closely be-
tween stereoisomers (compounds 1, 6 and 13, 17) and
saturated and unsaturated chromene skeletons (com-
pounds 1, 2 and 3, 10). Only one compound (16) was
predicted with an error higher than 1 order of magni-
tude and another (8) with an error factor of -7 (see
Table 2). Both compounds contain a p-methoxy but no
m,p-methylenedioxy substructure. The oxygen atom of
the p-methoxy group maps the hydrogen bond acceptor
feature, but the hypothesis cannot detect that there is
no m,p-methylenedioxy moiety that increases the affin-
ity to the receptor by 2 orders of magnitude due to the
optimum steric fit (see Figure 3). As we stated before,
HypoGen is not able to deal with these kinds of spatial
problems yet. When these two outliers are left out of
the score hypothesis spreadsheet, the correlation could
be improved to 98.3%. A visual analysis of the training
set compounds mappings onto the hypothesis was

Figure 2. Mapping of the highly active training set compound
3 on the best HypoGen model.

Figure 3. Mapping of compounds 8 and 16 resulting from the score hypothesis process.

Table 2. Output of the Score Hypothesis Process

compd

measured
activitya

(nM)

estimated
activity

(nM)
error

factorb

energy of mapping
conformer
(kcal/mol)

1 0.19 0.47 2.47 10.2
2 0.42 0.44 1.05 14.2
3 1.3 1.4 1.08 15.1
4 3.8 8.5 2.24 14.2
5 5.2 2.4 -2.17 7.3
6 15 7.8 -1.92 12.3
7 29 22 -1.32 11.5
8 35 5 -7.00 13.8
9 74 79 1.07 15.3

10 77 80 1.04 7.3
11 86 98 1.14 4.7
12 110 56 -1.96 12.1
13 240 310 1.29 5.6
14 410 740 1.80 9.8
15 780 720 -1.08 1.4
16 1200 64 -18.75 3.3
17 1600 820 -1.95 8.2
18 67000 230000 -3.43 1.7
a Ishizuka et al.42 b The error factor is computed as the ratio

of the measured activity to the activity estimated by the hypothesis
or the inverse if Estimated is greater than Measured.
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carried out to verify if the good correlation did not arise
by random overlay. All structures, except compound 16,
fit the pharmacophore in the expected, reasonable way
in conformity with preceding SAR analysis (e.g., see
Figure 2). This result confirms that our hypothesis is a
reliable model for describing the SAR in the training
set.

2.3. Fisher Test. To further evaluate the statistical
relevance of the model, the Fischer method48 was
applied. With the aid of the CatScramble program, the
experimental activities in the training set were scrambled
randomly, and the resulting training set was used for
a HypoGen run. Thereby all parameters were adopted
from the initial HypoGen calculation. This procedure
was reiterated 49 times. None of the outcome hypoth-
eses had a lower cost score than the initial hypothesis.
According to the software documentation and the lit-
erature available, this result indicates that there is a
98% chance for hypothesis 1 to represent a true cor-
relation in the training set activity data.30,64 Table 3 lists
the 10 lowest Total Cost values of the resulting 49
hypotheses.

2.4. Test Set. The main purpose of a quantitative
model is to identify active structures and to forecast
their actual activity accurately. To verify if the hypoth-
esis can also predict the activity of compounds that
are structurally distinct from those included in
the training set, we applied a test set of 30 com-
pounds44,45,50-52,54-56,65,66 (see Table 4). The activity
values spread over a range of 6 orders of magnitude.
The molecules and the corresponding conformational
models were edited in the same way as pointed out
before. For the estimation we used the BestEst option
of the ViewHypothesis Workbench. Out of the 30
measured activity values, 21 were predicted with an
error factor less than 10. The 9 remaining estimations
were carried out with an error factor below 100. On
average, the error factor amounts to 12.6 (Table 5).
Since all test set members are from different structural
classes as the training set compounds and since their
activity values were determined with different assay
systems by different research groups, a more precise
estimation was not expected. Agreeable to preceding
molecular modeling studies,30,31 the error factor of 10
up to 100 is sufficient to roughly classify the compounds
according to their activities. Summarizing, it could be
demonstrated that the hypothesis is able to graduate
ETA antagonists of different structural classes, not
included in the training set, by their affinity to the
receptor.

2.5. HipHop Model. Besides HypoGen, we also
applied the HipHop algorithm to generate a qualitative
common features model. Therefore, we chose three
highly active and ETA selective training compounds
from different structural classes, 2,42 49,56 and 50,52

displayed in Figure 4). The “catHypo.forceAbsoluteSt-
ereochemistry” was set to 1 as mentioned before. To
force HipHop to render only those pharmacophores that
do not miss any feature of the training set members,
the “Principal” value was set to 2 and the “Maximum
Omitted Features” value was set to 0 for all three
structures. Additionally, the Misses, Feature Misses,
and Complete Misses parameter were set to 0. (For a
detailed description of these input parameters, see the
Catalyst 4.7 Tutorial: http://www.accelrys.com/doc/life/
catalyst47/tutorials/Catalyst47_2002TOC.html.) The
number of considered chemical functions was restricted
to two or three hydrophobics, one ring aromatic, one
negative ionizable, and one hydrogen bond acceptor. The
best hypothesis of the outcome consists of three hydro-
phobic, one negative ionizable, one hydrogen bond
acceptor, and one ring aromatic feature. Figure 5 shows
the mapping of the most selective training set compound
49 on the HipHop pharmacophore.

3. Database Search. Either of the two best hypoth-
eses was used as a query in a screening of three-
dimensional multiconformational molecular structure
databases. The Derwent’s World Drug Index database
(WDI)57 was searched using the “Fast Flexible Search
Databases/Spreadsheets” option. This algorithm uses

Table 3. Output Parameters of the 10 Lowest Cost Hypotheses
Resulting from the Statistical Evaluation Procedure According
to the Fischer Method48

hypothesis correlation rms total cost

1 0.86 1.45 97.93
2 0.89 1.33 98.85
3 0.80 1.70 101.51
4 0.81 1.64 103.06
5 0.84 1.58 103.66
6 0.79 1.72 103.68
7 0.82 1.62 103.69
8 0.83 1.61 104.13
9 0.82 1.64 105.10
10 0.81 1.67 106.334
best hypothesis 0.98 0.57 81.69

Figure 4. Chemical structures of the three ETA-selective
training set molecules applied to HipHop pharmacophore
generation.

Figure 5. Mapping of training set compound 49 on the best
HipHop model.
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only the precomputed conformations for fitting the
hypothesis during a search. The optional, more time-
consuming “Best Flexible Search Databases/Spread-
sheets” process can thereby vary the existing conformers
up to an energy threshold of 9.5 kcal/mol. Concerning
both procedures, only those structures that map all
features of the pharmacophore template are retrieved.
To exclude those compounds that are unlikely to be

GPCR ligands because of their high molecular weight,58,59

the hit lists were pruned by a 700 g/mol molecular
weight cutoff. Out of the 48 500 entries deposited in the
WDI, the quantitative model detected 143 structures
altogether (0.3% of the whole WDI). Among these, there
were 12 highly active endothelin antagonists from
different structural classes. Four of these possess a
strong and selective affinity to the ETA receptor. The

Table 4. Chemical Structuresm of the 30 ETA-antagonists Used as Test Set for Validation of the Predictive Power of the HypoGen
Pharmacophore

a Jae et al.43 b Patt et al.65 c Patt et al.52 d Liu et al.66 e Winn et al.45 f Tasker et al.56 g Liu et al.44 h Doherty et al.50 i Kukkola et
al.55 k von Geldern et al.49 l Mederski et al.54 m All 2D chemical structures were edited with ISIS/Draw2.1 software (MDL Information
Systems, ISIS/Draw2.1, 1990-1996).
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more selective common features model retrieved 12
structures (0.03% of the whole WDI). Five of these are
unselective, and three are selective ETA antagonists
with high efficacy. By investigation of the WDI meta-
data and the Ensemble database,60 60 entries of ET
antagonists could be found in the WDI database alto-
gether. Thirty-six of these are supposed to have a
binding mode distinct from that of the training set
compounds, since their structures are entirely different.
As a matter of principle, Catalyst hypotheses can only
detect those compounds that have in common the same
binding site at the receptor and accordingly coincidental
binding features. Eight candidates of the remaining 24
entries could be stated as ETA selective. Five of these
could be detected by our hypotheses (see Figure 6).
There are several circumstances that may prevent the
mapping of active structures. In our case, one of the ETA
selective candidates could not be detected because it is
enlisted as its lacton prodrug. Conclusively, it could not
fit the negative ionizable feature of the hypothesis.
Another two leave a hydrophobic sphere because they
do not possess the corresponding residue. Except for
these three misses, all of the highly active ETA antago-
nists, which are supposed to have a similar binding
mode, could be retrieved. This result is a significant
confirmation for the calculated models’ reliability.

The aim of our study was to detect new ETA antago-
nistic lead structures. Therefore, we screened the May-
bridge database,61 containing about 55 000 commercially
available compounds, with our pharmacophore models.
To obtain as many hits as possible, the “Best Flexible

Search Databases/Spreadsheets” option was applied.
The query resulted in 498 hits with the HypoGen and
in 5 hits with the HipHop hypothesis. In consideration
of their high fit values and their availability, six
identified structures were selected for in vitro testing
of their ETA antagonistic activity. Two of the test
candidates demonstrated moderate activity, and an-
other two were able to displace [125I]ET-1 from its
binding site at higher concentrations. Their structures
and the mappings onto the corresponding hypothesis are
displayed in Figures 7 and 8, respectively. The competi-
tive binding curves for the four active compounds are
shown in Figure 9. The measured IC50 values for the
two most potent structures are given in Table 6. The

Table 5. Activity Values Predicted by the HypoGen
Hypothesis, Experimental Data of the Test Set Compounds,
and Corresponding Error Factors

compd
measured

activity IC50
a (nM)

estimated
activity IC50 (nM)

error
factorb

19 0.04 0.075 1.7
20 0.05 0.028 1.8
21 0.12 0.02 6.0
22 0.29 0.21 1.4
23 0.31 0.08 3.9
24 0.5 0.021 23.8
25 0.5 0.19 2.6
26 0.7 0.26 2.7
27 0.78 0.35 2.2
28 1.8 8.9 4.9
29 3.5 1.9 2.1
30 3.9 0.48 8.1
31 4.62 0.63 7.3
32 5.4 14 2.6
33 6.7 19 2.8
34 11 4.9 2.2
35 14 0.4 35
36 14 25 1.8
37 16 0.25 64
38 21 5.1 4.1
39 45.3 0.55 82.4
40 46 3.8 12.1
41 96 200 2.1
42 110 36 3.1
43 200 26 7.7
44 300 4900 16.3
45 500 16 31.3
46 570 25 22.8
47 630 4300 6.8
48 2030 23000 11.3

mean value of error factor:b 12.6
a Shizuka et al.42 b The error factor is computed as the ratio of

the measured activity to the activity estimated by the hypothesis
or the inverse if Estimated is greater than Measured.

Figure 6. Structures and highest testing phases of the
selective ETA antagonists detected in the WDI query. Footnote
designations are defined as follows: (a) information about
highest phase of testing from the Ensemble database (Prous
Science Ensemble: A new database affording a unique,
integrated view of drug information, http://www.prous.com
(accessed 2000)); (b) no data about highest phase of testing
available from the Ensemble database (Prous Science En-
semble: A new database affording a unique, integrated view
of drug information, http://www.prous.com (accessed 2000)).

Figure 7. Structures and experimental activity data of the
extracted Maybridge compounds that exhibited in vitro activ-
ity.
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IC50 values could not be determined for 59 and 58
because at the highest concentration tested (10-4 M),
they were able to inhibit the specific [125I]ET-1 binding
to only 60% and 77%, respectively (see Figure 9). The
remaining two samples (HTS 01535 and HTS 04170)
were totally unable to displace the [125I]ET-1 radioligand
over the whole concentration range. The reason for this
might be (1) total inactivity of these compounds or (2)
their inactivity at concentrations lower than ca. 10-7

M and aqueous insolubility at concentrations of ca. 10-6

M and higher.
For the three compounds given in Table 6, the Hill

coefficients were not significantly different from unity,
indicating interaction with the single (ETA) binding site.
The reliability of the results is documented by the IC50
of BQ-123 (25 nM; Table 6) which compares well with
the value of 40 nM reported for this standard.62

Remarkably, the most active test candidate, 56, had
the highest fit value of all hits detected by the HipHop
pharmacophore. Also, the HypoGen model ranks this

compound as one of the top entries. There is an
outstanding analogy between 56 and the highly selective
ETA antagonist 55. Compound 57 contains an oxazole
substructure instead of the 3,4-methylenedioxy group
that is a common motif within many ETA antagonists.
Thus, 57 represents a promising candidate for further
structural variations, which may result in highly active
compounds without the 3,4-methylenedioxy moiety.
Because of their properties, 56 and 57 are well suited
candidates to be investigated as novel lead compounds
acting on the endothelin system.

Experimental Section
Molecular Modeling Studies. The molecular modeling

calculations were accomplished on an SGI Octane double
processor workstation running the Catalyst 4.7 package and
Irix 6.5. The database mining, using the generated pharma-
cophore as a three-dimensional query, was executed on a Linux
PC cluster.

Biological Testing. Human ETA receptor binding affinity
was determined using a standard procedure as described
previously.40 Briefly, green monkey renal tubular (Vero) cells
were grown at 37 °C as monolayer cultures in minimal
essential medium supplemented with 10% (v/v) fetal bovine
serum, nonessential amino acids, and 100 U/mL each of
penicillin and streptomycin in an atmosphere of 5% CO2/95%
air. The whole-cell binding assays were performed in triplicate
with the cells (2 × 105 cells/well) under polarized conditions
(buffer I, in mmol/L: NaCl 135, MgCl2 1.0, KH2PO4 0.44, NaH2-
PO4 0.34, NaHCO3 2.6, HEPES 20.0, glucose 5.6, pH 7.4) in
the presence of 50 pM [125I]ET-1 and either 500 nM ET-1 (to
define nonspecific binding) or the test compound. After incuba-
tion (1 h) the bound radioligand was separated from the free
one by a rapid filtration through the GF/C Whatman filters
and washed with cold assay buffer. The radioactivity of the
filters was measured by using a Packard Tri-Carb-300 CD
scintillation counter (Packard Instruments, Downers Grove,
IL). The binding data were expressed as a percentage of
specific [125I]ET-1 binding (total binding in the presence of
unlabeled ET-1) and analyzed by the curve-fitting software
GraphPad InPlot.41

Stock solutions of the test compounds were prepared at a
concentration of ca. 1 mM by dissolving 5 mg of the compound
in 1 mL of DMSO and completed to 10 mL by addition of
deoxygenated water. The concentrations in the range of ca.
10-10-10-4 M were used in the binding assays, and the ETA-
selective antagonist BQ-123 was included as a standard to
verify the sensitivity of the experiments. It was observed that
while the solution of compounds BTB 15187 (56), HTS 00155
(57), HTS 00117 (58), and S 08597 (59) remained clear and
pellucid over the whole concentration range, in the solution
of HTS 01535 and HTS 04170 a precipitate appeared at
concentrations 10-6 M and higher, indicating very low solubil-
ity of the last two compounds in water. The relative binding
affinity of the test compounds (and BQ-123) for the ETA

Figure 8. Mapping of compounds 56 and 57 on the best HypoGen model.

Figure 9. Inhibition of specific [125I]ET-1 (50 pM) binding to
Vero cells by BTB 15187 (56) (open circles), HTS 00155 (57)
(open squares), HTS 00117(58) (open diamonds), S 08597 (59)
(open triangles), and the standard compound BQ-123 (filled
squares). Each point represents the mean of three independent
experiments, and bars are standard deviations of the mean.

Table 6. Affinity (IC50 Values) and Hill Coefficients (nH) of the
Two Most Potent Competitors for [125I]ET-1 Binding Sites in
Vero Cellsa

compd IC50 (nM) nH

BTB 15187 220 ( 53 -1.00 ( 0.03
HTS 00155 6.200 ( 1.600 -0.91 ( 0.04
BQ-123b 25 ( 7 -1.05 ( 0.03

a The values represent the mean ( standard error of three
separate measurements. b Standard compound, used for compara-
tive purposes.
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receptor in the Vero cells was measured by their ability to
compete with the specific binding of [125I]ET-1.

Conclusion
In our study we built a quantitative and a qualitative

pharmacophore model applying two different ligand-
based pharmacophore generation approaches, HypoGen
and HipHop. The resulting best hypotheses consisted
of five and six features, respectively. The pharmacoph-
ores’ reliability in quantitative terms was verified in
several validation procedures. Although the HypoGen
training set was based on one single class of structurally
related compounds, it is capable estimating the activity
values of 30 compounds originating from other series
accurately enough to assign them to different activity
classes. The bigger part of selective ETA antagonists was
extracted from the large 3D molecular structure data-
base of Derwent’s WDI. Remarkably, the HipHop de-
rived model based on only three different ETA antago-
nists was 10 times more selective in the 3D database
mining experiments than the quantitative approach (hit
rate of 0.03% vs 0.3%). The two hypotheses were used
as 3D queries in a mining of the Maybridge database.
Six of the retrieved Maybridge compounds were selected
for testing of their affinity to the ETA receptor. Two of
these proved to be active at the ETA receptor. In
summary, it could be demonstrated that pharmacophore
models created with Catalyst are effective tools for the
identification of new lead structures. Another 3D-QSAR
analysis (i.e., based on CoMFA63 or related methods)
using the HypoGen training set would be an interesting
additional approach to investigate important ligand-
receptor interactions. However, the aim of the present
study was to detect new lead compounds. Thus, we did
not apply these methods because the resulting models
in their present data format cannot be used for the
mining of 3D databases.

In consideration of the enormous effort of in vitro
screening of large compound libraries, the in silico
database mining method presented in our study is a
powerful and fast approach that could decisively reduce
the cost of hit finding within the drug discovery and
development process.
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