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The recently introduced GRid-INdependent Descriptors (GRIND) were designed to provide a
suitable description of a series of ligands for 3D-QSAR studies not requiring the spatial
superimposition of their structures. Despite the proven usefulness of the method, it was
recognized that the original GRIND failed to describe appropriately the shape of the ligand
molecules, which in some cases plays a major role in ligand-receptor binding. For this reason,
the original descriptors have been enhanced with the addition of a molecular shape description
based on the local curvature of the molecular surface. The integration of this description into
the GRIND allows the generation of 3D-QSAR models able to identify both favorable and
unfavorable shape complementarity in a simple and alignment-independent way. The usefulness
of the new GRIND-shape description in 3D-QSAR is illustrated using two structure-activity
studies: one performed on a set of xanthine-like antagonists of the A1 adenosine receptor;
another performed on a series of Plasmodium falciparum plasmepsin II inhibitors.

Introduction

The success of quantitative structure-activity rela-
tionships (QSAR) has been linked to the development
of appropriate molecular descriptors. The choice of
simple but relevant descriptors can be seen as one of
the keys for the success of the original Hansch method.1
More recently, CoMFA2 and other 3D-QSAR methods3,4

have extended the original possibilities of the QSAR as
a result of the use of much more sophisticated molecular
descriptors based on 3D molecular interaction fields
(MIF). However, most 3D-QSAR methods suffer from
the drawback of requiring the superimposition of the
3D structures of the ligands according to a hypothesis
of their binding mode. The 3D alignment of structures
is often time-consuming and always subjective, thus
increasing the probability of obtaining a low-quality
model and limiting the applicability of 3D-QSAR meth-
odologies. Indeed, the methodology for the 3D superim-
position is still being improved.5

Recently, we developed a new class of molecular de-
scriptors called GRid-INdependent Descriptors (GRIND)6
that aim to overcome the 3D-QSAR drawbacks described
above. The GRIND calculation starts by computing
several MIF using the GRID program.7 These MIF
characterize the potential of interaction between a
molecule of interest (e.g., a steroid) and particular
chemical groups of the receptor, represented by chemical
probes (e.g., water, amine nitrogen, etc.). The GRIND
approach aims to extract the information enclosed in
the MIF and to encode it into new types of variables
whose values are independent of the spatial position of
the molecule studied (Figure 1). This encoding per-
formed in two steps: a filtering procedure based on the
energy of the nodes and the distance between them is
applied in order to extract relevant regions of favorable

interaction. Then the product of the energy of interac-
tion for each pair of nodes is computed and assigned to
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Figure 1. Computation of the GRIND. A molecular interac-
tion field is computed with the GRID force field, and the most
relevant interactions are filtered and encoded into MACC-2
correlograms.

2805J. Med. Chem. 2004, 47, 2805-2815

10.1021/jm0311240 CCC: $27.50 © 2004 American Chemical Society
Published on Web 04/24/2004



a distance bin according to the node separation. For each
distance bin, only the highest product is kept, thus
allowing its representation in the original 3D space as
a line linking two specific MIF nodes. This possibility
of representing the descriptors graphically makes the
GRIND particularly well suited to studies requiring a
structural interpretation of the models.

GRIND variables are grouped into blocks represent-
ing interactions between couples of nodes generated by
the same probe (autocorrelograms) or combination of
probes (cross-correlograms) (Figure 1). Such variables
constitute a matrix of descriptors that can be analyzed
using multivariate techniques, such as principal com-
ponent analysis (PCA)8 and partial least squares (PLS)
regression analysis.9

A typical procedure involves the calculation of three
fields, each one using a specific chemical probe highly
relevant to a particular kind of interaction (e.g., hydro-
gen-bond acceptor, hydrogen-bond donor, and hydro-
phobic probe). Most of the interactions between a ligand
and a protein binding site are covered by the MIF of
these three probes, making the GRIND a powerful tool
for the characterization of receptor-binding properties.
Their use in the areas of 3D-QSAR,6,10-12 data mining,13

and molecular diversity14 has been recently published.
However, the practical use of the GRIND has shown

that the descriptions they provide can be incomplete in
some cases. In its original formulation, the GRIND
included no explicit description of the molecular shape.
Instead, it was assumed that the MIF produced by
hydrophobic, hydrogen-bond acceptor and donor probes
would provide a comprehensive description of the dif-
ferent regions of every molecule, thus representing the
molecular shape, albeit indirectly. Unfortunately, the
fields generated by the DRY probe around some ali-
phatic hydrophobic regions are so weak that often the
GRIND method fails to represent these regions. As a
consequence, most aliphatic nonpolar areas remained
completely “invisible”, and the implicit molecular shape
description presumed in the original method is left
incomplete.

The shape of a ligand is crucial to its ability to bind
to a receptor. On one hand, the binding strength of the
ligands having appropriate shape complementarities
with the binding pocket is enhanced by favorable van
der Waals and hydrophobic interactions, some of which
are difficult to quantify by classical 3D-QSAR meth-
ods.15 On the other hand, an inappropriate shape
complementarity might prevent some ligands from
binding, purely for steric reasons. This negative effect
of the shape is extremely important, since it is not
additive, nor can it be compensated for by other effects.
In many cases steric effects can explain the presence of
outliers in the models.

Indeed, the importance of the shape description has
been recognized by many authors, and a wide set of
methodologies for describing the molecular shape in the
context of drug design have been published.16-23 The
aim of the present study is to incorporate the shape
description within the overall GRIND formalism. Ide-
ally, shape should be represented ultimately in a
correlogram-like form (Figure 2) where the autocorre-
lograms would describe the distance between certain
regions defining the spatial extent of the molecule

(Figure 2a) and the cross-correlograms would describe
the distance between these regions and other regions
representing relevant interactions of the compounds
(Figure 2b). From a 3D-QSAR point of view, the
variables from these correlograms can easily be used
as descriptors and have a straightforward interpreta-
tion: variables having a positive contribution in struc-
ture-activity models indicate that the regions defining
the corresponding spatial extents probably fit well into
the receptor binding pocket, and conversely, variables
with a negative contribution indicate steric hindrance
for the same regions.

To be consistent with the GRIND formalism, the
molecular shape description must start by selecting a
reduced number of highly representative nodes. In the
proposed method, these are extracted from the molec-
ular surface and further selected according to a criterion
based on the local curvature of the molecular surface.
In the context of QSAR, where we intend to describe
the differences in a series of structurally related com-
pounds, a relevant description should be sensitive to the
introduction of substituents, changes in ring size,
elongation of chains, etc. In these situations, the local
curvature of the molecular surface describes particularly
well the structural changes, since most of these changes
are characterized by producing “protrusions” in the
surface. Consequently, the local surface curvature was
the criterion for the selection of the most relevant
surface nodes, which were then processed using the
same method as for other GRID nodes.

The present article describes in detail the computa-
tional method used for generating a molecular shape
description compatible with the GRIND formalism and
shows the usefulness and relevance of the novel descrip-
tors in two practical 3D-QSAR applications. In the first
example, a 3D-QSAR model of adenosine receptor
antagonists24 is used to demonstrate the additional
information provided by the shape field and how the
good ligand-receptor shape complementarity of the
high-affinity ligands can be detected. In the second
example, a 3D-QSAR model of Plasmodium falciparum

Figure 2. Aim of the shape descriptors: (a) autocorrelogram
(TIP-TIP) encodes the geometrical relationships between the
spatial extents of the molecule; (b) cross-correlogram (OH2-
TIP) encodes the geometrical relationships between the spatial
extents and some regions of favorable interaction with a GRID
probe (e.g., water probe).
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plasmepsin II inhibitors issued from a statine combi-
natorial library,25 the shape field gives us relevant
structural insights about unfavorable shape features of
some compounds of the series.

Materials and Methods
The development of a molecular shape descriptor suitable

for integration into the GRIND involves two major steps: the
development of a “shape field” and its incorporation within
the overall GRIND methodology.

Shape Field. First of all, it must be clarified that the
molecular shape description introduced herein is not actually
a MIF, although the results of the shape analysis are expressed
in a MIF-like format in order to facilitate its integration within
the GRIND methodology, and for this reason, it was termed
the “shape field”. Also, to maintain consistency with the
terminology commonly used for GRID fields (often called after
the name of the probe used to generate it, e.g., DRY or N1),
the molecular shape field was also referred to as TIP. The
name of the probe makes reference to the fact that the regions
getting more extreme values for this field are often located at
the “tips” of the 3D molecular structures.

As mentioned in the Introduction, the rationale behind this
shape field is the extraction of some regions in the surface of
the molecule describing at best the spatial extent of the
molecule. These regions are selected by considering the local
curvature, with the idea that the most convex regions are the
most descriptive of the spatial boundaries of the molecule and
the most suitable for representing the structural diversity of
a typical series used in QSAR. Therefore, the analysis involves
three steps, which are detailed below: (i) an approximation
to the molecular surface is obtained from a GRID MIF, (ii)
then a set of nearest neighbors is selected for each surface
node, and (iii) the surface curvature coefficient of each node
is estimated.

(i) Molecular Surface. There are diverse methods for
computing the surface of a molecule. Hard sphere models are
used to compute several type of surfaces, e.g., the van der
Waals outer surface, the solvent accessible surface26 (the
surface traced out by the center of a solvent probe rolling over
the spherical atoms), and the solvent excluded surface27-29 (the
topological boundary of the union of all possible solvent
molecules having no intersection with the atomic spheres).
Isosurfaces calculated from a charge density distribution30 or
from a molecular interaction field are another way of defining
the shape of a molecule. Since the GRIND method already

requires the computing of GRID MIF, the last strategy is
convenient from a computational point of view. Any field
generated with a GRID probe can be used for the computation
of a molecular surface at a given energy level. To describe the
shape of the molecule, the method uses the isosurface gener-
ated by the O probe at an energy threshold of 1 kcal/mol. An
example of such a surface is shown for 4-TAPAP (Figure 3), a
well-known thrombin inhibitor in its bound conformation. The
surface is computed by identifying the grid nodes with a value
at the boundary of the energy threshold of 1 kcal/mol. The
nodes are then connected to define a molecular surface that
is fitted to the grid. In this way, the shape field can be used
and depicted in a similar way for any regular GRID field. Of
course, the quality of the surface obtained depends on the grid
resolution and the shape of the surface. GRID potential values
change rather smoothly so that a grid step of 0.5 Å is sufficient
for obtaining a reasonable approximation of the isosurface. The
algorithm also computes the direction of the normal vector at
each surface node. Each normal vector is smoothed by averag-
ing it with the nearby normal vectors. Smoothing improves
the accuracy of the normal vectors and, consequently, the
accuracy of the curvature computation.

(ii) Nearest-Neighbors Selection. The method used for
curvature calculation is summarized in Figure 4. It has been
designed to fulfill three requirements: (a) curvature has to
be computed from a discrete representation of the molecular
surface; (b) the curvature can be estimated at different scales

Figure 3. Positive 1 kcal/mol isosurface of 4-TAPAP computed
with the O probe of the program GRID. The isosurface defines
the shape of the inhibitor in its bound conformation.

Figure 4. Surface curvature calculation: (a) recursive near-
est-neighbor finding for each surface node R; (b) calculation
of the partial curvature coefficient (Cf) for each nearest
neighbor Ni; (c) curvature coefficient value of node R is equal
to the median of the Cf distribution.
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according to the type of surface change looked for; (c) the
method should be fast enough to be integrated into a normal
GRIND calculation.

The curvature is calculated for each surface node according
to the position of its nearest neighbors. The curvature value
depends on the distance cutoff used to determine whether a
nearest neighbor should be considered in the calculation or
not. This limit value is a crucial parameter because it affects
the size of the region involved in the curvature calculation.
For low-cutoff values, the computed curvature describes small
surface irregularities and in particular those produced by the
hydrogen atoms. Conversely, for high-cutoff values, the com-
puted curvature provides a more global description of the
molecular surface: e.g., the general shape of small molecules
or a protein cavity. A Euclidian distance of 6 Å was empirically
chosen as a suitable cutoff limit for the analysis of small
molecules.

The selection of the nearest neighbors of a particular node
R can be compared to expanding a net on the surface, starting
from node R and following the node connections up to the cutoff
limit L (Figure 4a). In other words, the selection procedure is
equivalent to choosing all the neighbors Ni within a sphere S
centered on the node R and having a radius L, but only if there
is a path on the molecular surface that allows the neighbor Ni

to be reached without going out of the sphere S.
(iii) Curvature Calculation. Once the nearest neighbors

have been selected, a partial curvature coefficient is calculated
for each neighbor Ni (Figure 4b). The partial curvature
coefficient Cf is calculated as indicated in eq 1, which is the
application of the scalar product in an orthonormal reference
frame:

where x, y, and z are the components of the normal vector vb of
the surface node R. x′, y′, and z′ are the components of the
vector RNBi. R is the angle between vb and RNBi. If the two
vectors are perpendicular, the surface between the node R and
the node Ni is considered planar and the partial curvature
coefficient Cf is zero. If R is lower than π/2, the surface is
considered concave and Cf is positive. Conversely, if R is
greater than π/2, the surface is considered convex and Cf is
negative.

For every surface node, the total curvature was defined as
the median of the partial curvature coefficients calculated for
all its neighbors (Figure 4c). The use of the median has the
advantage of being less affected than the arithmetic mean by
extreme values obtained as a consequence of imperfections in
the isosurfaces. Curvatures can take values between -1.0 and
+1.0 (e.g., the distribution of highly convex surface node tends
toward -1.0).

In highly convex patches, the value of the local curvature
changes very smoothly, which normally leads to uninformative,
almost flat, shape correlograms. For this reason, the shape
field is mathematically transformed using a cubic function so
that the rate of change of curvature is sharp enough to produce
a useful MACC-2 correlogram, similar to the ones obtained
using standard GRID probes.

Convex regions are more important for the description
proposed than concave regions because the former regions are
more prone to interact with potential binding pockets and also
because they mainly reflect the structural changes in the
compounds such as the introduction of substituents and the
elongation of side chains. Consequently, only the negative
curvature coefficients are preserved for the subsequent GRIND
analysis. For consistency with the GRIND methodology, the
curvature value is scaled in the same way as the normal GRID
MIF and the values of the curvature coefficient are approxi-
mately normalized between 0.0 and 1.0.

Incorporation of the Shape Field into the GRIND. In
a standard GRIND calculation, a filtering procedure is applied
to retain only a fixed number of grid nodes n; usually n is set
between 100 and 200 nodes. The filtering process is based on

an optimization function designed to extract the “relevant
regions” of the MIF. Up to now, no optimization algorithm has
been judged necessary for the filtering of the TIP field. The
filtering is just a selection of the n most convex nodes obtained
after they are sorted according to its curvature value. The
filtered nodes are sufficiently representative of the expected
pockets of interaction, as exemplified by the thrombin ligand
4-TAPAP (Figure 5).

TIP correlograms integrated seamlessly into the GRIND
methodology. The encoding of the filtered TIP fields is the
same as the encoding of any filtered GRID MIF6 (e.g., the
MACC-2 transform): The products of the scaled curvature
values of all the pairs of filtered nodes are calculated to
generate a GRIND-like correlogram. Only the highest curva-
ture product for each bin is stored to enable backtracking and
interpretation of the information. In the same way as the
original GRIND autocorrelograms, the variables included in
the TIP-TIP autocorrelograms are associated with the dis-
tance between two TIP nodes in the original 3D space, and
their values represent the curvature of both points. Cross-
correlograms are obtained by multiplying the scaled curvature
values with the scaled energy values, keeping only the highest
products. Variables included in cross-correlograms are associ-
ated with the distances between a specific area of interaction
(e.g., a hydrogen-bond acceptor site) and a convex part of the
molecule.

Descriptors Computation. All the GRIND of this study
were computed with the program Almond 3.231 on a Pentium
IV 2.4 GHz running Linux Red Hat 7.3. Almond 3.2 has the
shape field computation fully integrated as well as version 19
of the program GRID.7 The 3D structures needed for the
GRIND computations were automatically generated with the
program CORINA 2.632 from the graph of the molecules in
SDFiles or SMILES formats. The GRIND methodology is fairly
robust to the small conformational inconsistencies sometimes
produced by CORINA.33 Since no major conformational dif-
ference has been observed in the 3D structures of the series
studied in this work, the conformations obtained from
CORINA were used directly for the calculation of the descrip-
tors. Most of the Almond parameters were set to default
values, e.g., the ALMD directive was equal to 1, the grid
spacing was equal to 0.5 Å, the smoothing window of the
correlograms was set to 0.8, and the size of the correlograms
was automatically established by the program. The number
of filtered nodes was adapted to each data set empirically from
a representative compound of the data set studied. A total of
120 nodes and a weight of the field of 50% were required in
order to cover all the regions of interaction of the A1 receptor
antagonists. For the plasmepsin II inhibitors, a good coverage
of the regions of relevant interaction was obtained only after
increasing the number of filtered nodes to 200 and reducing
the weight of the field to 25% in the filtering algorithm. More

Cf ) cos(R) ) xx′ + yy′ + zz′

xx2 + y2 + z2 xx′2 + y′2 + z′2
(1)

Figure 5. Filtered shape field of 4-TAPAP. Three shape
patches identify the binding pockets of thrombin: the specific
S pocket, the proximal P pocket, and the distal D pocket.
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details on the Almond calculation parameters are given in the
original GRIND article.6 Regarding the TIP computation, the
field of the O probe was used for the molecular surface
computation and the distance cutoff used to estimate the
curvature was set to 6 Å.

Chemometric Analysis. Almond 3.2 implements the ch-
emometric methods used for the analysis of the GRIND
generated in this article. PCA8 is used to analyze the similarity
of the compounds, while PLS regression analysis9 is used to
build models describing the relationships between the GRIND
and experimental variables describing biological properties of
the compounds. Both PCA and PLS are projection methods in
which the original, highly dimensional descriptor space is
projected onto a new low-dimension orthogonal space, where
the axes are obtained as a linear combination of the original
descriptors. In PCA, the new axes are called principal com-
ponents (PC) and are chosen on the basis of their ability to
retain at best the variance of the descriptor matrix (X). In PLS,
the new axes are called latent variables (LV), and the criterion
for their selection includes their ability not only to explain at
best the variance of the descriptors but also to maximize their
correlation with their biological properties. The PLS regression
analysis can be used even when the number of descriptors is
much higher than the number of compounds, and such
descriptors are highly correlated, as it is normally the case
for a GRIND model.

Results and Discussion

3D-QSAR of A1 Adenosine Receptor Antagonists.
This data set is an example of a series in which standard
GRIND fail to explain correctly the activity of some
compounds because of a lack of shape description. The
series contains xanthine derivatives synthesized and
tested by Strappaghetti et al.24 Xanthines represent the
largest family of adenosine receptors antagonists.34

Adenosine receptors are membrane proteins that are
activated by the nucleoside adenosine and belong to the
G-protein-coupled receptors superfamily. Four subtypes
of adenosine receptors have been cloned and studied so
far: A1, A2A, A2B, and A3,35 which are involved in dif-
ferent regulatory actions in the cardiovascular, renal,
and central nervous systems.34,36 In this example the
authors were interested in finding antagonists of higher
affinity and selectivity toward the A1 subtype, since such
antagonists are therapeutically interesting in the treat-
ment of cognitive diseases,37 renal failure,38 or postin-
farct treatment.38

Structures and affinities of the A1 adenosine receptor
antagonists are presented in Table 1. The compounds
show three types of chemical modifications: the length
of the aliphatic chain linking the pyridazinone ring and
the xanthine scaffold (from 1 to 4), the substituent R in
the 1-position of the xanthine (methyl or n-propyl), and
the substituent R′ in the 6-position of the pyridazinone
ring (chlorine, phenyl, or hydrogen). The 3D geometries
for the compounds of the series were obtained automati-
cally from their 2D structures using the program
CORINA, as described in Materials and Methods. This
method produces reasonable extended conformations for
all the compounds, which is appropriate for the QSAR
analysis of the congeneric series, as the present one.

Initially, classic GRIND descriptors were computed
using the standard probes DRY (hydrophobic), O (hy-
drogen-bond acceptor), and N1 (hydrogen-bond donor).
All the computational parameters were set to default
values with the exception of the number of filtered
nodes, which was fine-tuned to 120. In principle, these
three probes should be enough to describe all the

structural differences of the compounds of the series,
but the results showed that this was not the case. Figure
6, depicting the filtered DRY field of compounds 8 and
18, shows virtually no difference between the MIF of
the two compounds. All the MIF selected nodes are
concentrated around the heterocyclic rings, and the DRY
probe produced no region around the n-propyl group,
which therefore was not considered in the description.
To confirm the ability of the GRIND to highlight the
structural dissimilarities between the compounds in this
series, a PCA was performed on the GRIND matrix. The
two first principal components (PC) explain 62% of the

Figure 6. Comparison of DRY (light-gray) and TIP (dark-
gray) filtered fields of 8-substituted xanthines 18 and 8. The
structures differ only in the length of the alkyl substituent at
the 1-position of the theophylline nucleus (R substituent).
Filtered DRY fields are situated at the same location for both
structures, e.g., at each side of the conjugated rings. Filtered
TIP fields are equivalent apart from the “R” patch, which is
displaced according to the size of the R group.

Table 1. Structure and Affinity of 8-Substituted Xanthines as
Antagonists of the A1 Adenosine Receptor

compd R n R′ Ki(A1) (µM)

5 CH3 1 Cl >100
6 CH3 2 Cl 14.7
7 CH3 3 Cl 8.8
8 CH3 4 Cl 0.37
9 CH3 1 Ph 53.8

10 CH3 2 Ph 6.1
11 CH3 3 Ph 10.8
12 CH3 4 Ph 2.12
13 CH3 2 H 12.8
14 CH3 3 H 12.7
15 C3H7 1 Cl 9.2
16 C3H7 2 Cl 0.47
17 C3H7 3 Cl 1.2
18 C3H7 4 Cl 0.19
19 C3H7 1 Ph 2.27
20 C3H7 2 Ph 0.76
21 C3H7 3 Ph 0.81
22 C3H7 4 Ph 0.38
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variance of the original descriptors. The main factors
revealed by the PC are the number of carbon atoms in
the linker and the presence of a phenyl group at the R′
position (Figure 7a). As suspected, compounds with
different R substituent (methyl or propyl) are tightly
grouped in clusters of two or three members and com-
pounds 8 and 18 shown in Figure 7 are closely clustered.
Even worse, some compounds with very different activ-
ity are grouped together (e.g., 21 with 11 or 16 with 6),
which indicates the inability of the original descriptors
to discriminate compounds with structural properties
that affect their biological behavior.

The GRIND computation was repeated with the same
parameters, but this time the DRY probe was replaced
by the molecular shape field. The first two PC explain
47% of the variance of the original descriptors. The
compounds were spread in the PCA score plot in a
similar way (Figure 7b) according to the size of the
linker and the presence or absence of a phenyl group in
position R′, but interestingly, the clustering scheme has
changed. Some low-activity compounds are now clus-
tered (e.g., 6 and 7 or 13 and 14) as well as some with
high activity (e.g., 16 and 17).

Regarding the PLS regressions, the use of the shape
field improves dramatically the quality of the models:
the best model obtained using the shape field requires
2 LV (r2 ) 0.96, q2

(LOO) ) 0.85). For the same number
of LV, the model using the DRY probe has a rather poor
predictive ability (r2 ) 0.72, q2

(LOO) ) 0.11) and in fact
the value of q2 only improves after the incorporation of
6 LV to the model (r2 ) 0.98, q2

(LOO) ) 0.83).
These results clearly show that the new shape field

improves the description of the structural differences
between the compounds in a way that leads to better
structure-activity models. The main reason for such an

improvement is that the new shape field is able to
describe the different R substitution due to the changes
that they produced in the convex patches (Figure 6),
while the differences in the R substituent are not
described at all by the DRY probe.

The fact that the classic GRIND descriptors produce
a PLS model of reasonably good quality after incorpo-
rating 6 LV requires further clarification, especially
because this fact illustrates an indirect representation
of the shape often observed in classic GRIND models.
The presence of a propyl substituent is, in fact, described
by the classic GRIND but not by the descriptors associ-
ated with the DRY probe. Compounds with this sub-
stituent have slightly more favorable interaction ener-
gies in the nodes representing the interaction of the
carbonyl groups with the N1 probe, probably due to van
der Waals interactions between the propyl substituent
and the probe. This small change in the energy potential
has a minor effect on the values of a few GRIND
variables that is only recognized by the PLS model when
enough LV have been incorporated. However, the PLS
model using the DRY probes is rather complex (6 LV)
and the aforementioned indirect effect can be under-
stood only after a careful and time-consuming analysis.
It is clear that the shape field both simplifies the model
and clarifies its interpretation.

With respect to the model interpretation, the most
important variable in the new model is a distance in
the molecular shape autocorrelogram (TIP-TIP 38 Å)
between two shape patches situated at the two extremi-
ties of the compounds: the propyl substituent at one
side and the pyridazinone ring at the other. Since the
PLS weight of this variable is positive, it can be expected
that the propyl group in N1 has a favorable effect on
the compound activity. In fact, this observation is not
new and many xanthine antagonists of the A1 adenosine
receptor have a propyl substituent at this position (e.g.,
DPCPX, KW 3902, midaxifylline). Interestingly, such
a TIP-TIP variable suggests a concerted effect between
the R group and the linker size, which are the two
principal structural features that determine the value
of this variable. From an examination of the structure-
activity table (Table 1), it becomes clear that if the R
group is a propyl, the linker can be short (e.g., compound
16, Ki ) 0.47 µM), while if the R group is a methyl, the
linker must be long enough to preserve a submicromolar
affinity (e.g., compound 8, Ki ) 0.37 µM) and probably
to let the pyridazinone ring reach a site of favorable
interactions. Such an effect is generally difficult to
detect because it is not additive but complementary.
Complementary effects are particularly interesting
because they offer several options for ligand design. For
example, in this particular series, if a compound with a
small R group and a large linker does not have the
desired pharmacological profile, it is still possible to try
an alternative compound, e.g., a compound with a large
R group and a short linker. The fact that the shape
descriptors are able to detect such effects further
supports the use of the GRIND-shape methodology.

3D-QSAR of Plasmodium falciparum Plasme-
psin II Inhibitors. In the previous data set, the shape
field was used to detect favorable interactions between
the ligands and its receptor. Conversely, the main

Figure 7. PCA score plots of the A1 receptor antagonists: (a)
DRY model; (b) TIP model.
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objective of this data set is to show how unfavorable
interactions can be detected.

Plasmodium falciparum is the most lethal agent of
malaria, an infectious disease that causes millions of
deaths every year.39 The rise of strains of Plasmodium
falciparum resistant to conventional antimalarials such
as chloroquine has reopened the need for new antima-
larial drugs. Plasmodium falciparum aspartyl proteases
of the plasmepsin family have emerged as promising
targets for the development of new drugs.40 These
proteases are required by the parasite for the metabo-
lism of hemoglobin, its principal source of nutrients.40

In 1998, Carroll et al. published the first combinatorial
library designed toward the inhibition of plasmepsin
II,25 which is one of the four plasmepsins localized in
the food vacuole of the parasite.41 The inhibitors of the
plasmepsin II protease contained a statine core (Table
2), a common structural scaffold of aspartyl protease
inhibitors. Carroll’s library contained a total of 13 020
members that were screened for plasmepsin II and
cathepsin D inhibition. Among the hit compounds
identified from the screening, a few representatives (16
compounds) were selected for resynthesis and quantita-
tive inhibition measurement (Table 2). The study re-
sulted in the identification of compounds inhibiting the
growth of the parasite in cell culture and more than 10-
fold selectivity with respect to cathepsin D, a lysosomal
aspartyl protease that is the most homologous human
enzyme to plasmepsin II25 (35% overall homology).
Cathepsin D is present in large amounts in most cell
types, and knockout mice lacking functional cathepsin
D have only a 3-week life span.40 Therefore, it is highly

desirable to design inhibitors showing high affinity for
plasmepsin II and no affinity for cathepsin D.

In this example, we intend to produce PLS models
for the series represented in Table 2 for both plasmepsin
II and cathepsin D activities and to use them for the
prediction of the activities of all the hits from the
screening. The shape probe is tested on both models,
and its relevance is assessed. As in the previous
example, the 3D structures of the compounds were
obtained by automatic conversion from their 2D struc-
tures, which produces extended conformations of rea-
sonably low energy. It should be emphasized that these
structures, although suitable for 3D QSAR analyses,
cannot be claimed to represent accurately their bioactive
conformations. This fact limits the potential structural
interpretation of the results in terms of the direct
mapping of distances highlighted by the model to
distances between receptor residues, but this is a
generic limitation of 3D QSAR that cannot be overcome
without additional structural information from external
sources.

A first 3D-QSAR model for plasmepsin II inhibitors
was attempted using only the standard GRIND probes
DRY (hydrophobic), O (hydrogen-bond acceptor), and N1
(hydrogen-bond donor). Most of the parameters required
for the calculation of the descriptors were set to their
default values. Only the filtering parameters were
adapted to the compounds of the series: after a few
tests, 200 filtered nodes and a field weight of 25%
produced a satisfying coverage of the relevant regions
of interaction. No relevant structure-activity relation-
ship was obtained after PLS regression (q2

(LOO) < 0,
models go to 5 LV).

A second PLS model was attempted, this time adding
the shape field to the initial set of standard probes (the
DRY probe was also retained) and with the same
parameters for the descriptor calculations. The predic-
tive ability of the model improved dramatically, and the
q2

(LOO) jumped to 0.35, with 4 LV. Auto- and cross-
correlograms showing little contribution to the model
after the visual inspection of the PLS coefficient profiles
were removed (e.g., DRY-DRY, O-O, N1-N1, and
DRY-O), and a new PLS regression was computed,
leading to an acceptable QSAR model with 4 LV, an r2

of 0.95 and a q2
(LOO) of 0.53. The PLS coefficient profile

of a 4 LV model is shown in Figure 8. Many variables
are important for the regression model, as indicated by
the number of peaks present along the coefficient profile.
The interpretation of all of them is out of the scope of
this study, which will be limited to the explanation of
the structural features pointed out by the most impor-
tant variables involving the shape field (e.g., TIP-TIP
26 Å, N1-TIP 47 Å, and DRY-TIP 50 Å, shown in
Figure 9).

The variable with the most negative weight on the
model is TIP-TIP 26 Å. It has a particularly high value
for the inactive compound PS 731167. Backtracking of
the variable in 3D space highlights two shape patches
of PS 731167, one at the tip of the butyl R1 substituent
and the other at the tip of the glutamine R3 substituent
(Figure 9a). The glutamine side chain protrudes much
more from the scaffold than the side chain of isoleucine,
which is the amino acid at the R3 position of the most
active plasmepsin II inhibitors. This is an indication of
a potential steric hindrance at the R3 position.

Figure 8. PLS coefficient profile of the plasmepsin II and
cathepsin D models.
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The second variable with the most negative weight
is N1-TIP 47 Å. In the inactive compounds, such as
PS 731167, this variable is associated with a particular
distance between the extremity of the R4 group and the
carbonyl moiety at residue P1 (Figure 9b). The variable
indicates that the R4 substituent 2-naphthoxy probably

suffers from some unfavorable steric hindrance with the
binding site. However, this negative feature seems to
be counterbalanced by favorable hydrophobic interac-
tions as exemplified by the variable DRY-TIP 50 Å of
the plasmepsin II inhibitor PS 189863 (Figure 9c).

In the same way as in the plasmepsin II model, a

Table 2. Structure and Affinities of the Statine Inhibitors
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model for the cathepsin D activities was generated with
the three standard GRIND probes (DRY, O, N1) com-
puted with the same set of parameters. The model had
better statistical parameter values than the initial
plasmepsin II model (1 LV, r2 ) 0.55, q2

(LOO) ) 0.38)
and no relevant improvement was obtained after the
incorporation of the shape field (2 LV, r2 ) 0.7, q2

(LOO)
) 0.38), which indicates that the differences of cathepsin
D inhibition of the compounds of this series are mainly
due to structural features other than shape complemen-
tarity. Interestingly, the inactive compounds for plas-
mepsin II PS731167 (inhibition greater than 30 µM) is
one of the most active inhibitors of cathepsin D (Ki )
200 nM) in the data set. According to the plasmepsin II
model, there must be some differences of shape in the
binding site of the two proteins so that cathepsin D can
accommodate the glutamine side chain while plasme-
psin II cannot.

The X-ray structures of plasmepsin II (PDB entry
1M43) and cathepsin D (PDB entry 1LYB) have been
published in complex with pepstatine A, a naturally
occurring aspartyl protease inhibitor.42,43 Since pepsta-
tine A has the same residues at P2, P1, and P1′ as the
plasmepsin inhibitor PS 725074, we have compared the
binding sites of the two enzymes at S2, which is the
subsite of the R3 substituent. Interestingly, the tip of
the â-hairpin flap that covers the binding site is situated
just over the P2 valine residue of pepstatine A (Figure

10). The flap tip contains a valine residue (VAL78) in
plasmepsin II instead of a glycine residue (GLY79) in
cathepsin D. The space left by the glycine residue of
cathepsin D is partially covered by a compensating
mutation on the other side of the binding site: the
leucine residue (LEU292) of plasmepsin II becomes a
methionine residue (MET309) in cathepsin D. Although
the P2 valine residue of pepstatine A is buried in both
proteins (Figure 10), GLY79 confers greater flexibility
to the â-hairpin flap than VAL78, and the side chain of
MET309 has one more degree of freedom than the side
chain of LEU292. Thus, it is highly probable that
cathepsin D is better able to accommodate bulky amino
acids of statine inhibitors at S2 than plasmepsin II.
These observations are in agreement with the plasme-
psin II PLS model and justify the absence of improve-
ment after the inclusion of the shape field in the
cathepsin D model.

The initial cathepsin D model was refined by keeping
only the correlograms with a real contribution to the
model (e.g., O-O, N1-N1, and DRY-N1), which led to
a final model with 3 LV, an r2 of 0.92, and a q2

(LOO) of
0.58. The PLS coefficients profile for a model with 3 LV

Figure 9. Backtracking of the important GRIND-shape
variables of the plasmepsin II model: (light-gray) DRY field;
(dark-gray) TIP field; (black) N1 field; (a) TIP-TIP 26 Å; (b)
N1-TIP 47 Å; (c) DRY-TIP 50 Å.

Figure 10. Binding site of plasmepsin II and cathepsin D
complexed with pepstatine A (yellow). Only the residues
situated at less than 8 Å from the Câ of P2 valine are drawn.
The binding site surface is the solvent excluded surface
calculated with a probe radius of 1.4 Å.
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is shown in Figure 8. The model is much simpler than
the plasmepsin model, with only three important peaks
along the profile: two positives at O-O 24 Å and DRY-
N1 4 Å and one negative at N1-N1 32 Å. All the
variables highlight structural features of the R4 sub-
stituents. N1-N1 32 Å indicates where the presence of
a hydrogen-bond acceptor atom is unfavorable for activ-
ity, for example, in compound PS 429694. The two other
variables identify positive features of the 2-naphthyl
moiety at R4 as in the most active compound PS
707194: O-O 24 Å indicates that the amide nitrogen
at P2 must be fully accessible to the O probe, and DRY-
N1 4 Å refers to favorable hydrophobic interactions next
to the hydrogen-bond donor site of the P3 carbonyl
group.

The GRIND computation has the advantage of being
automatic and fairly fast and therefore is also of
potential use for in silico screening. To give an idea of
calculation speeds, the descriptors for the 13 020 com-
pounds of the statine library25 were computed in less
than 36 h on a Pentium IV running at 2.4 GHz. One of
the potential uses for the models obtained in the present
work could be the prediction of the binding affinity of
the hits obtained from the screening,25 with the aim of
selecting a subset of the most promising candidates for
resynthesis and biological evaluation. Unfortunately,
the original full list of hits from the screening is not
available, but it is possible to build a hit-rich list of
compounds using the hit frequencies published by
Carroll et al.25 simply by removing from the whole list
the compounds that have an R group with a zero hit
frequency for both plasmepsin II and cathepsin D. This
produced a list of 329 compounds. The plasmepsin II
and cathepsin D model were used to predict the pKi for
all the compounds of this subset, which are represented
in the scatter plot shown in Figure 11.

Compounds falling near the diagonal region in this
plot show little selectivity (less than 10-fold) for any
receptor and are of no interest. Compounds on the left
upper corner have more than 10-fold selectivity toward
cathepsin D over plasmepsin II, while those on the right

bottom corner have more than 10-fold selectivity toward
plasmepsin II over cathepsin D and obviously are the
most interesting compounds whose synthesis should be
prioritized. The selectivity plot shows the importance
of considering the predicted activities of plasmepsin II
and cathepsin D inhibitors at the same time, since most
of the compounds with a predicted submicromolar
affinity for plasmepsin II have a similar order of
predicted affinity for cathepsin D. The selectivity pre-
diction considerably reduces the number of compounds
of interest for further experiments.

Conclusions

We consider that the “molecular shape field” described
in this article is an interesting enhancement of the
original GRIND descriptors that overcomes one of the
main drawbacks of the method. This field is not in-
tended to provide an exhaustive description of the
molecular shape but simply to give information about
some highly relevant shape characteristics, like the
overall size and spatial extents of the molecule. The fact
that the GRIND method uses this molecular shape field
to build cross-correlograms further enriches this infor-
mation by describing the geometrical relationships
between these spatial extents and other physicochemical
features of the compounds. As required, the shape
description is simple and fast to compute and can be
seamlessly integrated within the GRIND methodology.
Moreover, the resulting variables are simple to inter-
pret.

The usefulness of the molecular shape field has been
illustrated in the QSAR models presented in this study.
In both of them, the consideration of the shape dramati-
cally improved the model. The first one concerns an-
tagonists of the A1 receptor and illustrates how an
improved receptor ligand shape matching can be de-
tected. The second one describes inhibitors of the
plasmepsin II aspartyl protease of Plasmodium falci-
parum and shows how unfavorable steric interactions
can be identified. In both cases, the new shape field
seems to be particularly useful in improving the de-
scription of aliphatic moieties that are not well described
by the GRID hydrophobic field.
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