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This paper introduces a new strategy for structure-based drug design that combines high-
quality docking with data from existing ligand-protein cocrystal X-ray structures. The main
goal of SDOCKER, a new algorithm that implements this strategy, is docking accuracy
improvement. In this new paradigm, simulated annealing molecular dynamics is used for
conformational sampling and optimization and an additional similarity force is applied on the
basis of the positions of ligands from X-ray data that focus the sampling on relevant regions
of the active site. Because the structural information from both the ligand and protein active
site is included, this approach is more effective in finding the optimal conformation for a ligand-
protein complex than the classical docking or similarity overlays. Interestingly, it was found
that a 3D similarity-only approach gives comparable docking accuracy to the regular force
field approach used in classical docking, given the final structures are minimized in the presence
of the protein. The combination of both, as implemented in SDOCKER, is shown here to be
more accurate. A significant improvement in docking accuracy has been observed for three
different test systems. Specifically an improvement of 10%, 17.5%, and 10% is seen for 37 HIV-1
protease, 32 thrombin, and 23 CDK2 ligands, respectively, compared to docking using the force
field alone. In addition, SDOCKER’s accuracy performance dependence on the similarity
template is discussed. The strategy of utilizing existing ligand X-ray information should prove
effective in light of the multitude of structures available from structural genomics approaches.

Introduction

Early stages of inhibitor design are among the most
fascinating experiences in drug discovery. They do
remain, however, complex and time-consuming. Com-
putational techniques provide opportunities to stream-
line and accelerate this stage.1 When a high-quality
three-dimensional structure of a receptor is available
from X-ray crystallography or NMR spectroscopy, com-
putational structure-based approaches2 can be applied
to aid inhibitor design efforts. Over the past decade, a
large number of useful new methods for protein-ligand
docking have been proposed, making docking a key tool
in structure-based inhibitor design.3 Molecular docking
algorithms attempt to optimally place an existing or
designed ligand in the active site of a receptor in order
to estimate the binding mode of the ligand. Since
knowledge of the binding mode can assist in the design
of more potent ligands, docking accuracy is important
for exploring new structure-activity relationship (SAR)
directions.4 In particular, the three-dimensional overlay
of diverse ligands can lead to new ideas for modifying
each of the scaffolds. Docking algorithms, however,
suffer from limitations arising from approximations that
include inadequate representation of a ligand’s confor-
mational space and the induced-fit effect of ligand to
protein.5-7

An alternative method often used for generation of
ligand overlays involves 3D similarity-based align-

ments.4,8,9 These methods, used in ligand-based ap-
proaches to inhibitor discovery, do not require a protein
structure. In principle, a strategy combining 3D similar-
ity and docking should provide more accurate predic-
tions of ligand binding modes.10,11 Fradera and co-
workers took advantage of this strategy and developed
a similarity-driven docking approach12 using a combina-
tion of DOCK13 and MIMIC.9 Their implementation
used the DOCK docking function, composed of the
protein-ligand interaction energy scaled by the MIMIC
similarity index between a compound and a predefined
template. Success of the method was gauged by the
improvement of hit enrichment in database searching
for the docking and similarity combination over the
similarity search with MIMIC alone.9

This communication describes an implementation of
similarity-assisted docking along with an examination
of docking accuracy with and without the use of infor-
mation present in multiple structures of protein-ligand
complexes. Motivated by the work of Fradera and co-
workers,12 we extend the CDOCKER suite14-16 to in-
clude a new algorithm, SDOCKER, which uses a hybrid
docking function made up of force field energy and
3D similarity. Even though the general strategy em-
ployed in SDOCKER is similar to the one used by
Fradera, it combines force field energies with 3D
similarity in a novel and potentially more effective
manner. The docking accuracy results of SDOCKER for
three systems including 32 thrombin, 23 CDK2, and 37
HIV-1 protease ligands are discussed and contrasted to
protein-ligand docking and ligand 3D similarity align-
ment.
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Materials and Methods
CDOCKER is a grid-based molecular dynamics (MD) dock-

ing algorithm that has demonstrated accuracy and efficiency
in the reproduction of X-ray ligand binding modes.14-16 SDOCK-
ER combines the CDOCKER force field and search strategy
with a new similarity-based component to the docking func-
tion. Instead of scaling the energy function,12 the force field is
supplemented by a 3D similarity term computed to a static,
predefined template. The similarity template is defined from
the structure of one or more ligands from the aligned protein-
ligand X-ray complexes.

At each step of the MD simulated annealing docking
protocol, the force field interaction of a ligand with the
receptor, the ligand internal energy, and the similarity be-
tween the ligand and the predefined similarity template are
considered. The similarity term focuses the conformational
sampling into the relevant regions of the active site defined
by the shape of the template. Focusing of the search space
contributes to increased docking efficiency and accuracy and
indirectly incorporates elements of protein flexibility. The final
docking pose is the result of a balance between the protein-
ligand interaction, ligand internal energy, and the “in site”
shape similarity to known cocrystallized ligands.

Docking Function. The total docking energy for the
ligand-protein system is the sum of the force field energy17

and the similarity term, i.e.,

where the force field energy comprises ligand receptor interac-
tion energy and the ligand’s internal energy, i.e.,

and the similarity penalty is described by

where SAB is the 3D similarity between a ligand’s pose (A) and
the fixed similarity template (B) and ksim is the similarity force
constant. The negative sign indicates that the system is driven
to higher 3D similarity values. γ and ksim are parameters
allowing full switching between the flexible similarity overlays
only (γ ) 0) and the regular CDOCKER function14 (ksim ) 0
and γ ) 1).

In SDOCKER’s similarity-assisted docking mode, the γ
parameter is set to 1. The force constant ksim can be adjusted
on the basis of the properties and available information on
the particular system. Our experience shows that ksim values
on the order of 10-100 kcal‚mol-1 are optimal for most cases.
For the systems considered in this study, 10 kcal‚mol-1 is
applied to thrombin and CDK2 sets while a value of 100
kcal‚mol-1 is needed for more flexible HIV-1 protease ligands.

The similarity index SAB between the ligand’s pose and the
similarity template depends on their relative orientation in
three-dimensional space and can be defined in multiple
ways.8,18 Here, the similarity index is based on the shape
overlap of the two molecules, taking the general concepts from
the already published work:19,20

where PAB is defined as

and NA and NB indicate the number of atoms in the ligand A
and the template B. Rij is the distance between atom i in ligand
A and atom j in template B. In this work, the weights wi and

wj are set to 1, but they can also be adjusted according to
atomic type or charge extending the similarity constraint
beyond shape to, for example, electrostatics. The value of R is
set to 0.5, resulting in an exponent close to 0 at a distance of
about 3 Å.

The similarity template can be defined from the coordinates
of the overlaid conformations of ligands from existing experi-
mental structures of protein-ligand complexes. The template
can be selected from the coordinates of one representative
ligand or the averaged structure of a subset of several ligands.

Test Systems. Three well-characterized systems with the
availability of multiple cocomplex structures were chosen to
evaluate the performance of SDOCKER. As a result, our test
set comprised 32 ligands complexed with thrombin, 23 ATP
site CDK2 ligands, and 37 ligands complexed with HIV-1
protease.

Twenty-seven thrombin-ligand structures and five trypsin-
ligand structures (1pph, 1tng, 1tnh, 1tnk, 1tnl) were extracted
from the Protein Data Bank (PDB).21 Because of the high
sequence and structure similarity between trypsin and throm-
bin, it was assumed that the binding mode between trypsin
and thrombin ligands (with respect to the structurally con-
served binding site) would not differ significantly. The two-
dimensional structures of 32 ligands are depicted in Figure 1.
The alignment of all thrombin structures to 1ets as the
template was performed with QUANTA 2000.22 This alignment
generated a superposition of 32 ligands in the active site as
depicted in Figure 2. In addition to the thrombin active site
structure from the 1ets complex, the thrombin structure from
the 1dwc complex was also used. This second protein structure
was used to test the dependence of docking results on the
choice of the protein structure, similar to the work of Fradera.12

The dependence of SDOCKER’s docking accuracy on the
selection of the similarity template, was performed with the
thrombin structure from the 1ets complex and the systematic
use of each of the 32 ligands as similarity templates. In another
experiment, the 32 ligands were randomly assigned to one of
two equal sized groups A and B and subsequently used to
define similarity templates from the averaged structures.
Docking experiments were then carried out on the A group
using the B group similarity template followed by docking the
B group ligands using the A group template.

For 23 aligned CDK2 (and 37 aligned HIV-1 protease)
structures, the respective ligands were divided into two groups
A and B in a manner similar to the thrombin case. The docking
results for each group based on the similarity template defined
from averaged ligands from the other group are reported. In
this manner the results for each ligand are not biased by the
inclusion of the shape information from its own X-ray struc-
ture. 1aq1 was selected as the protein structure for CDK2
system and 1hvi was selected for the HIV-1 protease. It should
also be noted that the explicit water molecule important for
some ligand binding to HIV-1 protease23 was not included in
our calculations.

Docking Protocols. All docking experiments we carried
used a rigid protein and a fully flexible ligand. All nonbonded
force field related terms for the protein-ligand interactions
were precomputed and placed on a grid using a previously
described protocol with a grid size of 0.5 Å.14 In addition to
the nonbonded force field terms, probes for similarity energy
force were included in the grid.

Docking protocols for SDOCKER and CDOCKER14 are
briefly summarized here. For each ligand, an initial conforma-
tion is calculated using the Corina software,24 followed by
generation of 50 random orientations of the Corina conformer
near the active site.25 The docking process includes simulated
annealing with grid-based interactions (including similarity
terms where appropriate) for 40 ps, followed by the local
minimization with full force field potential with the similarity
interactions removed. Previously described experiments have
shown that the final off-grid minimization step gives a
statistically significant improvement of docking accuracy of
on-grid docking results with a small increase (1%) in CPU
time.14

Etot
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SDOCKER allows for control of the similarity and energy
force field contributions with the ksim and γ parameters. For
benchmarking, the protocol with ksim ) 0 (eq 2) for docking
and γ ) 0 for 3D similarity alignment was employed. The
results for SDOCKER’s similarity alignments are indicated
as “SHAPE” or “SHAPE_MIN” if the final minimization in the
context of the receptor is applied. Thus, the four pose predic-
tion schemes will be compared, with different levels of classical
force field and similarity contribution as shown below:

Comparison Statistics. Because of the random nature of
the initial states used in the docking protocols, 10 independent
docking runs for each ligand were carried out in order to
generate an ensemble of results for statistical comparisons.14

For each run, only the ligand’s lowest energy pose is compared
with the pose observed in the X-ray structure. A docking
experiment of a ligand is defined as successful if the calculated
heavy atom rmsd (root mean square deviation) between the
docking and X-ray pose is less than 2.0 Å. A test case success
rate is the number (or fraction) of successful runs for all
ligands. Per ligand docking frequency is computed as the frac-
tion of successful runs for each ligand in 10 independent trials.

Results and Discussion
Comparison of Different Protocols for the

Thrombin Set. A test set of 32 thrombin ligands was
used to evaluate the performance of the various docking
strategies examined here. The protein and the similarity
template from the 1ets PDB entry was employed unless
indicated otherwise. The pose prediction strategies

include classical force field docking by CDOCKER, 3D
similarity alignment (γ ) 0 from eq 2, denoted as
SHAPE), 3D similarity alignment followed by minimi-
zation in the presence of protein (denoted by SHAPE_M-
IN), and a combination of docking with 3D similarity
alignment by SDOCKER. Figure 3 shows a graphical
representation of the results for the 32 ligands docked
to thrombin with various docking strategies, and the
numerical results are presented in Table 1.

Figure 1. Two-dimensional ligand structures of thrombin test set. The PDB code is featured in the lower left-hand side of each
box.

CDOCKER, flexible ligand docking to rigid protein with
classical force field

SDOCKER, flexible ligand docking to rigid protein with
classical force field and 3D similarity template

SHAPE, flexible ligand alignment to similarity template

SHAPE_MIN, flexible ligand alignment to similarity
template followed by classical force field minimization
of the final pose in the context of the receptor

Figure 2. Superposition of 32 thrombin inhibitors based on
the alignment of protein structures. For clarity, only heavy
atoms of ligands and the active site (in tube) of the 1ets protein
is shown only. Standard atom color coding is used (red for O,
green for C, blue for N). A semitransparent van der Waals
surface created from all ligands colored by electrostatic
potential is also displayed.
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It was found that the CDOCKER results (a mean
result of 10.6 ligands successfully docked) were not
significantly higher than the mean SHAPE similarity
result (10.4 successes), given that the pairwise T test
for these two experiments showed a P value of 0.369.26

Interestingly, a quantitatively significant and meaning-
ful improvement to the similarity alignment based pose
prediction is obtained with the final minimization of
structures, i.e., the SHAPE_MIN protocol results yield
13 successes (the mean is 12.9). Finally, SDOCKER,
which combines docking with 3D similarity, success-
fully places 15 of the 32 ligands (i.e., within 2.0 Å of
the X-ray pose). The T-test analysis (a P value of 1.552
× 10-6) reveals that SDOCKER’s combination of 3D
similarity with force field optimization significantly
improves docking accuracy for this test system. More-
over, the choice of a different thrombin structure (from
1dwc) and similarity template (also from 1dwc) gives
comparable results for SDOCKER but lower results for

the SHAPE method (mean of 5.1). The difference is
attributed to the effect of using a similarity template
(detailed discussion in the similarity template section).
The results suggest that a combination of docking and
similarity is significantly more accurate than either
docking or 3D similarity alignment in isolation.

A small variation exhibited by each strategy repre-
sented by standard deviations in Table 1 points to the
limitation of the conformational sampling.

Fradera and co-workers12 studied the thrombin sys-
tem with 32 ligands with a similar docking strategy.
They found 6 ligands within 2 Å rmsd of the ligands’
X-ray structures with DOCK, 12 ligands with MIMIC
for similarity overlay, and 9 (low sampling) or 11 (high
sampling) with similarity-guided docking with DOCK
and MIMIC. Although our results (Table 2) are not
directly comparable because of the 14 proprietary
structures used in Fradera’s study,12 SDOCKER ap-
pears to exhibit higher docking accuracy. The successful
performance of MIMIC similarity in the previous work
suggests the possibility for improvement of SDOCKER
with more sophisticated similarity methods.

Dependence of Results on the Choice of Simi-
larity Template. To test the dependence of docking
accuracy on the similarity template, we performed an
additional 32 SDOCKER simulations on the thrombin
test set in which the similarity template was defined
on the X-ray coordinates for each of the ligands while
docking the remaining ligands. The number of success-
fully docked structures as a function of the template’s
heavy atom count is plotted in Figure 4. There is a trend
showing that on average docking accuracy increases
with the size of the ligand (expressed as the atom count)
used to define a similarity template. SDOCKER’s suc-
cess rate with various similarity templates based on
small ligands is also lower (with the exception of the
1tng template) than that of CDOCKER, i.e., without the
use of similarity. On the other hand, most of the large
templates yield a higher success rate than CDOCKER.
The decrease of docking accuracy with small similarity
templates may arise from the partial matching of
“incorrect” fragments of the docked molecules. This
could be related to the fact that only shape similarity
is used. The strong dependence of SDOCKER’s accuracy
on the size of the similarity template, although sugges-
tive, is probably a function of the thrombin test set
because similar trends have not been observed for the
CDK2 and HIV-1 protease systems. SDOCKER calcula-
tions using the two similarity templates defined on the
averaged structure of 16 ligands from two groups (A and
B) and all 32 ligands (all structures averaged as a
similarity template) were also performed. The results
from 10 runs averaged for the two ligand similarity
templates give 16.2 successfully docked ligands. SDOCK-
ER results from the similarity template defined from
all 32 ligands averaged 16.9 successfully docked ligands.
These results show that the incorporation of more
ligands into the similarity template tends to give
improved docking accuracy over a single ligand tem-
plate. Similar improvement of docking accuracy with a
multiple-ligand similarity template were observed for
CDK2 and HIV-1 protease.

Docking Results: Thrombin. To emphasize this
improvement of SDOCKER over CDOCKER, the final

Figure 3. Distribution of the number of successfully docked
structures with different docking strategies for 32 thrombin
ligands. Each point represents one independent run of the
protocol for 32 ligands in the protein from the 1ets structure
(the results for 1dwc protein structure are not significantly
different). The diamonds represent the mean values from 10
independent runs with 95% confidence intervals. SDOCKER’s
mean is significantly higher than those of the CDOCKER,
SHAPE, and SHAPE_MIN approach.

Table 1. Thrombin Test Set Resultsa

method

CDOCKER SHAPEb SHAPE_MINb SDOCKERb

Results for 1ets
mean successc 10.6 10.4 12.9 15.1
N/32 (%) 33.1 32.5 40.3 47.2
standard

deviation
1.6 1.0 1.2 1.4

Results for 1dwc
mean successc 9.8 5.1 12.9 15.6
N/32 (%) 30.6 15.9 40.3 48.8
standard

deviation
1.3 1.5 1.6 1.3

a The mean number of ligands that successfully docked is shown
for different methods and protein structures. b The X-ray ligand
conformation of 1ets or 1dwc was used as the similarity template
for all methods except for CDOCKER. c Mean success is the
number of successful docking runs for 32 ligands, averaged from
10 independent runs.
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docked poses of 1ae8 is displayed in Figure 5 as an
example. Figure 5a shows the X-ray overlay of the
ligand conformations from the 1ae8 and the 1ets struc-
tures, Figure 5b shows the poses from 10 independent

conformations using CDOCKER, and Figure 5c shows
the 10 independent orientations from the SDOCKER
experiments. All 10 independent runs lead to a success-
ful docking with SDOCKER, while only 4 out of 10 are
successful with CDOCKER.

Docking Accuracy Comparison for Thrombin,
CDK2, and HIV-1 protease. In addition to the throm-
bin test case, SDOCKER and CDOCKER were com-
pared on sets consisting of 23 CDK2 ligands and 37
inhibitors of HIV-1 protease. In all cases, the similarity
template was defined on the basis of half the available
ligands (group A) while the docking calculations were
performed for the remaining ligands (group B). The
docking procedure was repeated for the group A ligands
with the similarity template defined from the ligands
from the group B.

The mean results from 10 independent runs are
summarized in Figure 6 and Table 3. The PDB codes of
the complexes used in this study, the 2D ligand repre-
sentations, and the detailed docking results for 10
independent runs are provided in the Supporting In-
formation. In all cases SDOCKER shows statistically
significant (as determined by pairwise T test showing
P values less than 0.05; we also checked the adjusted
multiple-test significance level) improvement of mean
docking accuracy. The improvement is largest for throm-
bin (17.5%) with about 10% improvement for the HIV-1
protease and CDK2 ligands. It was also observed that
if the X-ray conformation is used as an initial starting

Table 2. Detailed Results for Thrombin Ligands for CDOCKER and SDOCKERa

PDB
CDOCKER

fraction
CDOCKER
median rms

SDOCKER
fraction

SDOCKER
median rms

fraction
(SDOCKER - CDOCKER)b

median rms
(SDOCKER - CDOCKER)c

1ae8 0.4 3.3 1 1.2 0.6 -2.2
1bhx 0.1 2.6 0.7 1.6 0.6 -1
1ets 0.4 4.1 1 1.5 0.6 -2.6
1bmm 0.5 2 1 1.4 0.5 -0.6
1bmn 0 3.8 0.5 2 0.5 -1.8
1dwd 0.5 2.8 1 1.4 0.5 -1.4
1uvs 0 5 0.5 2 0.5 -3
1hai 0.6 1.1 1 1.1 0.4 0
1abj 0.7 1.2 0.9 1.1 0.2 -0.1
1afe 0 5.8 0.2 3 0.2 -2.8
1ett 0 3.7 0.2 3.8 0.2 0.1
1pph 0 3.7 0.2 3.6 0.2 -0.2
1a46 0 5.8 0.1 7.4 0.1 1.6
1dwe 0.8 1.1 0.9 1.1 0.1 0
1tom 0.9 1.1 1 1.1 0.1 0
1a4w 0 4.2 0 4.4 0 0.2
1bb0 0 3.8 0 3.6 0 -0.2
1bcu 0 4.4 0 4.4 0 0
1d4p 0 8.5 0 8.5 0 0
1dwb 1 0.4 1 0.5 0 0
1dwc 0 3.7 0 3.4 0 -0.3
1etr 0 3.6 0 3.4 0 -0.2
1fpc 0 5.6 0 5.7 0 0.1
1tng 1 0.4 1 0.4 0 0
1tnh 1 0.7 1 0.7 0 0
1uvt 0.6 1.9 0.6 1.9 0 0
1ycp 0 7.8 0 7.6 0 -0.2
2hgt 0 7.6 0 7.8 0 0.2
3hat 0 6.6 0 7.9 0 1.3
1ba8 0.1 4.1 0 3.2 -0.1 -0.9
1tnk 1 1.5 0.8 1.7 -0.2 0.2
1tnl 1 1.8 0.5 2.6 -0.5 0.8

a The fraction of successful prediction of the X-ray pose and the median rms in 10 independent runs is shown for each ligand. The
results are based on the 10 independent runs for each ligand with the 1ets protein and the 1ets template (SDOCKER). b The difference
between successful docking frequencies between SDOCKER and CDOCKER. The positive numbers indicate the fraction of runs of
SDOCKER that led to improvement of pose predictions. The negative numbers indicate the fraction of runs of SDOCKER that led to the
loss of pose prediction accuracy. c The difference between median rms from SDOCKER and CDOCKER. The negative numbers indicate
the median rms improvement of SDOCKER, while the positive numbers indicate the median rms loss of docking accuracy.

Figure 4. Number of successfully docked structures for
SDOCKER for 32 thrombin ligands as a function of the number
of heavy atom count in the similarity template. Each ligand
was used to create the similarity template. The protein
structure from the 1ets complex was used. The dotted line
denotes the success rate from CDOCKER. The number of
heavy atoms in the similarity template is a good predictor of
successful docking. Despite the reasonably high value of the
linear fit with R2 of 0.52, the notion of correlation is not
appropriate because the distribution of the number of heavy
atoms is bimodal. Six templates with the number of heavy
atoms less than 20 are labeled. Large templates, on average,
lead to improvement in docking accuracy, while small tem-
plates can lead to a decrease in docking accuracy.
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structure, a similar improvement is observed for SDOCK-
ER; however, the docking accuracy is consistently higher
for all methods.14,16

As with any of the current docking methods, there
are some ligands for which SDOCKER fails to predict
the X-ray binding modes. Two limiting factors are ligand
and protein flexibility.16 SDOCKER indirectly addresses
the issue of the ligand flexibility by reducing the ligand’s
search space to a bioactive-like region defined by the
existing X-ray structure. This allows for the mean
improvement of 10%, which is comparable to the results
obtained by using the ligand’s X-ray conformation to
start the docking process. The protein flexibility limita-

tion is not directly addressed by SDOCKER, but the
comparison of self-docking (i.e., docking a ligand back
to the X-ray structure from which it was extracted)
results to results obtained by docking all ligands to one
structure indicate that this limitation is small for
thrombin and slightly larger for HIV-1 protease.16

Conclusions

In this communication it was shown that docking
accuracy can be improved by the effective utilization of
the existing X-ray structures of ligands cocrystallized
with the target protein. The strategy of combining
docking with a 3D similarity function implemented in
our new algorithm SDOCKER proved to be effective in
three different systems, namely, thrombin, CDK2, and
HIV-1 protease. It was also demonstrated that the
choice of similarity template is an important determi-
nant of the docking accuracy in this technique. By the

Figure 5. Graphical example of improvement of pose prediction results with the 1ae8 ligand in 10 independent runs. The protein
and similarity template were both derived from the 1ets structure. The X-ray structure is colored by heavy atom types, and the
docking structures are in magenta: (a) superposed ligand X-ray structures of 1ae8 (colored by atom types) and 1ets (in yellow);
(b) superposed CDOCKER results for the 1ae8 ligand; (c) superposed SDOCKER results for the 1ae8 ligand.

Figure 6. Averaged docking results for three test systems
from 10 independent runs. For SDOCKER, two similarity
templates were defined from the averaged structure of half of
the available X-ray conformations while the results are
reported for the other half. Both CDOCKER and SDOCKER
use only a single rigid protein for the docking (1ets for
thrombin, 1aq1 for CDK2, and 1hvi for HIV protease). The
95% confidence intervals for the mean values are shown. In
all cases SDOCKER gives significantly higher success rates
as defined by the T-test P values (<0.05).

Table 3. Comparison of Docking Success Rates with
CDOCKER and SDOCKER for Three Test Systemsa

docking method

CDOCKER SDOCKER

thrombin (N/32 (%)) 10.6 (33.1) 16.2 (50.6)
CDK2 (N/23 (%)) 9.7 (42.2) 12.1 (52.6)
HIV protease (N/37 (%)) 7.1 (19.2) 11.1(30.0)
a The results from 10 independent runs are used to compute

the mean number of docked ligands with rms less than 2 Å. For
SDOCKER the similarity template is defined from half of the
ligands, and the results are reported for the ligands not present
in the template.

SDOCKER Journal of Medicinal Chemistry, 2004, Vol. 47, No. 12 3147



use of a similarity template, docking accuracy results
were improved by at least 10% for three systems we
have studied. Therefore, SDOCKER represents a very
promising and important direction in the development
of tools utilizing structural genomic information.27 The
ability to readily incorporate key information from many
cocomplex structures into docking is critical in the
design and iteration of structure-based inhibitor strate-
gies.
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