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It is known that proteins can adopt different folds while sharing similar features for recognition
of similar substrates or ligands, for example, in the binding sites of enzyme cofactors such as
ATP. On the other hand, proteins that have highly flexible binding sites or belong to large and
diverse protein families can bind structurally dissimilar ligands, as, for example, in the case
of the matrix metalloprotease family. We have developed a database, PDBLIG, that classifies
protein domains and ligands. The information stored includes each protein’s function, domain
class(es), which ligand(s) it binds, and so on. The database can provide valuable knowledge for
drug discovery, supporting the answering of questions such as whether the same drug molecule
can bind different target protein families and whether these families are related functionally
or structurally, which ligand classes (such as metabolites or organic molecules) bind to a
particular protein family and whether the ligands are druglike, and which target families bind
a wide variety of ligands and whether different ligands are associated with different subfamilies.

Introduction
Now that drug discovery has entered the postgenomic

era, attention is being paid to chemogenomics,1 wherein
the research effort no longer concentrates on drug
discovery for one target but rather looks at several
members of the target family. It is well-known that
protein function is intimately related to three-dimen-
sional structure. High-throughput structural genomics
projects2 are now starting to increase the structural
information available for genome sequences using vari-
ous advanced experimental techniques.3,4 Analysis of
protein structure can provide insight into the biochemi-
cal functions and mechanisms of proteins.5,6 The rela-
tionship between protein fold and protein function in
general is complex.7 Proteins with similar folds usually
have similar function,8,9 but a single protein fold can
sometimes perform many different functions,10 while a
specific biological function can have many different
structural supports.11

Ligand binding,12 through the geometrical and chemi-
cal complementarities between small molecules and
their macromolecular partners, is a key aspect of protein
function, mediating the ability of proteins to recognize
their natural ligands for transport, signal transduction
or catalysis, and also our ability to modulate function
through the discovery of drugs.13 Ligands that bind
specifically to certain proteins can lead to enzyme
inhibition or modulation of signal transduction and thus
can be used as drugs.14

However, there are examples, which have probably
arisen as a result of divergent evolution, where struc-
turally and/or functionally similar proteins having very
low sequence identity bind related but nonidentical
ligands. One such example is that of adenyl cyclase and
DNA polymerase I. Despite having quite different
sequences, the catalytic domains of these two proteins

can be superimposed onto one other and they catalyze
analogous reactions on similar substrates, which strongly
hint at their having diverged from a common ancestor
protein. In some enzyme superfamilies, the family
members catalyze different overall reactions but share
a common chemical strategy for stabilizing the transi-
tion state for the formation of a reactive intermediate.15

Mitchell16 has studied the relationship between the
sequence similarity of R-helical proteins and the mo-
lecular similarity of the ligands they bind. He came to
the conclusion that related proteins tend to bind similar
ligands, although the study was limited to all R-helical
proteins only.

Conversely, there are examples of structurally very
different proteins performing very similar functions,
often as a result of functional convergence. A classic case
is that of subtilisin and chymotrypsin, which are both
serine proteases and both contain the catalytic triad in
remarkably similar configurations despite the proteins
themselves having very different structural folds.17

Thus, the idea that molecular recognition patterns
may be conserved throughout the binding pockets of
proteins of similar function imply ligand similarity; i.e.,
members of the same protein family bind similar
ligands. However, there are many examples in which
the active site conformations are similar but the entire
folds are completely different and in which the folds are
similar but the biochemical functions are completely
different.18-20

The 3D structure of a protein provides the basis for
the structure-based design of active compounds. By use
of the properties of the ligand binding site along with
the assumption of the “lock-and-key” and “induced fit”
principle,21 many computational techniques can be
employed to identify and/or design a potential drug
molecule. The techniques include virtual screening22

using a pharmacophore23 generated from the binding
site followed by docking24 of compound libraries into the
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active site. De novo methods where favorable fragments
are inserted into the binding site and grown into
molecules are also commonly used.25,26 Additionally,
many cheminformatics techniques, such as topomeric
searching and diversity analysis, have been applied to
“lead hopping”27 in order to select chemical structures
with similar shape but different chemistry.28,29 The hope
is that these similar-shape molecules may have certain
desired biological properties. By hopping to a new lead
series, chemistry projects can be steered away from
patent protected chemistries, or the new series may
have more attractive pharmacokentic profiles. Similar
ligands that bind to different protein folds may provide
compound hopping information for similar compounds
that bind functionally different proteins.

About one-quarter of the protein structures in the
Protein Data Bank30 (PDB, which now has around 27K
entries) consist of proteins with bound ligands. In
addition, the PDB contains many examples of structures
of the same protein with and without a bound ligand or
with a variety of different ligands bound. The diversity
or similarity of ligands binding to the same protein can
reflect the potential for making different interactions
within the binding site. The majority of these structures
provide valuable information on how the true sub-
strates, cofactors, inhibitors, or ligands bind to their
cognate targets. Moreover, the structures provide some
degree of comparative information, where, for example,
different ligands bind to the same protein of a different
species or the same ligand (often a cofactor) binds to
structurally different proteins.

In this study, the development of a database, PD-
BLIG, that classifies the relationships between ligand
chemical classes and the protein structural classes to
which they bind is reported. Some of the features of
PDBLIG are also available in the Relibase,31 MSD,32

and Ligand Depot33 databases. Relibase calculates bond
orders and atoms types for ligands in the PDB from
their atom coordinates,34 while MSD and Ligand Depot
make use of the macromolecular crystallographic infor-
mation file (mmCIF)30,33 for ligand annotation. All these
databases have transformed the ligands from PDB
format into searchable chemical structures, allowing
researchers to perform structural, substructural, and
similar searches. In addition, the databases provide
links and searchable fields to information in the original
PDB files, such as resolution, taxonomy, protein se-
quences, etc. They have also stored the results of various
computational experiments, such as statistics for all
interactions of ligands throughout the PDB and auto-
matic superposition of related binding sites.

Primarily, our database stores the chemical structures
and their physical and chemical properties, such as
chemical names, ligand class, molecular weight, etc. of
all the ligands in the PDB, as well as the structural
classification of their binding protein using CATH.35 The
contact details between the residues of the protein and
the ligand are calculated and schematically represented
by the LIGPLOT program.36 Using the database, we
have analyzed the structural diversity/similarity of the
ligands, proteins that bind them, and the relationship
between the two. We present three examples to il-
lustrate cases where (1) the same ligand binds (implying
same function) to a variety of protein folds (structurally

and sequence different proteins), (2) a diverse set of
ligands (measured by the Tanimoto coefficient) bind to
the same protein family (structurally similar proteins),
and (3) similar ligands bind to similar or identical
protein structures.

We hope that the results of our study can guide the
understanding of the relationship between protein fold
and type of ligand it binds, providing information for
library design or serving as a means to identify regions
of nonconservation (and hence specificity) across the
binding sites of different protein family members.

Materials and Methods
A. Extraction of Ligands from the PDB Files. The

PDBLIG ligand database is generated from the structures in
the PDB. Identification of ligands is not always straightfor-
ward, particularly in some of the older format PDB files.
Molecules can consist of a single hetero group (such as a sulfate
ion) or a connected set of groups, which can include amino acid
residues or nucleotides. Thus, a molecule is defined as any
distinct group of covalently bonded atoms. Connectivity be-
tween atoms was calculated using distance cutoffs. Each
molecule is named according to the sequence of hetero groups
and/or amino acid residues present in the molecule (e.g. ASP-
ARG-LEU). Peptide sequences longer than 30 residues and
nucleotide sequences are excluded from the molecule list.
Protein modifications, such as carbohydrates or covalently
bound protease inhibitors, are separated from the protein
chain and treated as ligands, and the fact that the ligand is
bonded to the protein is noted. The 3D coordinates of the ligand
are stored without any energy minimization to reflect the
bound conformation of the ligand. Since it is impossible to
reconstruct the coordinates of unresolved atoms, ligands are
stored exactly as they appear in the PDB; i.e., missing atoms
are not recorded.

The bond orders and atomic formal charges for each ligand
are derived using a modified version of the HBADD37 program,
which matches het groups to definitions in the PDB het group
dictionary.30 The modified version of HBADD uses a graph
algorithm38 to find correspondence between atoms in the ligand
and those in the dictionary. This dictionary lists the bond
orders and charges for each het group code found in the PDB,
which are then mapped onto the ligands using calculated
correspondences. The het groups not present in the dictionary
have their dictionary entries created manually. There are also
cases where a het group name corresponds to more than one
structure, only one of which is defined in the dictionary. For
example the het group BNN corresponds to 1,3-diaminoben-
zylphenylalanine in PDB entry 1a86 and acetyl-p-amidinophe-
nylalanine in entry 7kme. Such missing entries are also
created manually. The modified HBADD program is suf-
ficiently robust that it can examine several possibilities and
select the most appropriate match. Hydrogen addition and
conversion of 3D to 2D structures are performed using the
dbtranslate utility from Unity 4.3.39 Acidic and basic com-
pounds (e.g., molecules containing carboxylic acids and amines)
are stored in their neutral form to ensure consistency. Physical
properties are calculated using the facilities provided by Unity
4.3.

B. Ligand Database. PDBLIG is an Oracle relational
database consisting of several components. First, it holds the
2D and 3D ligand structures and their associated property
data, including ClogP, molecular weight, number of hydrogen
bond donors and acceptors, and rotatable bond count. We have
also grouped the ligands into classes based on the het groups
present in the molecule. The following classes have been
defined: peptides, modified peptides (peptides with nonstand-
ard residues), cofactors (e.g., ATP), modified cofactors, me-
tabolites (compounds found in metabolic pathways, for ex-
ample, citrate), near metabolites (compounds similar to
metabolites) and carbohydrates. Any ligand not falling into
any of the above classes is assigned as inorganic where metallic
elements are present or as an organic where they are not.
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To structurally classify the protein and distinguish their
functional units or domains of the proteins, we have used the
CATH protein classification system. CATH is a hierarchical
classification of protein domain structures, which clusters
proteins at four major levels: class (C), architecture (A),
topology (T), and homologous superfamily (H). Each protein
has a CATH number identifying its classification at each of
these four levels (e.g., CATH number 3.10.20.4). Proteins with
identical CATH numbers are considered structurally homolo-
gous. Each CATH code is further divided into sequence
families, where each family has >35% sequence identity. In
simple terms, if the first 4 CATH codes are identical, the
proteins have the same structural fold. In order for this domain
assignment to be useful with respect to ligand binding sites,
we need to know their locations within the protein. We extract
this information from the CATH domain description file.34 This
along with the domain sequence and CATH code is stored in
the database.

If we wish to examine the binding of ligands to CATH
domains, it is essential to know which protein residues the
ligand interacts with. Hence, we also store protein-ligand
contact data. The contacts were determined using two pro-
grams, LIGPLOT and HBPLUS.40 To determine the protein
contact residues, information regarding bonding between the
ligand and protein is required. HBPLUS calculates both
hydrogen bonding and hydrophobic interactions between two
non-hydrogen atoms in different molecules within 3.9 Å
(default value). We store a list of each residue for which an
interaction is found to occur.

Structures in the PDB contain many chemical species that
are artifacts of the crystallization process and are potentially
not bound at the active site or do not reflect the endogenous
function of the protein. From a drug discovery perspective,
these compounds are usually irrelevant, and hence, we wish
to exclude them from the database. It is reasonable to expect
that a ligand bound at the active site of a protein would have
many interactions with nearby protein residues. Therefore, a
simple method of excluding molecules that are not of interest
is to restrict the database to compounds interacting with more
than a set number of protein residues. Similarly, we neglect
ligands that occur between neighboring molecules in the
crystal lattice as well as water. The most common noninter-
acting small molecule is N-acetylglucosamine (NAG), which
is found in its noninteracting state in 399 PDB structures,
usually as a modification to the protein. In some cases,
however, it is the substrate of an enzyme and we wish to retain
it. For example, PDB entry 1j92 contains NAG bound to the
active site of the protein, and in this case, the compound
exceeds our interaction limit and is included in the database.
Other common noninteracting organic ligands include glycerol
(GOL), 2-hydroxyethyl disulfide (HED or SEO-SEO), 2-meth-
yl-2,4-pentanediol (MPD), and 2-(N-morpholino)ethanesulfonic
acid (MES). It has already been mentioned that ligand-protein
contact information is stored in the database, making it a
simple matter to filter the ligands based on the number of
contacts.

C. Comparison of Molecules. To allow a meaningful
comparison to be made between the ligand molecules in the
database, we must first define the features that we wish to
compare and have a method to compare these features. For
the present study, we have chosen to describe the molecules
by the 2D fingerprint produced by tools included with Unity
4.3.33 This fingerprint is a 988 bit binary string where bits
are set to 1 or 0 depending on the presence or absence of
specific fragments, heteroatoms, or substructures. Such binary
fingerprints are commonly compared using the Tanimoto
coefficient41 (TC), and we have employed this method also. The
Tanimoto coefficient is defined as follows:

where Na and Nb are the number of bits set for fingerprints A
and B, respectively, and Nc is the set bits that A and B have

in common. In simple terms, the Tanimoto coefficient repre-
sents the ratio of the number of features the fingerprints have
in common to the number of features that they could poten-
tially have in common. The Tanimoto coefficient ranges from
0 for fingerprints having no bits in common to 1 for identical
fingerprints. For some applications, it is more useful to know
the dissimilarity or distance between two molecules. This can
be achieved by simply subtracting the Tanimoto coefficient
from 1.

D. Analysis of Protein-Ligand Relationships. We have
used PDBLIG to study the relationship between protein
structures and the structures of the molecules they bind. The
version of PDBLIG used for this study was generated from
all PDB entries as of April 16, 2002, comprising 17 730
structures of which 9283 had some type of small molecule
bound to the proteins. The protein domains were classified
using version 2.4 of the CATH database.34 Ligands were
defined as small molecules having contacts with at least five
residues from the parent protein. This gives a ligand data set
of 3865 compounds with unique structure. Some of these
ligands appear in multiple PDB entries. For example, the most
frequently occurring ligands at the time of this study are
HEME (682), FAD (flavin-adenine dinucleotide 258), and
NAD (nicotinamide-adenine dinucleotide 188). Trypsin-like
serine proteases (336 unique ligands) and acid proteases, for
example, HIV (86 unique ligands), are the proteins that have
the most distinct ligands.

The ligand molecules were compared by first calculating an
all-by-all dissimilarity (or distance) matrix. Such a matrix is
difficult to interpret and visualize. Hence, the multidimen-
sional scaling (MDS)42 technique was employed to extract the
key details in the data. MDS is a method whereby distance
data can be visualized in a small number of dimensions, in
this case as a 2D map. The points representing molecular
fingerprints are arranged in the 2D plane in such a way that
the root-mean-square change in the distance when going from
the original matrix to the new representation is minimized.
To gauge the accuracy of the transformation, we quote the
percentage of the original variance retained in each dimension
when presenting MDS results. The total of these results gives
an indication of the accuracy of the resulting map.

Results and Discussion
A. Analysis of the Ligand Database. The results

of the MDS analysis on the entire ligand set are shown
in Figure 1. The points are colored according to the
chemical class of the ligand. Although only 22% of the

TC )
Nc

Na + Nb - Nc

Figure 1. MDS results of the ligand set showing different
chemical classes.
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original distance matrix is reproduced in this plot, it
can be seen that the ligands cluster quite well according
to their chemical classes. It is particularly interesting
to note that the cofactors and metabolites, ligands found
naturally in an organism, cluster together. It can be also
seen from this plot that the ligands form quite a diverse
set, a Tanimoto distance from left to right being about
0.8 and that from top to bottom being around 0.7.

To examine the diversity of the ligand set in more
detail, we examined the distribution of values in the all-
by-all similarity matrix (Figure 2). Most of the results
show low similarity, clustered in the region from 0.2 to
0.6, indicating that globally the ligand set contains a
diverse set of molecules. However, it does not indicate
the degree of redundancy that is present in the data.
To address this issue, we have examined the similarity
of each molecule to its nearest (according to the Tani-
moto coefficient) neighbor. In a nonredundant set of
compounds we would expect that compounds are dis-
similar to their nearest neighbors and we would there-
fore expect low values for nearest-neighbor similarities.
Conversely, for redundant sets of molecules, we would
expect high values. The results of this analysis are
shown as a cumulative histogram in Figure 3. If we take
a Tanimoto coefficient of 0.85 to be indicative of similar
molecules,43 it can be seen that only around 35% of the
compounds have nearest-neighbor similarities less than
this value, indicating a high degree of redundancy in
the database.

The majority of the ligands in the PDB will have been
chosen on their ability to bind to the protein of interest,
and only a fraction will represent molecules designed
as orally available drugs. In fact, about 102 compounds
(listed in Table S1 in the Supporting Information), or
2.6% of PDBLIG, which covers about 8.6% of drugs, are
present in the Orange Book compiled by the U.S. Food
and Drug Administration.44 Thus, it is interesting to
examine the “druglikeness” of the ligand data set.
Lipinski and co-workers45 have examined the properties
required for drug molecules to show good absorption
properties and proposed a set of four rules, the so-called
“rule of five”, named after the number 5, which appears
in the rules. According to these rules, the following
criteria should be satisfied for good oral absorption:
number of H-bond donors, e5; number of H-bond

acceptors, e10; ClogP e 5; molecular weight, e500.
Histograms showing the distribution of these properties
are given in Figure 4. We find that 1504, or around 40%
of the compounds, are druglike according to these
criteria.

B. ATP Binding Sites. Same Ligand, Diverse
Protein Structures. Next, we examined the range of
proteins that a ligand will bind to. We chose ATP as an
example because many classes of current targets, e.g.,
kinases, phosphodiesterases, adenosine receptors, etc.,
are targetable through the adenine binding site. In its
role as an energy carrier within an organism, ATP is
involved in many diverse processes and interacts with
a wide range of proteins. It therefore represents a good
test case for examining the function and protein struc-
ture relationships for a ligand.

At the time of the study, 73 PDB entries that have
fully classified CATH domains were found to contain
ATP. Of these, some had multiple or similar CATH
domains, so after removing these, we were left with 36
unique fully classified domains. This alone demonstrates
that a significant amount of sequence variation is
present in ATP binding domains. These 36 domains are
characterized by 7 unique architectures, orthogonal
bundle, barrel, two-layer sandwich, three-layer (RâR)
sandwich, roll, up-down bundle, and complex, indicat-
ing that a wide range of protein architectural diversity
is also present within the ATP binding domains. The
full list of PDB codes, CATH codes, and architectures
can be found in Table S2 in the Supporting Information.

However, because only a small portion of any domain
binds to ATP, it is useful to examine the variability of
residues that actually interact with the ATP (as calcu-
lated by LIGPLOT35). Figure 5 shows a histogram of
the propensities of each of the amino acids to interact
with the ATP. The propensities were calculated by
normalizing the counts of contacts for each residue type
by the number of occurrences of that residue type in
the entire PDB.46 The triphosphate group in ATP
contains many negatively charged groups, and so it is
not surprising to find the positively charged amino acids
arginine and lysine occurring 2.2 and 1.6 times more
often, respectively, than would be expected for an
average protein. Threonine and glycine are also com-

Figure 2. Histogram of similarities from all-by-all ligand
comparison. Self-similarities are excluded.

Figure 3. Nearest-neigbor similarity cumulative histogram
for the entire ligand set.
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mon, consistent with the p-loop motif GXXXXGKS/T
present in many ATPases.47 Therefore, although the
ATP binding domains differ in their primary and
tertiary structures, there is some conservation of key
residues in the binding site. An analysis of the 3D
structure of the binding sites would reveal the three-
dimensional features common to such binding sites, and
such an analysis has been performed in a number of
studies.19,48

C. Matrix Metalloprotease Ligand Set. Similar
Protein Stuctures, Diverse Binding Ligands. Ma-
trix metalloproteases (MMPs) are a family of zinc-
dependent endopeptidases that have been shown to play
a significant physiological role in tissue remodeling in
normal growth and development.49 CATH defines 13
separate sequence classes for the MMP families. They
all have CATH code 3.40.390.10, with their sequence
classes numbered: 1.X, where X ranges from 1 to 13.
Of the 13 MMP subfamilies only 8 had structures with
bound ligands in the PDB at the time of this study.
These ligand names, along with the PDB codes and
CATH sequence classes, are shown in Table 1, while
the mapping between CATH sequence classes and the
MMP members can be found in Table 2. There were 39
distinct ligands in the PDB in 50 MMP PDB entries,
two of which were not bound in the active site (see Table
1), bringing the number of ligands considered to a total
of 37. It should be also noted that there are several
occurrences of the same ligand having different names
in different PDB entries. For example, 345 in PDB entry
456c is identical to CBP in 1cxv. Full details are
available in Table 1. Figure 6 depicts a diverse selection
of 6 of these 37 ligands.

As for the whole ligand set, we have plotted both an
all-by-all and a cumulative nearest-neighbor similarity
histogram, which can be seen in Figures 7 and 8,
respectively. We observe that about 60% of the values
in the all-by-all comparison (Figure 7) occur in the range
0.2-0.4, suggesting that the MMP ligands are quite
diverse, at least when judged using Unity 2D finger-
prints. The results of the nearest-neighbor histogram,
shown in Figure 8, suggest that the set is also nonre-
dundant. Around 80% of the compounds have nearest
neighbors with a similarity value less than 0.85,43

compared with the value of 35% for the complete ligand
database.

Figure 9 shows the MDS analysis of the MMP ligands.
Around 40% of the original information was retained
upon conversion to the 2D map.A left-right division,
corresponding to the two main classes of MMP ligands,
is immediately obvious in Figure 9. The ligands on the
right correspond mainly to sulfones and sulfonamides
(e.g., DPS in Figure 6) containing multiple aromatic

Figure 4. Histograms of ligand properties.

Figure 5. Normalized propensities of amino acids in ATP
binding sites. The polar character of the amino acids increases
from left to right.
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groups, while those on the left contain peptide or
peptide-like molecules.

There also appears to be little relationship between
the CATH sequence class and the clustering of the
ligands. For the peptide ligands (i.e., those in the left

half of the plot), there is no obvious clustering by
subfamily. In some cases, very similar or even identical
ligands are bound to proteins in different sequence
classes. On the other hand, the organic ligands on the

Table 1. PDB Codes, Ligand Names, and CATH for the MMP
Family

PDB code ligand name CATH sequence code

830c RS1 1.9
456c 345 1.9
1cxv CBPa 1.10
966c RS2 1.1
1bzs EPEb 1.2
1a86 HMI-ASP-BNN 1.2
1a85 HMI-ASN-BNN 1.2
3ayk CGS 1.1
4ayk CGS 1.1
1bm6 HAV-3MP-MSBc 1.3
1eub HAV-3MP-MSBc 1.9
1b3d S27 1.3
1b8y IN7 1.3
1biw S80 1.3
1bqo N25 1.3
1bzs BSI 1.2
1i76 BSI 1.2
1c3i TR1 1.3
1c8t TR1 1.3
1caq DPS 1.3
1cgl CBZ-ABU-LEU-PHE-EMR 1.1
1ciz DPS 1.3
1d5j MM3 1.3
1d7x SPC 1.3
1jk3 BAT 1.13
1mmb BAT 1.2
1jao BTP-ASP-GM1 1.2
1hv5 CPSb 1.12
1fbl HTA 1.4
1fls WAY 1.9
1fm1 WAY 1.9
1g4k HQQ 1.3
1hfc HAP 1.1
1mnc PLHd 1.2
1hfs L04 1.3
1hv5 RXP 1.12
1i73 PRO-LEU-PAT 1.2
1jan PRO-LEU-GLY-HOA 1.2
1jap PRO-LEU-GLY-HOA 1.2
1jaq HMP-ASP-GM1 1.2
1jj9 BBT 1.2
1kbc HLE-RIN 1.2
1sln INH 1.3
2srt INH 1.3
2tcl RO4 1.1
1ums HAE-MOP-LEU-PHE-NH2 1.3
1umt HAE-MOP-LEU-PHE-NH2 1.3
2usn IN8 1.3
1usn IN9 1.3
3usn ATT 1.3
a Identical to 345 in PDB entry 456c. b Not in active site.

c Identical to CGS in PDB entries 3ayk and 4ayk. d Identical to
HAP in pdb code 1hfc.

Table 2. Mapping of CATH Sequence Classes to MMP
Subfamilies

CATH sequence class (3.40.390.10) MMP subfamilya

1.1 mmp1
1.2 mmp8
1.3 mmp3
1.4 mmp1 (pig)
1.9 mmp13
1.10 mmp13 (mouse)
1.12 mmp11
1.13 mmp12

a Refers to the human protein unless otherwise stated.

Figure 6. Selection of MMP ligands.

Figure 7. Histogram of the all-by-all similarity matrix for
the MMP ligands.

Figure 8. Nearest-neighbor similarity for the MMP data set.
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right of Figure 9 tend to mostly bind to proteins in
sequence class 1.3 (mmp3). However, ligands bound to
proteins in four other sequence subfamilies are also
present here. The fact that similar ligands bind to
different proteins in the same protein family could
indicate that achieving high selectivity among the
members of this family might be difficult.

D. Neuraminidase. Similar Protein Structures,
Similar Ligands. Neuraminidase is a member of
CATH class 2.120.10.10, which contains seven sequence
classes whose PDB entries contain ligands. The majority
of these proteins are from the influenza virus. PDB
codes, ligand names, and CATH sequence codes for the
neuraminidase family are shown in Table 3, while the
mapping of CATH sequence codes to the corresponding
species or influenza strain is shown in Table 4. Of the
30 unique small molecules found in members of this
class, 5 were found to be protein modifications (see Table
3) and have therefore been excluded from the following
discussion. Some examples of the remaining 25 struc-
tures, corresponding to 44 PDB entries are shown in
Figure 10.

Figure 11 shows a histogram of ligand similarity
values from the all-by-all similarity matrix for the
neuraminidase ligands together with comparable results
for the MMP ligand set. The first feature of note is the

peak between 0.2 and 0.3 caused by two distinct clusters
being present. This is discussed further below. It can
also be seen that apart from this peak, the Tanimoto
coefficients of the neuraminidase ligands have signifi-
cantly greater occurrence at high values relative to those
of MMP, indicative of the neuraminidase ligands cur-
rently sampled in PDB entries having higher similarity.
The neuraminidase set is also much more redundant
than the MMP set, as can be seen in Figure 12. Only
around 40% of the ligands have nearest-neighbor simi-
larities less than 0.85 compared to 80% of the MMP
ligands. In fact, when we take a closer look at the
ligands, they fall into four series. Examples of each ring
system can be seen in Figure 10. The first corresponds
to DAN and ZMR, the second to FDI and ST4, the third
to CNP, and the fourth to SKD. Apart from a small
number of exceptions, the four series are built upon
variation at two points in the parent structure. This
information is very valuable in the design of inhibitors
or studying the SAR of the ligand-protein interaction
when activity data are available. Very often, the diver-
sity of molecules that bind to a protein reflects the
flexibility of the binding site. However, we point out that
in many cases, low diversity of the ligands found to bind

Figure 9. MDS map for the MMP ligand set.

Figure 10. Selection of neuraminidase ligands.

Figure 11. Histogram of all-by-all similarities for the
neuraminidase and MMP ligand sets.

Figure 12. Cumulative histogram of nearest-neighbor simi-
larity for the neuraminidase and MMP ligand sets.
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to a specific protein may be due to synthetic reasons or
the specific interests of the scientists performing the
crystallization.

Figure 13 shows the MDS analysis for the neuramini-
dase ligands; 69% of the original information was
retained in this transformation. Once again, we see two
distinct classes of molecules, the main difference be-

tween them being an aliphatic or aromatic scaffold (see
Table 3). Ligands on the left have an aromatic ring

Table 3. PDB Codes, Ligand Names, and CATH Sequence Classes for Members of the Neuraminidase Family

PDB code ligand name scaffold typea CATH sequence code

1a4g ZMR alip 2.1
1a4q DPC alip 2.1
1b9s FDI arom 2.2
1b9t RAI arom 2.2
1b9v RA2 arom 2.2
1bji G21 alip 1.1
1dim EQP alip 3.1
1eus DAN alip 4.1
1f8b DAN alip 1.1
1f8c 4AM alip 1.1
1f8d 9AM alip 1.1
1f8e 49A alip 1.1
1inf NAGb 2.2
1inf ST4 arom 2.2
1ing NAG-NAG-MAN-MAN-MAN-MANb 1.2
1ing ST5 arom 1.2
1inh NAG-NAG-MAN-MAN-MAN-MANb 1.2
1inh ST6 arom 1.2
1inv EQP alip 2.2
1inw AXP alip 1.2
1inx EQP alip 1.2
1iny EQP alip 1.1
1ivb NAGb 2.2
1ivb ST1 arom 2.2
1ivc NAG-NAGb 1.2
1ivc ST2 arom 1.2
1ive ST3 arom 1.2
1ivf DAN alip 1.2
1mwe SIA alip 1.1
1nma NAG-NAG-MAN-MAN-MAN-MANb 1.1
1nmb NAG-NAG-MAN-MAN-MAN-MAN-MANb 1.1
1nnb DAN alip 1.1
1nnc GNA alip 1.1
1nsc SIA alip 2.1
1nsd DAN alip 2.1
1sli DAN alip 6.1
2bat SIA alip 1.2
2qwb SIA alip 1.1
2qwc DAN alip 1.1
2qwd 4AM alip 1.1
2qwe GNA alip 1.1
2qwf G20 alip 1.1
2qwg G28 alip 1.1
2qwh G39 alip 1.1
2qwi G20 alip 1.1
2qwj G28 alip 1.1
2qwk G39 alip 1.1
2sim DAN alip 3.1
2sli SKD alip 6.1
3sil GOLb 3.1
3sli SKD alip 6.1
4sli CNP alip 6.1

a Arom refers to aromatic scaffold, alip referes to aliphatic. b These groups are protein modifications and were not considered.

Table 4. Mapping of CATH Sequence Classes to Species or
Influenza Strain for the Neuraminidase Family

CATH sequence class
(2.120.10.10) species (strain)

1.1 Influenza (A/tern/Australia/g70c)
1.2 Influenza (A/subtype n2)
2.1 Influenza (B/Beijing/1/87)
2.2 Influenza (B/lec/40)
3.1 Salmonella typhimurium
4.1 Macromomospora viridifaciens
6.1 Macrobdella decora

Figure 13. MDS map for the neuraminidase ligand set.
Points are labeled by CATH sequence code.
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scaffold (e.g., FDI, Figure 10), and those on the right
are aliphatic (e.g., ZMR). However, the groups attached
to the scaffolds are found to be quite similar; for
example, functional groups such as guanidine, glycerol,
and acetamide are common to all classes. This suggests
a possible pitfall in the use of 2D fingerprints. A lower
similarity score can result from a difference in the
scaffold, even if the groups interacting with the protein
are similar or even identical.

It can also be seen from Figure 13 that the ligands
cluster much better with the sequence subfamily of the
protein than observed in the case of MMP. The ligands
with aromatic scaffolds on the left correspond to se-
quence classes 1.2 and 2.2, and those on the right
correspond largely to class 1.1. This result is somewhat
counterintuitive; it would be expected that because of
the higher sequence identity of classes 1.1 and 1.2, the
ligands of class 1.2 would be more similar to those of
class 1.2 than class 2.2. It is quite possible that this
unusual clustering is due to the fact that the relevant
structure determinations, for example, proteins from
class 1.2 with aliphatic ligands, have simply not being
performed. Indeed, it is known that several members
of the aliphatic series are active against both type A
and type B influenza neuraminidases.50 It is also likely
that were the arrangement of groups in 3D space to be
considered, we would find the clusters much less well
defined than the 2D fingerprints suggest.

Conclusions

We have described the database PDBLIG that incor-
porates a range of information relevant to ligands and
their interaction with proteins. Some of the usefulness
of this database has been illustrated by three examples.
The first is ATP, a ligand that binds to a wide range of
proteins. We are able to quickly identify and classify
the proteins that bind to a specific ligand or to a set of
similar ligands.

The second example is a protein family that binds a
diverse range of ligands. It is generally assumed that
molecular similarity implies similar biological activity
for both protein and ligand, but the converse is not
always true. The MMP family of proteins, whose ligands
can be divided into two highly distinct classes, il-
lustrates this point. Although they must have similar
arrangements in 3D space of groups interacting with
the protein, this similarity does not necessarily imply
that the 2D structures exhibit high similarity.

Finally, the case of neuraminidase further reinforces
this issue. We again see the presence of two clusters,
in this case caused by two differing scaffolds. However,
in this case the scaffold does not interact with the
protein; it only ensures that the attached groups are in
the optimal position. Hence, the existence of the two
classes is not relevant to the binding of these ligands.
This distinction would most likely disappear if the 3D
structure were taken into account.

This study has related cheminformatics data, such as
ligand structures, and their physical and chemical
properties to bioinformatics data, such as protein struc-
tural folds and protein-ligand interactions. The data
in PDBLIG might help answer some of the questions
relating to drug discovery programs. For example, how
many functionally different proteins bind the same

cofactor, metabolite, or ligand? How similar (or dis-
similar) are the ligands that bind to different members
of the same protein target family? Obviously, further
work is needed to answer more specific questions. For
example, how similar (or dissimilar) are the binding
sites of all the proteins that bind to ATP? If the binding
sites of different members of the same target family are
similar, how is selectivity targeted? In our study, we
have only measured small-molecule structure similarity
using 2D fingerprints. With the 3D information provided
by the X-ray data from the PDB, comparison can in fact
be made in 3D, although it is likely to be much slower.
The methodology would involve the molecular alignment
of compounds binding to the same site followed by
generation of 3D pharmacophores. Alternatively, it
would also be possible to generate 3D pharmacophores
from the protein binding sites.

In summary, PDBLIG provides valuable information
that is crucial for drug design. In the future, a 3D
approach to both the ligands and binding site analysis
will be necessary to answer even more specific ques-
tions.

Acknowledgment. We thank Roman Laskowski
and Alex Michie for providing the programs LIGPLOT
and HBADD.

Supporting Information Available: Table S1 listing the
compounds in Orange Book (which are also found in the PDB),
their PDB codes, and ligand names; Table S2 listing the PDB
codes, CATH codes, and architectures of the ATP binding
domains. This material is available free of charge via the
Internet at http://pubs.acs.org.

References
(1) Chan, A. W. E.; Overington, J. P. Recent development in

chemoinformatics and chemogenomics. Annu. Rep. Med. Chem.
2003, 38, 285-294.

(2) The Human Genome. Nature 2001, 409, 813-849.
(3) Drenth, J. Principles of Protein X-ray Crystallography; Sprin-

ger: New York, 1999.
(4) Siegal, G.; van Duynhoven, J.; Baldus, M. Biomolecular NMR:

recent advances in liquids, solids and screening. Curr. Opin.
Chem. Biol. 1999, 3, 530-536.

(5) Orengo, C.; Todd, A.; Thronton, J. From protein structure to
function. Curr. Opin. Struct. Biol. 1999, 9, 374-382.

(6) Martin, A.; Orengo, C.; Hutchinson, E.; Michie, A.; Wallace, A.;
Jones, M.; Thronton, J. Protein folds and functions. Structure
1998, 6, 875-884.

(7) Todd, A.; Orengo, C.; Thronton, J. Evolution of function in
protein superfamilies. J. Mol. Biol. 2002, 307, 1113-1143.

(8) Zarembinski, T. I.; Hung, L.-W.; Mueller-Dickmann, H.-J.; Kim,
K.-K.; Yokota, H.; Kim, R.; Kim, S.-H. Structure-based assign-
ment of the biochemical function of a hypothetical protein: A
test case of structural genomics. Proc. Natl. Acad. Sci. U.S.A.
1998, 95, 15189-15193.

(9) Hwang, K. Y.; Chung, J. H.; Kim, S.-H.; Han, Y. S.; Cho, Y.
Structure-based identification of a novel NTPase from Metha-
nococcus jannaschii. Nat. Struct. Biol. 1999, 6, 691-696.

(10) Orengo, C.; Pearl, F.; Bray, J.; Todd, A.; Martin, A.; Lo, C.;
Thronton, J. The CATH database provides insight into protein
structure/function relationships. Nucleic Acids Res. 1999, 27,
275-279.

(11) Russell, R.; Sasieni, P.; Sternberg, J. Supersites within super-
folds. Binding site similarity in the absence of homology. J. Mol.
Biol. 1998, 282, 903-918.

(12) Gohlke, H.; Klebe, G. Approaches to the description and predic-
tion of the binding affinity of small-molecule ligands to macro-
molecular receptors. Angew. Chem., Int. Ed. 2002, 41, 2644-
2676.

(13) Campbell, S. J.; Gold, N. D.; Jackson, R. M.; Westhead, D. R.
Ligand binding: functional site location, similarity and docking.
Curr. Opin. Struct. Biol. 2003, 13, 389-395.

(14) Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible
docking method using an incremental construction algorithm.
J. Mol. Biol. 1996, 261, 470-489.

(15) Gerlt, J. A.; Babbit, P. C. Mechanistically diverse enzyme
superfamilies: the importance of chemistry in the evolution of
catalysis. Curr. Opin. Chem. Biol. 1998, 2, 607-612.

PDBLIG Journal of Medicinal Chemistry, 2004, Vol. 47, No. 15 3815



(16) Mitchell, J. B. O. The relationship between the sequence
identities of alpha helical proteins in the PDB and the molecular
similarities of their ligands. J. Chem. Inf. Comput. Sci. 2001,
41, 1617-1622.

(17) Todd, A. E.; Orengo, C. A.; Thornton, J. M. Evolution of protein
function, from a structural perspective. Curr. Opin. Chem. Biol.
1999, 3, 548-556.

(18) Brenner, S. E.; Chothia, C.; Hubbard, T. J. P. Population
statistics of protein structures: Lessons from structural clas-
sifications. Curr. Opin. Struct. Biol. 1997, 7, 369-376.

(19) Murzin, A. G. How far divergent evolution goes in proteins. Curr.
Opin. Struct. Biol. 1998, 8, 380-387.

(20) Russell, R. B.; Sasieni, P. D.; Sternberg, M. J. E. Supersites
within superfolds. Binding site similarity in the absence of
homology. J. Mol. Biol. 1998, 282, 903-918.

(21) Koshland, D. E., Jr. The key-lock theory and the induced fit
theory. Angew. Chem., Int. Ed. Engl. 1994, 33, 2375-2378.
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