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Abstract: A method for ligand-based virtual screening (LBVS),
dynamic mapping of consensus positions (DMC), has been
extended to take different potency levels of template com-
pounds into account. This potency scaling technique is de-
signed to tune search calculations toward the detection of
increasingly potent hits. LBVS analysis of three different
compound classes confirmed the ability of potency-scaled DMC
(POT-DMC) to identify active database compounds with higher
potency than conventional calculations.

In pharmaceutical research, virtual screening of large
compound databases has become an important hit
identification tool.1 For LBVS, which utilizes known
active compounds as search templates, a variety of
molecular similarity-based methods2 have been devel-
oped or adapted including, among others, molecular
fingerprints,3,4 clustering techniques,5,6 and partitioning
methods.6,7 A major goal of LBVS is the identification
of molecules having core structures different from
known leads or drugs but similar activity.1 This repre-
sents an important difference from QSAR methods
where congeneric molecules are usually analyzed in
order to identify or design analogues with increased
potency.8 However, in LBVS algorithms, relative com-
pound potency has thus far rarely been considered as a
search parameter, although QSAR models have also
been adapted for virtual screening.8-10 We have begun
to address this issue by extending the recently developed
DMC approach,11 which combines elements of partition-
ing algorithms and bit string methods, to include
compound potency as a new parameter during similarity
analysis. This is done in order to increase the probability
of finding the most potent hits in screening databases.

The concept of DMC and POT-DMC is illustrated in
Figure 1a. In contrast to popular cell-based partitioning
methods that operate in low-dimensional descriptor
reference spaces,7 DMC utilizes dimension extension of
simplified descriptor spaces to distinguish sets of active
molecules from other database compounds. This separa-
tion is facilitated by finding consensus positions for
active compounds in descriptor spaces of increasing
dimensionality. During dimension extension, the num-
ber of database compounds that closely map to active
templates decreases and only similar compounds are
retained. Simplified reference spaces are generated by

binary descriptor transformation.11 This process con-
verts descriptors with continuous value ranges into a
binary format based on the statistical medians of their
value distributions in the screening database. Each test
compound is assigned a “1” for a descriptor if its value
is larger or equal to the median or a “0” if it is smaller.
This binary model makes it possible to generate de-
scriptor bit strings for mapping of compounds. A con-
sensus position is defined by a descriptor vector in
chemical space composed of those bit settings that are
identical for all template compounds. Dimension exten-
sion is achieved by establishing consensus positions that
no longer require identical descriptor settings for all
templates. As reported herein, dimension extension
levels 1, 2, and 3 allow 10%, 20%, and 30% variability
in descriptor bits settings, respectively. For example, if
10 template compounds are available, a descriptor is
accepted at dimension extension level 1, if 9 of 10
compounds have the same binary setting (either 0 or
1). This process increases the number of descriptors in
consensus bit strings and hence the resolution of the
reference space. Ultimately, molecules that map to
activity class-specific positions after elimination of most
of the database compounds are considered potential hits.
In benchmark calculations on several drug classes, DMC
was found to produce significant rates of up to 74%.11

As illustrated in Figure 1a, the principal idea behind
POT-DMC is the generation of consensus positions that
assign increasing weight to high-potency templates and
are more likely to be matched by most potent database
hits. Importantly, however, contributions from less
potent templates are also considered, which ensures
that structural information of the entire template set
is taken into account during LBVS. Compound potency
is added as a search parameter through a scaling
technique. Thus, once descriptor bit strings are deter-
mined for each template (Figure 1b), they are scaled
according to template potency, as shown in Figure 1c.
For this purpose, logarithmic scaling factors (SFs) are
calculated (so that SF for the weakest potency is 1). The
use of logarithmic SFs ensures linear scaling over the
entire potency range and avoids that the calculations
are completely dominated by the most potent com-
pounds. Scaled bit values are summed and normalized
to obtain potency-scaled descriptor frequencies (Figure
1d) that are then used to calculate consensus positions.
The initial consensus position (level 0) is not affected
by scaling, which becomes effective during dimension
extension when POT-DMC produces consensus positions
that are increasingly influenced by contributions from
the most potent templates (and thus differ from DMC
consensus positions).

The POT-DMC method has been tested and com-
pared to standard DMC on three different compound
classes including CCR5 chemokine receptor antagonists
(CCR5),12 serotonin receptor agonists (5-HT3),13 and
gonadotropin releasing hormone agonists (GnRH; as-
sembled in-house from the patent literature). Each of
these classes contains structurally diverse compound
series covering a wide potency range. Each class was
randomly divided into two similarly sized sets spanning
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the entire potency range, and each of these sets was
used once as the templates and potential hits (for both
DMC and POT-DMC) in order to reduce the probability
of chance effects. Potential hits were added to a large
compound collection from various medicinal chemistry
vendors containing 1.34 million molecules.14 As the
descriptor pool, a set of ∼100 previously reported 1D,
2D, and implicit 3D molecular descriptors14 was used
and binary-transformed based on their database medi-
ans. Results of our virtual screening calculations are
reported in Table 1.

In both DMC and POT-DMC calculations, the number
of database compounds that copartitioned with correctly
identified hits decreased sharply during dimension
extension to produce satisfactory to significant hit rates
(e.g., 80-100% for CCR5) beginning at extension levels
2 (CCR5) or 3 (GnRH, 5-HT3). During dimension
extension, the number of descriptors defining consensus
positions was similar for DMC and POT-DMC for each
class but varied between classes. While DMC and POT-
DMC hit rates were overall also similar, the potency
distribution of correctly identified hits revealed some

Figure 1. POT-DMC. The figure summarizes the POT-DMC approach, as described in the text. I(a) The blue and red circles
outline compound selections based on DMC and POT-DMC calculations, respectively. (b) Bit strings for 30 binary-transformed
descriptors (set to 0 or 1) and four test molecules (each in a different color). (c) The potency scaling approach is illustrated for
these four templates with hypothetical potency. IC50min refers to the compound having lowest potency. (d) The bit frequency
profile for the template set (color-coded by compound) and the initial consensus bit string (black/red, ) 1.0 or ) 0.0, i.e., permitting
no bit variability) and the consensus bit string for the second dimension extension level (g0.8 or e0.2, 20% bit variability allowed
for descriptors set to either 1 or 0).
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significant differences. POT-DMC showed a clear trend
to increase the average potency of identified hits during
dimension extension. Across activity classes and exten-
sion levels, average hit potency was consistently higher
for POT-DMC than DMC, sometimes by up to an order
of magnitude (which is significant for an average). The
graphical analysis of potency distributions in Table 1
confirmed that POT-DMC recognized more potent hits
than DMC and did not detect weak ones.

On the basis of these findings, we conclude that
relative compound potency has been successfully inte-
grated as a search criterion into an LBVS method to
identify potent hits. A key aspect of the POT-DMC
approach presented herein is the generation of activity
class- and potency-dependent consensus positions in
descriptor space for mapping of active compounds. The
logarithmic scaling technique designed to incorporate
relative compound potency as a search parameter
should also be applicable to other partitioning and LBVS
schemes.
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Table 1. Virtual Screening Trialsa

a #hits reports the number of hits that mapped to template consensus positions and were thus correctly identified, and #dbc the number
of other detected database compounds (considered false-positives). 〈Pot〉 gives the average potency of correctly identified hits that was
calculated as a statistical measure of the potency distribution of distinct hit populations identified in the presence and absence of scaling.
For each class, the average of two virtual screening trials is reported, and the potency distribution is graphically presented for the POT-
DMC run yielding highest average potency at extension level 2. Hit rates were calculated when the total number of detected compounds
was smaller than 100 (which would represent a reasonably sized selection set for many LBVS applications).
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