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Abstract: Evaluation of the ALOGPS, ACD Labs LogD, and
PALLAS PrologD suites to calculate the log D distribution
coefficient resulted in high root-mean-squared error (RMSE)
of 1.0-1.5 log for two in-house Pfizer’s log D data sets of 17 861
and 640 compounds. Inaccuracy in log P prediction was the
limiting factor for the overall log D estimation by these algo-
rithms. The self-learning feature of the ALOGPS (LIBRARY
mode) remarkably improved the accuracy in log D prediction,
and an rmse of 0.64-0.65 was calculated for both data sets.

Oral bioavailability of chemicals is a very important
pharmacokinetic parameter in drug development. To
reach the target enzyme in the human body, drugs have
to cross barriers by passive diffusion or carrier-mediated
uptake. The 1-octanol-water partition coefficient, log P,
is well-known as one of the principal parameters to
estimate lipophilicity (or solubility in lipids) of chemical
compounds and, to a large degree, determines their
pharmacokinetic properties. The log P is also used as
one of the standard properties identified by Lipinski in
the “rule of 5” for druglike molecules.1 By definition
log P refers to neutral molecules. If a molecule contains
basic or acidic groups, it becomes ionized and its
distribution in octanol-water becomes pH-dependent.
The pH-dependent distribution coefficient, log D, was
shown to correlate with a number of biological param-
eters, such as the effective permeability in human
jejunum,2 blood-brain barrier (BBB) permeability,3
plasma protein binding,4 CYP 450 oxidation,5 and
volume of distribution (VD).6,7 Oral drugs, to be able to
be absorbed by passive diffusion through the gut wall,
should have their lipophilicity within a given range
(usually between 1 and 4 on the log D scale).

Both coefficients log P and log D are very important
parameters in drug development,8 and thus, there is a
need to develop new methods to accurately calculate
them from chemical structures. Currently, the amount
of publicly available experimental log P data comprises
tens of thousands of compounds.9 These resources
stimulated development of a number of programs to
calculate it.10-15 The problem of predicting log D is more
complicated. As a rule, it is computed from log P and

pKa assuming that only the neutral form partitions into
the organic phase as12,16

where ∆i ) {1, -1} for acids and bases, respectively.
If several groups can be ionized, the equation is

modified accordingly to incorporate correction terms for
all of them. Thus, the log D prediction potentially
accumulates errors due to the log P and pKa predictions.
Development of computational approaches is further
complicated because of the absence of publicly available
large data sets with experimental log D values. As a
result, only a few programs are available to estimate
the log D.12 A recent evaluation of two commercial
programs calculated a root-mean-squared error (rmse)
of 1.4-1.9 log units for a data set of about 20 000
compounds17 that is not accurate for practical usage.
Therefore, large pharmaceutical companies such as
Pfizer and AstraZeneca have established their own
techniques to experimentally determine log D for their
proprietary compounds.

The ALOGPS program18-20 (http://www.vcclab.org)
was developed using the associative neural network
(ASNN) method.21,22 The ASNN provides a possibility
to include new data into the memory of neural nets
without retraining the neural networks themselves in
the so-called LIBRARY mode (further LIBRARY).19 The
LIBRARY dramatically improved prediction of the
ALOGPS program for the log P prediction using in-
house data sets from BASF,21 Pfizer,23 and Astra-
Zeneca.24,25 The current study demonstrates that
the ALOGPS is also able to reliably predict the pH-
dependent distribution coefficient, log D.

The octanol-water partition data used in this study
was collected at two Pfizer sites and contributed to two
data sets. The first data set included 669 legacy Phar-
macia compounds with log D values measured by a
medium-throughput method using a nitrogen detector
(called the NlogD set). A typical experimental error in
log D measurements is about 0.3-0.5 log units. The
second data set (ElogD set) included 18 889 compounds
measured using the ElogD method.26,27 An inspection
of compounds indicated that both sets were not overlap-
ping. For compounds that had multiple measurements
average values were used. Also, because the ALOGPS
method does not take into account stereoselectivity,
average values were used for stereoisomers. After
removal of structural duplicates and stereoisomers, the
numbers of compounds decreased to 640 and 17 861 for
NlogD and ElogD data sets, respectively.

For comparison, ACD Labs LogD v.7.1928 and
PALLAS PrologD software29 was used to calculate
log D values at pH 7.4 for ElogD and NlogD data sets.
The stand-alone graphical-based interface versions of
ALOGPS and ASNN were used to perform analysis of
compounds using three protocols.

In the first protocol, the ALOGPS program was used
“as is” to calculate a blind prediction of molecules from
each data set.

In the second protocol, the self-learning feature
implemented as a “LIBRARY” mode of ALOGPS 2.1 was

* To whom correspondence should be addressed. Address: Institute
for Bioinformatics GSF, Forschungszentrum für Umwelt und Gesund-
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log D(pH) ) log P - log(1 + 10(pH-pKa)∆i) (1)
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used to train the program using 50% randomly chosen
compounds from each data set. The other 50% were used
for prediction. The input data set for the LIBRARY was
a flat file with a SMILES string per molecule per line.
Each SMILES was followed by the log D experimental
value. The program selected smoothing parameters for
the nearest neighbors from the LIBRARY and then
predicted log D for new compounds. It also estimated
statistical parameters (in the “leave-one-out”, or LOO,
mode) for the compounds used in the LIBRARY mode.
The calculation of the LIBRARY for the ElogD set and
prediction of all molecules required about 10 min on a
Pentium M 1.5 GHz IBM ThinkPad T40 computer.

In the third protocol, a file with 75 E-state indices30,31

used to train the ALOGPS program was generated for
the NlogD set. These indices were applied to train the
stand-alone version of ASNN and, thus, create new
models to predict log D. For this study exactly the same
ASNN parameters were utilized that were used to
develop the ALOGPS program: 5 hidden neurons,
sigmoid activation function, 64 neural networks per
ensemble, Levenberg-Marguardt training algorithm.19

We used 50% of the randomly chosen molecule to
develop the model. At the end of training the ASNN
performance was evaluated on 50% of the remaining
molecules.

In the “as is” mode the ALOGPS program showed
rmse of 1.17 and 1.33 for the ElogD and NlogD data
sets, respectively (Tables 1 and 2). Both sets were
difficult to predict using the PALLAS PrologD and ACD
Labs LogD programs, and they showed similar or even
lower performance. The poor performance of these
methods indicates difficulties arising from the prediction
of the in-house collection of compounds that contain
structural features not covered by molecules in the
training set. It is worth noting that the ALOGPS was
developed to predict the 1-octanol-water partition
coefficient, log P, for neutral compounds but still dem-

onstrated similar or superior performance even in the
blind prediction mode.

The use of LIBRARY mode dramatically improved
prediction ability of the ALOGPS and gave rmse of 0.65
and 0.64 for both sets according to the LOO cross-
validation test, respectively (Tables 1 and 2). Figure 1
indicates that the distribution of errors for the
LIBRARY mode does not contain any bias for particular
log D values over a range of 9 log units.

When only 50% of compounds were used the LI-
BRARY calculated a similar performance in the LOO
mode and for the blind prediction of the remaining 50%
of compounds that were not used in the LIBRARY.

Table 1. Prediction Performance of Programs for ElogD Data Set

% compds within rmse range

methods description na rmse MAE 0-0.3 0-0.5 0-1.0 0-2.0

ACD Labs LogD, pH 7.4 17 341 1.32 0.97 21 35 63 89
ACD Labs logP 17 848 1.38 1.08 19 30 55 85
Pallas PrologD, pH 7.4 17 800 1.41 1.06 19 31 58 87
Pallas PrologP 17 860 1.52 1.21 15 25 50 80
ALOGPS “as is” blind prediction 17 861 1.17 0.92 21 35 62 91
ALOGPS LOO for all compds used in the LIBRARY 17 861 0.64 0.43 50 70 91 98
ALOGPS LOO for 50% compds used in the LIBRARY 8 931 0.69 0.48 45 65 88 98
ALOGPS prediction of 50% remaining compds 8 930 0.69 0.48 46 66 88 98
a Different numbers of compounds in this column are due to failure in processing some chemical structures by ACD Labs LogD or

Pallas PrologD suites.

Table 2. Prediction Performance of Programs for NlogD Data Set

% compds within rmse range

methods description n rmse MAE 0-0.3 0-0.5 0-1.0 0-2.0

ACD Labs LogD, pH 7.4 576 0.99 0.69 27 48 79 95
ACD Labs logP 639 1.14 0.80 27 45 74 92
PALLAS PrologD, pH 7.4 640 1.52 1.29 8 15 41 84
PALLAS PrologP 640 1.46 1.20 10 19 46 86
ALOGPS “as is” blind prediction 640 1.33 1.09 15 22 50 89
ALOGPS LOO for all compds used in the LIBRARY 640 0.65 0.42 54 70 90 98
ALOGPS LOO for 50% compds used in the “random” LIBRARY 320 0.66 0.44 52 68 88 98
ALOGPS prediction of 50% remaining compds 320 0.68 0.45 52 73 89 98
ALOGPS blind prediction using ElogD set as the LIBRARY 640 1.58 1.29 14 23 43 77
ASNN LOO for 50% compds used to retrain neural networks 320 0.49 0.37 52 75 95 100
ASNN prediction of 50% test set compds 320 0.57 0.42 49 73 94 99

Figure 1. Calculated versus experimental ElogD values for
ALOGPS blind prediction (A), ALOGPS LIBRARY mode (B),
ACD Labs LogD (C) and Pallas PrologD (D) suites.
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Thus, the LOO results provide an unbiased estimation
of the program performance. The use of ElogD data set
as the LIBRARY decreased the performance of the
program for the NlogD set to rmse of 1.58. This result
can be explained by different chemical space covered by
compounds from NlogD and ElogD data sets.

The third analysis was done to determine if the
performance of the ALOGPS could be further improved
by developing a new model for the investigated set of
compounds. After the training, the neural network
showed better results for the 320 molecules in the test
set (Table 2). The rmse and mean average error (MAE)
decreased by about 15%. This change of the model
performance is significant but not dramatic for most
applications. Thus, retraining the ASNN using the same
set of descriptors following the original procedure did
not radically improve the prediction ability of the model.

On the basis of the performance of ALOGPS, PALLAS
PrologD, and ACD Labs LogD suites to blindly predict
analyzed data sets, the main factor determining the
program performances could be attributed to the poor
accuracy of log P prediction modules. Indeed, the ac-
curacy of log D modules of the same programs was only
about 10% better compared to their log P predictions
for the same compounds (Tables 1 and 2). These results
comprised neutral and ionizable compounds. Perfor-
mance of all three programs for the ElogD subset of
compounds that do not have ionizable groups (1920
compounds) gave rmse of 1.19, 1.10, and 0.98 for
PALLAS PrologD, ACD Labs LogD, and ALOGPS,
respectively. The performance of these programs for the
remaining set of compounds produced rmse of 1.43, 1.30,
and 1.19, respectively. Both subsets had approximately
the same number of heavy atoms, i.e., 29.8 for neutral
and 30.6 for ionizable compounds. Thus, there was no
bias in the size of molecules. If we assume that errors
in the prediction of log P and ∆(log P - log D) are
independent and equal in magnitude, we would expect
an increase of about 40% of rmse for the subset of
ionizable compounds compared to the subset of neutral
ones. The observed increase in errors of all three models
is less than 20%, and thus, the errors in prediction of
log P values dominate in the model performance.

This observation explains the high prediction ability
of the ALOGPS in the LIBRARY mode. In this mode
the ASNN identifies nearest neighbors in the chemical
space as shown in our previous publications.19,21,22 The
errors for identified nearest neighbors are used to
calculate correction term for target compounds, and
thus, this improves prediction power of the method.
Since log P but not log D data were used to develop the
ALOGPS method, the contribution of calculated indices
based on ionizable groups is probably underrepresented
and characteristic nearest neighbors are not always
found for ionizable compounds. This may decrease the
performance of the method. However, since accuracy of
log P models dominates in the total log D error, this
factor is not so important for the final accuracy of the
model.

The LIBRARY mode provides only local correction.
Thus, if the target compound does not have any similar
compounds in the LIBRARY, the accuracy of the predic-
tion may not be improved. This was the case for
prediction of the NlogD set using ElogD as LIBRARY.

Since both NlogD and ElogD sets contained different
compounds, there were no improvements in the predic-
tion of the NlogD set using the ElogD as LIBRARY.

The current need of the pharmaceutical industry is
not limited to log P or log D prediction. There is a great
need to accurately predict other physical properties such
as aqueous solubility and other ADME properties.
Known QSAR approaches have limitations to the pre-
diction of these properties for only chemical classes of
compounds used in the training set. These sets are
usually represented by publicly available databases or
published data sets and do not cover a wide range of
chemical space. Likewise, in this case, the PHYSPROP
database32 used to train the ALOGPS program is quite
different from the ElogD and NlogD data sets. Indeed,
the median molecular weight (MW) was 231, 424, and
493 Da for PHYSPROP, ElogD, and NlogD data sets,
respectively. The median values of the sum of H-bond
donors/acceptors were 4, 5, and 9 for the same three
sets. Thus, the molecules in the two test data sets were
quite different from those of the PHYSPROP set with
respect to these rule of 5 parameters.1 This difference
explains a general trend in medicinal chemistry to
synthesize more complex and larger molecules to achieve
higher affinity for lead compounds.33,34 The absence of
druglike molecules in the training set can bias developed
tools toward simple structures as it was argued else-
where.35 However, even the use of a well-balanced set
could hardly change this tendency. Indeed, the linear
increase of error as a function of the number of non-
hydrogen atoms was observed for log P 18 and aqueous
solubility36 programs. This tendency appeared to be
independent from the nature of the used algorithms
(linear or nonlinear) or types of calculated descriptors
(atom- or fragment-based or E-state indices). Thus, it
is practically impossible to develop the “magic bullet”,
i.e., a global model that would work for all imaginable
chemical classes. As a result, many local models are
being developed to predict these properties for propri-
etary series. The ALOGPS develops such models in a
completely automatic fashion. Usually, just a few ex-
perimental values are required to generate reliable
prediction for the whole series of compounds.19,25

Neural network based ALOGPS with its self-learning
feature of local correction combines the best properties
of both global and local models and in most cases
significantly improves the accuracy of prediction for in-
house compounds.19,21,22,24 Within this approach a sta-
tistical ensemble of neural networks is trained to
correlate input parameters with the target property.
The ASNN procedure globally maps input parameters
(calculated descriptors) to the target property, i.e., does
global land-shafting of the property space. The final
tuning of the performance of ASNN for compounds is
done in the LIBRARY mode. In this step the program
uses nearest-neighbors technique to determine local
corrections according to the specific features of the
analyzed chemical series or/and the property. Since only
one or two parameters are used in this step, the ASNN
does not overfit even small data sets. Thus, as it was
shown, a combination of global and local land-shafting
in the LIBRARY mode makes it possible to predict the
pH-dependent distribution coefficient, log D, although
the program was initially developed to predict the
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partition coefficient, log P, for only neutral compounds.
The final correction performs only local tuning of the
model and will not generalize to chemical series out-
side the LIBRARY, as was demonstrated above by the
poor prediction of the NlogD data set using ElogD as
LIBRARY.

To summarize, we tested several algorithms for
prediction of the log D distribution coefficient and
demonstrated that the neural network based ALOGPS
program gives similar or superior results compared to
the well-known PALLAS PrologD software and ACD
Labs LogD suite in the “as is” mode on two Pfizer
proprietary data sets. Performance of ALOGPS in the
LIBRARY mode significantly reduced rmse for log D
prediction to 0.64 and 0.65 (compared to 1.17 and 1.33
in the “as is” mode) for data sets of 17 341 and 640
compounds, respectively. It was shown that the inac-
curacy of log P predictions was the limiting factor in the
performance for all three algorithms. ALOGPS is very
fast, works in a completely automated fashion, and does
not require any user intervention or extended knowl-
edge in computational chemistry. It can be used to
create local models with high prediction abilities for the
in-house data sets. QSAR approaches such as ALOGPS
that can improve prediction ability by self-learning on
the user-specific data may find significant applications
in the pharmaceutical industry in the near future.
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