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Inhibitors of the enzyme farnesyltransferase show potential as novel anticancer agents. There
are many known inhibitors, but efforts to build predictive SAR models have been hampered
by the structural diversity and flexibility of inhibitors. We have undertaken for the first time
a QSAR study of the potency and selectivity of a large, diverse data set of farnesyltransferase
inhibitors. We used novel molecular descriptors based on binned atomic properties and
invariants of molecular matrices and a robust, nonlinear QSAR mapping paradigm, the
Bayesian regularized neural network. We have built robust QSAR models of farnesyltransferase
inhibition, geranylgeranyltransferase inhibition, and in vivo data. We have derived a novel
selectivity index that allows us to model potency and selectivity simultaneously and have built
robust QSAR models using this index that have the potential to discover new potent and
selective inhibitors.

Introduction

Farnesyl protein transferase (FT) is a heterodimeric
zinc-catalyzed enzyme involved in the modulation of
runaway cell replication in cancerous tumors.1-5 FT is
a member of the small family of protein prenylation
enzymes that attach 15- or 20-carbon lipophilic chains
to a number of cytosolic proteins.1,4,6 This modification
allows the prenylated protein to anchor to the inside
surface of the cell membrane and usually results in the
activation of a farnesylated protein so modified.1,3,5,7

Because of this, it was thought that direct inhibition
of FT could be used to modulate the activity of mutated
Ras proteins and thus attenuate runaway cell replica-
tion in cancerous tumors.1,3-4,6 While inhibition of FT
definitely shows promising results,4,5 it is becoming
apparent that this downstream effect may not be due
entirely to the reduced numbers of farnesylated Ras
oncoproteins but also possibly due to the reduced
activity of other proteins that require farnesylation.1,3,4,6,7

While the exact mechanism of action against the disease
state remains unclear, FT inhibition does provide a
promising avenue for antitumor therapeutic agents with
fewer cytotoxic side effects than conventional chemo-
therapy.1,3

Three FTase inhibitors (FTIs) are currently in clinical
trials with a fourth having been withdrawn for toxicity
reasons.4 The peptidomimetic substrate analogue L-778,-
123 is active in the sub-2.0 nM range with a 49-fold
specificity for FT over another important protein pre-
nylation enzyme, geranylgeranyltransferase (GGT).4,8

The compound was withdrawn from clinical trials

because of unexpected cardiac effects.4 The non-thiol-
containing, benzodiazepine-like compound BMS-214662
was originally identified by screening assays.8 It is
active in the 1-10 nM range with a 1000-fold specificity
for FT over GGT.4,8 It displays good oral bioavailability
and pharmacokinetic properties but during trials ex-
hibited gastrointestinal toxicity, and the delivery method
was changed to infusion only.4 Initially identified as an
antifungal compound,4 R115777 is another FT inhibitor
identified by screening.9 It is a nonpeptidomimetic
substituted quinolone that is active in 75% of cell lines
investigated4 and inhibits farnesylation of K-ras at 7.9
nM.8 It is rapidly absorbed8 and is well tolerated at
pharmacologically relevant serum concentrations with
some toxic effects observed.4 The fused tricycle motif of
the non-thiol-containing inhibitor SCH66336 inhibits in
the range of 1-6 nM concentrations.4 It has been shown
to be active on a wide range of human tumor xenografts
with favorable pharmacokinetics and absorption in
animal models.4 In clinical trials it shows inhibition at
clinically relevant doses but suffers from some gas-
trointestinal effects.4

In terms of molecular modeling of FTIs, there is
relatively little published in the area of predictive
modeling and even less in the area of quantitative
structure-activity relationship (QSAR). Most modeling
studies are centered around corroborative modeling
studies rather than predictive. While many studies
imply that the results could have predicted the outcome
of the synthetic efforts, they are never couched in
explicit terms and thus can only be read as corroborative
or supportive modeling.

The corroborative modeling studies on FTIs cover a
wide range of techniques. Several previous studies have
utilized X-ray analysis to elucidate structural aspects
of the enzyme,10-12 the inhibitors,13-18 or both.19,20 One
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study uses the enzyme structure of FT to illustrate an
unusual catalytic mechanism,21 while others identify
residues and conformations important for substrate
binding and catalysis.22,23 Some of the simplest cor-
roborative studies are those where the structure of a
synthetic product is superimposed over that of a ligand
cocrystallized with FT or an NMR ligand structure to
illustrate a putative binding mode or active conforma-
tion.24-27 More advanced and in-depth corroborative
studies have mostly employed docking as a tool to
provide insight into successful synthetic directions or
to probe the receptor structure, along with other
techniques.28-36

Several researchers have reported relatively narrow-
focus predictive modeling studies of FTIs, usually
centered on a pharmacophore hypothesis directing
synthetic efforts.37,38 Of slightly more significance are
two more in-depth predictive modeling studies, one of
which combines both predictive and corroborative dock-
ing,39 the other of which uses predictive docking and
reports inhibitors active in the 100 nM range.40 There
are a small number of modeling studies on FT that
attempt limited predictive activity modeling. Of these,
one in particular does not come under the heading of
QSAR but does provide an extremely comprehensive
and very well presented SAR model for a large conge-
neric series of fused tricycle inhibitors.41 Another study
utilizes a fusion of pharmacophore with QSAR studies,
again derived from congeneric tricyclic inhibitors, to
perform virtual screening on a database of compounds
and rank them on the basis of predicted activity.42 The
predictive model used fitting to a pharmacophore as the
descriptor for the SAR and proved to be quite adequate
with the authors reporting that some compounds identi-
fied by this virtual screening method were active at 200
nM.42 A second virtual screening study used predictive
docking studies to estimate pseudo binding affinities as
a score for selecting candidates from the Available
Chemicals Directory for testing.43 The study reported
that of those selected for screening, active hits were
found with IC50 of 25 µM, but while the correlation
between activity and estimated binding affinity seemed
weak, screening of randomly selected compounds showed
that the methods utilized were providing enrichment.43

Of more significance is an in depth study, using
various modeling techniques as well as X-ray crystal-
lography and wet chemistry, of the binding modes of
congeneric tricyclic FTIs.44 Possibly the most interesting
result in the study, however, was the observation that
for a small series of compounds the experimentally
determined ∆H° of binding scaled linearly with the
nonpolar surface area of the molecule that could be
determined as “buried” in the X-ray crystal structures.
This was quantified at 1 kcal/mol of ∆H°bind for every
20 Å2 of buried nonpolar surface, which provides an
important insight into the role of lipophilicity in FT
inhibition.44 When considering the chemical nature of
the farnesyl moiety itself, it would appear in hindsight
that this lipophilic importance is obvious; however, it
is interesting to see it displayed so graphically in an
inhibitor series and as such could be cause for thought
when choosing descriptors for QSAR.

Only a few papers have reported broad-range QSAR
studies on FTIs. One group used a system of multiple

techniques coupled with handpicked thermodynamic,
physical, and topological descriptors to build a discrimi-
natory model that could separate actives from inac-
tives.45 However, the compounds used for training were
highly analogous, with activity apparently hinging on
a few key structural features.45 Another group used a
diverse training set of anticancer compounds to compute
a fragment-based QSAR model that could be subse-
quently employed to compute the probability of a
particular compound being active against cancer.46 The
model was tested against a set of known FTIs and
performed well, identifying the vast majority of them
as inhibitors. The model was further tested by screening
hypothetical inhibitors, which were subsequently syn-
thesized and bioassayed.

There are a few examples of 2D and 3D QSAR
analyses on FTIs,47-49 and these are restricted to small
data sets of congeneric series of analogues. Many of the
3D QSAR techniques, such as GRID,50 CoMFA,51 and
CoMSIA52 require molecules to be aligned prior to
analysis. When considering the structural diversity of
FTIs, it becomes obvious that performing such align-
ments would become problematic in this context; the
structures are so diverse that deriving consistent align-
ment rules would be extremely difficult. It would even
become a possibility that the alignment rules them-
selves could become the discriminating descriptor in the
QSAR rather than those intended.

Traditional 2D QSAR methodologies do not need the
alignment protocols that most 3D techniques require
and usually benefit from an abundance of active com-
pound data. However, with large data sets a dearth of
structural diversity can lead to situations where models
become harder to produce, less predictive, and less
robust. This is usually caused by nonlinearity in the
data response and descriptors with low information
content. Adding more descriptors will sometimes allevi-
ate this problem but will surely lead to an increased
probability of chance correlation between the descriptors
and the activity data53,54 Meanwhile, in areas such as
FTIs, these problems are typically circumvented by
avoiding QSAR studies on anything but series of mo-
lecular analogues. In this manner, only specialized
descriptors are required to express the QSAR of the
structurally similar series, leading to smaller numbers
of descriptors that have a focused applicability to the
problem at hand. This in turn leads to a lack of broad-
based QSAR studies and focuses effort on compound
series optimization while ignoring novel discovery
through models that are not optimized for any particular
molecular scaffold.

In this context, the aim of this paper is to show that
by use of robust data-fitting methods and simple but
information-rich descriptors it is possible to derive
reliable broad QSAR models from sets of highly diverse
molecules. This is accomplished by using a previously
described Bayesian regularized artificial neural network
(BRANN)55 to generate a QSAR model on a large FTI
data set, with subsequent comparison of this model to
other models created using more traditional regression
techniques.

Materials and Methods
The data sets contained a diverse range of chemotypes:

peptides, peptidomimetics, benzophenones, naphthalenes, mac-
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rocycles, chalcones, various mono-, di-, and tricyclic hetero-
cycles, acrylamides, steroids, benzamides, benzodiazepines,
and cinnamic acids.

Farnesyltransferase Inhibitor (FTI) Data Set. This set
of 1687 compounds was compiled from available literature
studies of FTIs.1,4,13-17,20,25-46,56-93 Of those, only 1412 molecules
were deemed fit for the analysis, with 275 being disqualified
for a lack of, or uncertainty in, inhibition data versus the
human isoform of the enzyme. The remaining molecules were
split into two groups: a training set and a test set, with the
test set comprising 20% (283) and the training set comprising
80% (1129) of the compounds. Test set compounds were
selected on the basis of representative sampling of k-means
clustering in descriptor space. This involved choosing one
compound from each of 283 clusters for the test set, with the
remainder forming the training set.

Geranylgeranyltransferase Inhibitor (GGTI) Data Set.
This set of 446 compounds was compiled from available
literature studies of FTIs.1,4,13-17,20,25-46,56-93 These molecules
were deemed fit for the analysis, having reliable inhibition
data versus the human isoform of the enzyme. The molecules
were split into two groups: a training set and a test set, with
the test set comprising 20% (89) and the training set compris-
ing 80% (357) of the compounds. Test set compounds were
selected on the basis of representative sampling of k-means
clustering in descriptor space.

Tumor Cell Cytotoxicity (In Vivo) Data Set. This set
of compounds was compiled from available literature studies
of FTIs.1,4,13-17,20,25-46,56-93 The available in vivo data were
whole-cell assays reported as the concentration required to
inhibit either COS or NIH3T3 tumor cell-line proliferation by
50%. The number of molecules with in vivo data available was
232 for the NIH3T3 and 132 for the COS cell lines. Again,
both of these data sets were partitioned into a training set
consisting of 80% of the data set and into a test set comprising
the remaining 20%. Both of these tumor lines are sensitive to
FTIs.

Selectivity Index. Many papers have attempted to quan-
tify the selectivity of bioactive compounds by computing the
ratio of biological activity in one assay system to that in
another. This is commonly done by the ratio of off-target Ki to
target Ki. It can equally be computed as the ratio of toxic
concentration to effective concentration (a therapeutic index)
or as a similar ratio expressed for other free-energy-related
biological endpoints such as the IC50 values used in this study.
A significant problem with expressing selectivity this way is
that it does not account for potency. Clearly the most desirable

outcome in drug research is to find compounds that simulta-
neously have high selectivity and high potency. A simple ratio
of Ki or similar values does not discriminate between com-
pounds that are, for example, 100-fold selective with potency
of 1 mM or 1 nM. We have developed a simple expression that
combines potency and selectivity, allowing both to be modeled
and optimized simultaneously.

We define the optimal selectivity, So, by multiplying the
simple selectivity defined above by a factor that weights the
selectivity to favor selective and potent compounds. In the case
of selectivity for FT over GGT in this work,

The log of So is used to build QSAR models, where

or in terms of IC50 values,

The efficacy of this type of optimum selectivity index is
illustrated in Figure 1, which shows the FT activity versus
GGT activity, with compounds color-coded for optimum selec-
tivity index. Clearly the highly potent, highly selective com-
pounds are tightly clustered and are well represented by the
So index. We used the FTI and GGTI data sets described above
to form the optimum selectivity index and divided this data
set into a training set (80%) and test set (20%), as with
previous data sets.

Molecular Descriptors. QSAR studies may be divided into
two types, depending on the purpose of the study. Interpretive
studies generally aim to understand how the descriptors found
to be important in a model relate to the interactions between
the ligand and target. These studies often use a relatively
small number of compounds whose biological properties have
been carefully measured and molecular descriptors that can
be easily related to structural characteristics. Predictive QSAR
studies attempt to find QSAR models with the best predictive
ability, usually using large, diverse data sets, sometimes less
precise biological data, and computationally efficient descrip-
tors. The study presented here is of the latter type: predictive
modeling. Consequently, we employ molecular descriptors
chosen for their computational efficiency and information-rich

Figure 1. Plot of pKi(FT) vs pKi(GGT). The points are color-coded for the optimal selectivity index So.
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character. The descriptors selected were the atomistic (A),94

Burden (B),95 and charge fingerprint (C) indices.96 The A
indices are simple counts of each type of atom in the molecule
(which has been shown to correlate with lipophilicity and
molecular refractivity),94 and the B indices are widely known
descriptors derived from the eigenvalues of modified adjacency
matrices obtained from the connection table of the molecule.
The charge fingerprint indices (C) are tallies of the number of
atoms within a molecule, for which the calculated Gasteiger-
Marsili charges97 are binned into specified ranges. Essentially
atom charges for each elemental type are binned into one of
three bins. The 3N bins (where N is the number of elemental
atom types in the data set) are used as “fingerprint” descrip-
tors. These encode electronic properties of the molecules in the
data set and indirectly hydrophobic/hydrophilic properties. A
more complete description of this method will be published
shortly.96

Regression Techniques. The linear regression techniques
used for this study were multiple linear regression (MLR),
partial least squares (PLS), and principal components regres-
sion (PCR). Additionally, a previously published Bayesian
regularized artificial neural network (BRANN)55 was used to
generate nonlinear QSAR models of the data. The architecture
of the neural network used in this study comprised one hidden
layer of three neurodes. We also carried out modeling with
four neurodes to ensure that three are sufficient. The regres-
sion techniques were employed to correlate the molecular
descriptors against the available in vitro -log IC50 (pI50) data
for the human isoform of FT, GGT, and the optimum selectivity
index So. They were also used to build QSAR models of COS
and of NIH3T3 cell in vivo toxicity.

Software. Descriptor and regression calculations were
carried out using a purpose-developed software package called
MolSAR, written in the Python programming language
(www.python.org). MolSAR can rapidly calculate a range of
molecular descriptors and perform several types of linear and
nonlinear regression.

Results and Discussion
The use of conventional linear regression methods

combined with a selection of simple but information-
dense molecular descriptors yielded QSAR models for
FTIs, GGTIs, selectivity, and in vivo activities of rea-
sonable quality (Table 1). However, the Bayesian neural
network produced clearly superior models, as the fol-
lowing analyses show.

FT Inhibition. For the training set compounds the
linear models all produced a standard error of estima-
tion (SEE) of 13.7-13.9% and R2 in the range 0.73-
0.74. The test set compounds gave a standard error of
prediction (SEP) of 14.7-14.9% with Q2 ranging from
0.70 to 0.72. These models can all be considered to be
of similar quality and of good predictive ability. This is
to be expected because they are all fundamentally
similar linear regression methods.

The models created using the Bayesian neural net-
work exhibit distinctly higher statistical quality (Table
1 and Figure 2). By use of the BRANN, the training set
SEE is reduced to 10% with an R2 of almost 0.86. The
test set SEP is also substantially better at 12.6% with

a Q2 of 0.76. These improved statistics are reflected in
the measured versus predicted plots for the QSAR model
derived by the neural network (Figure 2), which gener-
ally shows a much tighter distribution of points than
those for the linear models.

The improved models generated by the nonlinear
neural network methods imply that the structure-
activity relationship of the FTI data set has a nonlinear
component. If such model-free nonlinear methods are
employed to build a model, our work shows that complex
and structurally diverse data sets can be well described
by very simple molecular descriptors. The simple de-
scriptors used in this study contain sufficient relevant
information for even the linear regression methods to
produce good models.

Comparison of our work with previous modeling
studies of FTIs is difficult because there have been no
broad-based QSAR studies performed. Published work
tended to describe qualitative studies and hybrid SAR
methods for virtual screening. Kaminski et al.42 pro-
duced a QSAR model where the sole descriptor was a
molecular fit to a pharmacophore hypothesis. This
resulted in a model geared toward the discovery of
compounds that would fit that hypothesis, and while it
did indeed show some enrichment, there was no com-
parison of how well the predicted activities translated
into experimental activities. The form of the model and
descriptors, coupled to a lack of validation statistics,
makes it impossible to perform a comparison. Similarly
with Giraud et al.45 and Estrada et al.,46 the techniques
and descriptors make a comparison difficult. The Giraud
et al.45 model is created on a highly congeneric series
of molecules where one or two key structural differences
correlate to activity and inactivity with descriptors that
were not well described. Their PLS models reported a
Q2 in the range 0.56-0.59, which is significantly smaller
than the linear and nonlinear regression models derived
from a much larger, diverse data set in our study.
Estrada et al.46 used their TOSS-MODE technique98 to
create a model that uses substructural fragments to
calculate a probability of anticancer activity. Again, a
direct comparison of the models or statistics is very
difficult because the TOSS-MODE model is qualitative
rather than quantitative. Three QSAR studies reported
to date have involved small data sets and limited
molecular diversity. Wan, Yi, and Guo carried out a
CoMFA study47 on 69 1-(8-chloro-6,11-dihydro-5H-benzo-
[5,6]cyclohepta[1,2-]pyridin-11-yl)piperazines. They ob-
tained models with a cross-validated Q2 of 0.581,
training set R2 of 0.968, and an SEE of 0.148. The

Table 1. Quality of Models Derived from Farnesyltransferase
Data Set Using Various Regression Methods

method SEE R2 SEP Q2

MLR 0.137 0.743 0.149 0.700
PCRa 0.139 0.732 0.147 0.715
PLSb 0.139 0.736 0.147 0.710
BRANNc 0.100 0.860 0.126 0.76
a Using 34 principal components. b Using 11 components. c Us-

ing one three-neurode hidden layer.

Figure 2. Bayesian regularized artificial neural network
regression of FTI data set using one hidden layer with three
neurodes. Data are scaled from 0 to 1.
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activities of 10 inhibitors predicted using this 3D QSAR
model were in good agreement with the experimental
activities. In an earlier paper,48 these authors reported
a CoMFA study of 32 2,3,4,5-tetrahydro-1-(1H-imidazol-
4-ylmethyl)-4-(2-biphenylylcarbonyl)-1H-1,4-benzodiaz-
epine FTIs. The resulting model had a cross-validated
Q2 of 0.602, training R2 of 0.958, and an SEE of 0.270.
Sung and co-workers49 reported a classical QSAR and
Free-Wilson study of a small series of substituted
heterocyclic chalcone derivatives. Their data set did not
show a valid model, and they reported that the unsub-
stituted chalcone had the greatest FTI activity. Again,
all three of these 2D and 3D QSAR studies had cross-
validated statistics inferior to those reported here for
test sets, despite the data sets being much smaller and
much less diverse.

While the primary purpose of this study is to develop
predictive QSAR models for virtual screening, it is
possible to do some limited interpretation of the de-
scriptors most relevant to the model. Among the most
relevant descriptors were the numbers of sp2-hybridized
oxygens, sp2-hybridized sulfurs, sulfate sulfur atoms,
the numbers of five- and six-membered rings, 6 out of
the 10 Burden indices, the occupancy of medium and
high nitrogen charge bins, low and high oxygen charge
bins, and the occupancy of low-charge sulfur atoms.
Many of these descriptors come as no surprise. The
Burden indices are topological and describe the molec-
ular graph; many of the atomistic descriptors are of a
type that describes either potential molecular hydrogen
bond interactions (sp2-hybridized oxygens) or charge
interactions (e.g., sulfate atoms or charges). The models
also show a dependence on hydrogen and carbon binned
charge descriptors, which may reflect the importance
of subtle hydrophobic effects in the binding site. The
sulfate sulfur atom count and high charge bin phospho-
rus count may be consistent with those molecules
mimicking the diphosphate group of the farnesyldiphos-
phate cofactor, while the sp2-hybridized sulfur count and
low-charge sulfur count could be indicative of com-
pounds possessing moieties that bind to the catalytic
zinc ion.

The increase in R2 and Q2 of the BRANN models when
compared to the linear models highlights the capacity
for such technologies to provide better data-modeling
capabilities for QSAR. This appears particularly true
for systems such as farnesyltransferase where a large
number of active compounds are available with a high
degree of structural diversity.

GGT Inhibition. The statistical quality of the models
produced with the GGTI data is shown in Table 2 and
Figure 3. Limited analysis of this data set using linear
methods compared with BRANNs showed a trend
similar to that observed in the FTI data set. It is clear
that the BRANN model has high statistical significance

and has a very good predictive capability, as the
statistics for the test set illustrate. The model had a
training set SEP of 9.3% and R2 of 0.893, explaining
almost 90% of the variance in the training set data. The
test set was well predicted with an SEE of 13.8% and
Q2 of 0.778.

In Vivo Models. The results of modeling the in vivo
data for the COS and NIH3T3 tumor cell-line prolifera-
tion whole-cell assays are reported in Table 2 and Figure
4 (COS cells) and Figure 5 (NIH3T3 cells). It is clear
that the models are also highly significant. The COS
cell toxicity model had a training set SEE of 10.2% and
R2 of 0.928. The test set statistics were also very good
with SEP of 14.4% and Q2 of 0.828. The statistics for
the NIH cell toxicity model were similar except for
slightly lower values for the test set (SEP 13.2% and
Q2 of 0.706).

Selectivity Index. The optimal selectivity index
produced good models with the ABC descriptors as
Figure 6 and Tables 2 and 3 illustrate. The model had
excellent statistical significance, with a training set SEE
of 9.2% and R2 of almost 0.88. The test set was also very

Table 2. Quality of Models Derived Using Bayesian
Regularized Neural Networks with One Three-Neurode Hidden
Layer and ABC Descriptors

data set SEE R2 SEP Q2

FT 1412 0.100 0.860 0.126 0.760
GGT 446 0.093 0.893 0.138 0.778
COS cell 132 0.102 0.928 0.144 0.828
NIH3T3 cell 232 0.086 0.912 0.132 0.706
So 446 0.092 0.878 0.126 0.768

Figure 3. Bayesian regularized artificial neural network
regression of GGTI data set using one hidden layer with three
neurodes. Data are scaled from 0 to 1.

Figure 4. Bayesian regularized artificial neural network
regression of COS cell in vivo data set using one hidden layer
with three neurodes. Data are scaled from 0 to 1.

Figure 5. Bayesian regularized artificial neural network
regression of NIH3T3 cell in vivo data set using one hidden
layer with three neurodes. Data are scaled from 0 to 1.
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well predicted with SEP of 12.6% and Q2 approaching
0.77. This clearly provides us with an excellent model
for searching for potent and selective compounds in
databases or virtual libraries.

Conclusions

This work represents the first QSAR modeling study
of farnesyltransferase and geranylgeranyltransferase
inhibitors on such a large, diverse data set. The tradi-
tional linear regression methods created statistically

significant models, while the nonlinear methods created
models with substantially higher significance. As with
the models from previous studies, this work has gener-
ated a system capable of rapid virtual screening of
compounds for FTI and anticancer activity. Unlike
previous studies this model is derived from a set of
known inhibitors that is structurally diverse and as a
result should provide more robust extrapolation in
chemistry space compared to models created on conge-
neric analogue series. In future development, this type
of model could be highly advantageous because discov-
ery efforts could take whole-cell activity into account, a
point where many lead candidates often fall short
because of poor cell-membrane partitioning.
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