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We present a novel receptor-modeling approach (software Raptor) based on multidimensional
quantitative structure-activity relationships (QSARs). To accurately predict relative free
energies of ligand binding, it is of utmost importance to simulate induced fit. In Raptor, we
explicitly and anisotropically allow for this phenomenon by a dual-shell representation of the
receptor surrogate. In our concept, induced fit is not limited to steric aspects but includes the
variation of the physicochemical fields along with it. The underlying scoring function for
evaluating ligand-receptor interactions includes directional terms for hydrogen bonding and
hydrophobicity and thereby treats solvation effects implicitly. This makes the approach
independent from a partial-charge model and, as a consequence, allows one to smoothly model
ligand molecules binding to the receptor with different net charges. We have applied the new
concept toward the estimation of ligand-binding energies associated with the chemokine
receptor-3 (50 ligands: r2 ) 0.965; p2 ) 0.932), the bradykinin B2 receptor (52 ligands: r2 )
0.949; p2 ) 0.859), and the estrogen receptor (116 ligands: r2 ) 0.908; p2 ) 0.907), respectively.

Introduction
In the last two decades, a large body of computer-

aided drug design (CADD) concepts have been devised
and matured into powerful tools for drug-design pur-
poses. On the basis of the three-dimensional structure
of macromolecular drug targets, structure-based design
has become a widespread tool to identify and optimize
drug candidates. To assess the pharmacological suit-
ability of a given compound in silico, a reliable prediction
of relative free energies of binding, e.g. by using free
energy perturbation calculations,1 is mandatory. Un-
fortunately, the associated computational procedures
are computationally very demanding and often limited
to the comparison of affinities of structurally similar
compounds. Although the Protein Data Bank2 nowadays
comprises 25000 protein structures (3000-4000 thereof
may be considered unique), for the majority of systems
of biomedical interest, the three-dimensional structure
of the associated bioregulator is not available to atom-
istic resolution, implying that structure-based design
cannot be applied here.

Quantitative structure-activity relationships (QSARs)
aim to identify a correlation between the binding affinity
and structural features for a series of ligand molecules
binding to a common target. Of particular interest for
the biomedical research are QSARs based on three-
dimensional models (3D-QSAR, e.g. CoMFA,3 CoMSIA,4
QSiAR,5 GRID/GOLPE,6 or Quasar7,8). They generate
a rational model of the binding site, and allow for the
quantification of the interactions between ligand mol-
ecules and protein at an atomistic level, by simulating
electrostatic forces, hydrogen bonds, or van der Waals
interactions.

In contrast to the true biological receptor, where the
binding site is defined by a 3D arrangement of amino
acids, most 3D-QSAR models typically represent this
binding site by mapping physicochemical properties onto
a surface or a grid surrounding the ligand molecules,
superimposed in 3D space (pharmacophore hypothesis).
As such a model interacts with all ligands simulta-
neously, it represents but an averaged surrogate; a
fundamental shortcoming as receptor-ligand adapta-
tion (the specific alteration of protein conformations
induced by the individual ligand) cannot be simulated.
This adaptation leads to different physicochemical fields
experienced by the individual ligands, a fact that cannot
be simulated with an averaged model. The Quasar
methodology7,8 is one of the few QSAR approaches which
account for ligand-triggered induced fit by specifically
allowing for a topological adaptation of the receptor
surrogate to the individual ligand molecules. At the true
biological receptor, however, this adaptation is not
controlled only by steric factors; instead it may be
governed by the simultaneous movement of amino acid
domains within the binding pocket. In addition, amino
acid residues bearing a conformationally flexible H-bond
donor or acceptor moiety (Ser, Thr, Tyr, Cys, His, Asn,
and Gln) may engage in differently oriented H-bonds
(flip-flop) with dissimilar ligand molecules, an effect that
cannot be simulated with an averaged receptor model.
As we shall discuss in the following, induced fit leads
to different physicochemical fields about each compound
once bound to the protein. As a consequence, we present
a dual-shell concept of an in-depth formulation of the
binding site, based on experimental observations and
explored by extensive MD simulations.

To quantify ligand-receptor interactions, we intro-
duce an empirical scoring function which is based on
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hydrophobicity and hydrogen bonding, including terms
for induced fit and entropic cost during ligand binding,
thus avoiding problems associated with opposing partial
charge models and salvation effects triggered by differ-
ently charged ligand molecules, e.g. neutral and for-
mally charged species binding to the same bioregulator.

Analysis of Protein-Ligand Structures. To dem-
onstrate that induced fit may result in individual
physicochemical fields for each ligand molecule, we have
analyzed protein structures for which different ligand
complexes have been determined by means of X-ray
crystallography. Figure 1 shows a superposition of
zanamivir9 and 2-dihydropyran-phenethyl-propyl-car-
boxamide10 (2-PPC) bound to the enzyme neuramini-
dase11 on the one hand and 17â-estradiol12 and Ralox-
ifene13 bound to the estrogen receptor14 on the other.
While zanamivir engages with one (and, possibly, two)
of its hydroxyl groups in hydrogen bonds with Glu 274,
2-PPCslacking appropriately positioned hydrogen-bond
donorssforces Glu 274 into a different conformation,
forming a salt bridge to Arg 222. This conformational
change results in a more lipophilic pocket to accom-
modate the propyl group of 2-PPC. In the complex of
17â-estradiol with the estrogen receptor, the ligand
forms hydrogen bonds via both hyroxyl groups with Glu
353/Arg 394 and His 524, respectively. The residual
aromatic/aliphatic portion is accommodated by the
extended hydrophobic pocket comprising Leu 346, Leu
384, Leu 387, Met 388, Phe 404, Ile 424, Phe 425 and
Leu 525. When complexed with raloxifene, the estrogen
receptor opens a small channel near the center of the
binding pocket14 by translocating Leu 540 approxi-
mately 10 Å. Within this channel the alkylaminoethoxy
side chain of raloxifene is accommodated. Additionally,
Asp 351 is rotated toward the protonated piperidyl N
atom (pKa ) 11.2) of raloxifene, forming a salt bridge.
Both examples support the fact that the binding site
experiences conformational changes induced by the
individual ligands. As a result, both hydrophobic field
and hydrogen-bond propensity spawned by the binding
site are altered.

As of today, no generally available receptor-modeling
tool would seem to allow for induced fit extending
beyond the topology of the protein binding site; instead
the generally available tools typically make use of a
fixed-feature mapping, thereby representing a mean
model.

Structures obtained by X-ray crystallography are
averaged over time and space and do not disclose
inherent fluctuations of the physicochemical properties,
including hydrophobicity and hydrogen-bonding pro-
pensity, although, in reality, a ligand experiences time-
dependent physicochemical fields. To assess the mag-
nitude of such fluctuating fields, we have modified a
concept previously developed by D. A. Pearlman15 which
uses a floating independent reference frame (FIRF).16

Therein, a grid is placed around each ligand molecule.
During the molecular-dynamics (MD) simulation, each
grid point moves coupled to the ligand atom closest17 to
it. This allows for the monitoring of both the mean value
and the fluctuation of the fields the ligand experiences
during the simulation. MD simulations (100 ps equili-
bration and 400 ps data collection each) were run for
27 different small-molecule estrogen receptor com-
plexes.18 For analyzing the various fields using FIRFs,
snapshots were taken every 2.5 ps. Figure 2a and Figure
2b show the hydrophobic fields of the amino acid
residues of the receptor (averaged over the MD simula-
tion) projected onto the topologically changing FIRF grid
around the compounds diethylstilbestrol (DES) and
bisphenol B (BPB). DES experiences hydrophilic fields
around the two phenolic moieties of the molecule, which
are hydrogen bonded to Glu 353 and Arg 394 on the
one side and to a His 524 on the other (Figure 2c). While
one phenolic oxygen atom of BPB is also hydrogen
bonded to Glu 353 and Arg 394, the other points into a
different octant of 3D space and hydrogen bonds to the
side chain hydroxyl group of Thr 40, which results in
an additional hydrophilic-field component (Figure 2d).
In contrast hereto, the ethene group of DES located at
this position would not seem to experience any hydro-
philic field at all.

Figure 1. Small-molecule protein structures with different ligands solved by means of X-ray crystallography: (a) superposition
of zanamivir (licorized) and 2-dihydropyran-phenethyl-propyl-carboxamide (ball-and-stick) bound to neuroaminidase; (b) superposi-
tion of 17â-estradiol (protein, black; ligand, licorized) and raloxifene (protein, orange; ligand, ball-and-stick) bound to human
estrogen receptor.
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Figure 2. Hydrophobic fields averaged over the MD simulation projected onto the FIRF grid coupled to the actual ligand topology
of (a) diethylstilbestrol (DES) and (b) bisphenol B (BPB). (c) Final structure of the MD simulations of ER (brown) with DES and
(d) with BPB (both ball-and-stick), with H-bonding groups of the binding pocket colored by atom. (e) Inner shell with bound DES
depicting the hydrophilic field (blue ) strong, green ) moderate) both hydroxyl groups experience and the hydrophobic field (red
) strong, yellow ) moderate) around the residual portion of the ligand molecule. (f) Outer shell with bound BPB modeling the
additional hydrophilic field the second hydroxyl group of BPB experiences. (g) The field projected from the dual-shell representation
to the grid points for DES and (h) for BPB, showing a qualitative agreement with the results from the MD simulations (a and b).
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Methods
Dual-Shell Representation. To allow for ligand-depend-

ent induced fit in receptor-modeling concepts based on QSAR,
we have devised the Raptor technology using a dual-shell
representation of the binding site. Within this representation,
the inlying layer maps the fields which a substance would feel
if it were to fit snugly into the binding pocket. Another
compound, which features additional groups that reach deeper
into the protein, may experience different fields as a conse-
quence of induced fit. In contrast to other approaches, in
Raptor the fields generated by the altered binding site can be
modeled by a second, outer layer. As the inner shell is
optimized using the most potent ligands of the training set,
other compounds may have portions of matter located in the
interstice between the two shells. Fields associated with such
parts are interpolated between the two layers.19

To support the claim that a dual-shell representation of the
binding pocket is sufficient to describe the individual adapta-
tion of each compound, we have conducted a search to identify
a distribution of properties on the two shells which is in
qualitative agreement with the projected properties collected
during the MD simulations (see above). As shown in Figure
2e-g, such a distribution can indeed be identified for the
systems simulated in this study. This suggests that our
approach may be sufficient for describing the physicochemical
fields experienced by individual compounds during a MD
simulation of the equilibrium binding state on an atomistic
scale.

Scoring Function. The major problem associated with
most existing scoring functions used to estimate the free
energy of ligand binding is the weighting of solvation effects,
particularly if the data set includes ligand species with
different net charge. Hydrogen bonding, including the forma-
tion or disruption of water structures, is a major driving force
during ligand binding. Substances that are predominantly
hydrophobic in nature cannot engage in hydrogen bonds with
the surrounding water and therefore tend to aggregate or to
bind to hydrophobic portions of the binding pocket in macro-
molecular targets. Changes in entropy are part of this phe-
nomenon, particularly the term arising from the loss or gain
of ordered water structure. During ligand binding, the solvent
structure of the ligand as well as solvent occupying the binding
pocket of the protein in the uncomplexed state is displaced
into disordered bulk solvent, resulting in an increase of
entropy.20 This is even true for predominantly hydrophobic
compounds, where the surrounding water molecules cannot
engage in hydrogen bonds with the ligand. Clearly, the binding
process is governed by the tendency of both ligand and binding
pocket to associate with a similar environment (hydrophilic
or hydrophobic). The corresponding tendency of a ligand
molecule is typically measured by 1-octanol/water partition
coefficient (log Po/w (log P)). Kellogg and co-workers,21 for
example, developed an empirical force field (HINT) using log
P as the only quantity and applied it successfully for structure-
based design22 and receptor modeling.23 While interactions
between hydrophobic entities are an (experimentally observed)
consequence of the tendency of water to saturate its hydrogen-
bond propensity, interactions between hydrophilic partners are
in addition governed by an immediate physical force, the
hydrogen bond itself. The latter interaction is clearly direc-
tional in nature.24 To join these two concepts, our scoring
function comprises hydrophobicity (∆GHO) and hydrogen bond-
ing (∆GHB), as well as terms for the cost of the topological
adaptation (∆GIF) and the changes in entropy (∆GT∆S)25 upon
ligand binding:

∆Gconst is a contribution to the binding energy rationalizable
as an overall loss of translational and rotational entropy of
the ligand or overall gain of entropy due to desolvation of the
binding pocket. fHO, fHB, fIF, and fT∆S are scaling factors which
are inherent to a given receptor model; they are optimized

during the simulation (see below) for each specific drug target
and typically constrained to specific intervals (e.g. fHO ) 0.75-
1.25).

Induced Fit. In Raptor, the topology of a ligand molecule
is represented by its solvent accessible surface (rprobe ) 1.4 Å).
The fields (hydrogen bonding and hydrophobicity) spawned by
the ligand atoms are projected onto this surface; more pre-
cisely, onto discrete points located on equidistant positions
thereon.26

The adaptation of both field and topology of the receptor
surrogate to each ligand is achieved by combining a steric
adjustment to the topology of the very ligand (Figure 3) and a
component due to the attraction or repulsion between ligand
and receptor surrogate. The latter is obtained by correlating
their physicochemical properties (hydrophobicity and hydrogen-
bond propensity) in 3D space.

During the steric adaptation process, the fields generated
by the protein binding site onto the ligand’s solvent-accessible
surface (SAS) are computed by linear interpolation between
inner and outer shell, if the ligand’s SAS has portions located
in there (Figure 3: dashed arrows; cf. above). For surface
points located inside the inner layer (very small ligands), the
latter may adapt only in part to the ligand topology, where
the magnitude of the induced fit is proportional to the distance
and orientation of the normal vectors of these surfaces (solid
arrows in Figure 3).

In addition, the adaptation between ligand and surrogate
is dependent on the strength of their interaction and is
modeled by two parameters δ and ω, where the fields at the
surface point R for every individual ligand are given by eqs 2
and 3:

HOR
0, HBAcc,R

0 , and HBDon,R
0 are hydrophobicity and hydrogen-

bond-acceptor and -donor propensities, respectively, of the two
layers linearly interpolated to each ligand surface point R.27

The second term explicitly allows for hydrogen-bond flip-flop,
which implies that, for example, a ligand donor can induce a
change of the hydrogen-bond propensity of the binding site
from “donating” to “accepting”.

∆G ) ∆Gconst + fHO∆GHO + fHB∆GHB + fIF∆GIF +
fT∆S∆GT∆S (1)

Figure 3. Sketch of a ligand molecule (represented as its SAS;
gray surface) in the dual-shell representation of the receptor
surrogate (solid lines). During the steric adaptation process,
the fields generated by the protein binding site onto the
ligand’s SAS are computed by linear interpolation between
inner and outer shell, if the ligand’s SAS lies between those
two shells (dashed arrows). For surface points located inside
the inner layer, the latter may adapt only in part to the ligand
topology (solid arrows; dotted line ) topologically adapted
receptor surface).

HOR ) HOR
0 1
1 + exp(δho,R(-hoR - ωho,R))

(2)

HBR ) (HBAcc,R
0 - HBDon,R

0 ) 1
1 + exp(δhb,R(hbR - ωhb,R))

+

HBDon,R
0 . (3)
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The interaction energy for each surface point is then
calculated by multiplying its hydrophobicity hoR with the
hydrophobicity of the field of the receptor model HOR for
hydrophobic surface points or, otherwise, by multiplying its
hydrogen-bonding propensity with that of the receptor model.
The energy associated with the topological adaptation to the
ligand’s surface is assumed to be proportional to the magnitude
of the simulated effect.

Optimization Algorithm. To obtain the best agreement
between calculated and experimental binding affinities for the
ligands of the training set, the underlying algorithm in Raptor
optimizes the nature and distribution of the properties mapped
onto the two shells representing the receptor surrogate. Those
properties include the hydrophobicity, the hydrogen-bonding
propensity, and the variables describing the adaptation process
δho,R, ωho,R, δhb,R, ωhb,R, as well as a scaling factor for the energy
associated with induced fit cIF,R. As quality criterion in the
optimization process, the following expression is minimized:

The fourth power was deliberately chosen as it weights small
deviations (which typically come close to experimental uncer-
tainty) less.

As at the true biological receptor the properties are not
“randomly” scattered across the binding site, the algorithm
in Raptor forces the formation of domains with similar
properties: instead of altering the variables on each point
independently, the quantities HOR

0, HBAcc,R
0 , HBDon,R

0
, δho,R,

ωho,R, δhb,R, ωhb,R, cIF,R are optimized for each domain. Additional
variables ∆ are defined to describe the anisotropy of these
properties over the domain. The hydrophobicity of a point
within a domain, for example, is calculated by the expression

where d is the distance from this point to the center of the
domain.

Since the total number of variables is large (5-6 parameters
for each of the 50-100 domains, i.e., HOR

0, δho,R, ωho,R, cIF,R, ∆R

for hydrophobic domains and HBAcc,R
0 , HBDon,R

0 , δhb,R, ωhb,R,
cIF,R, ∆R for hydrogen-bonding domains), Raptor uses a multi-
step optimization protocol including domain assignment, tabu
search,28 and local search. To avoid overfitting, the number of
optimizing variables is increased continuously; i.e. at the
beginning (i.e. domain assignment and tabu search) only HOR
and HBR are variable (for each domain) with all others added
subsequently (i.e. δho,R, ωho,R, ∆R, or δhb,R, ωhb,R, ∆R during the
first half of local search optimization, and cIF,R during the final
half of local optimization). In detail, the hydrophobic and
hydrogen-bonding fields are projected onto the two layers
weighted by ∆G of the corresponding ligand. Domain centers
are assigned to the position with unambiguous manifestation
of the projected hydrophobicity/hydrogen-bonding propensity.
The assignment of each layer point to a domain is decided by
comparing its field with that experienced at the center of the
domain. At the beginning, only values for HOR

0, HBAcc,R
0 , and

HBDon,R
0 are assigned to the domain centers and then opti-

mized using tabu search.28,29 Then, the individual domains are
optimized using a local-search protocol. At this stage, all
quantities are variable and treated continuously. If a better
correlation is obtained, a given point may migrate to a
neighboring domain.

Since the mapping of properties onto the shells is not
unambiguously determinablesdifferent models with similar
predictive power can be identifiedsRaptor, therefore, gener-
ates a family of receptor models. Such surrogate families may
be interpreted to represent the various configuration states
of the true biological receptor. The obtained binding affinities
are typically averaged over the individual models. Moreover,
properties which are common to most models may be inter-
preted as chemically relevant features for ligand binding.

Results
The Raptor concept was applied toward the prediction

of binding affinities associated with the bradykinin B2
system (34 training and 18 test compounds), the CCR-3
system (40/10), and the estrogen receptor (93/23), re-
spectively. The latter includes eight substance classes
as well as positive, neutral, and negatively charged
compounds binding all to this receptor.

Chemokine Receptor (CCR-3). Chemokinesslow
molecular weight (8000-12000) chemotactic cytokiness
are structurally related proteins that participate in the
activation, proliferation, and differentiation of leuko-
cytes and play a key role in the control of basal leukocyte
trafficking and recruitment of leukocytes during inflam-
mation. During inflammatory processes chemokines act
via chemoattraction and activation of leukocytes. In
response to certain stimuli or insult to the immune
system, chemokines are secreted by proinflammatory
cells, leukocytes, or endothelial cells to recruit new
leukocytes from the circulation across the lumen and
into the tissue.30 Chemokines exert their functions
through the selective binding to one or more G-protein-
coupled receptors (GPCRs) differently expressed on
leukocytes. More recent results suggested an important
role for chemokines in a variety of pathophysiological
processes including acute and chronic inflammation,
infectious diseases, and modulation of angiogenesis and
fibrosis.

On the basis of 50 selected compounds (40 training
and 10 test substances) synthesized and tested at
Brystol-Myers Squibb31 we performed a Raptor study.
The three-dimensional structure of all ligand molecules
was generated using MacroModel 6.532 and optimized
in aqueous solution on the basis of the AMBER 4.0 force
field.33 An extensive conformational search was then
performed for at least one compound of any molecular
scaffold present in the data set (6 compounds in total),

Q ) ∑
ligands

(∆Gcalc - ∆Gexp)
4 (4)

HOR
0 ) (1 - ∆d)HOdomain

0 (5)

Figure 4. Predicted versus experimental binding affinities
for ligand molecules binding to the CCR-3 receptor (training
set, open squares; test set, filled circles).
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thereby allowing for 20000 minimized structures each,
again using MacroModel and simulating an aqueous
environment. Thereof, all conformations within 10 kcal/
mol from the lowest-energy conformer were retained.
To allow for a comparison with the Quasar study (cf.
below), we used those conformers selected by Quasar.35

In Raptor, the binding affinities were averaged over
20 individual models and yielded an r2 of 0.965 for the
training and a predictive r2 of 0.932 for the test set,
where the maximal deviation of any ligand from the
experimental value is a factor of 2.4 in the IC50 for the
training and 2.0 for the test set (Figure 4 and Table 1),
respectively. In the Quasar study (5D-QSAR),34 a cross-
validated r2 of 0.950 and a predictive r2 of 0.879 were
obtained. The maximal deviation from the experiment
was a factor of 0.6 and 3.2 in the IC50 value for the

training and test sets, respectively. For this particular
system, Raptor yields more accurate predictions for the
test ligands when compared with Quasar. Model gen-
eration required 8 h of CPU time on a 1.8 GHz Pentium
4 computer; evaluation of the test compounds required
5-10 s per molecule.

The dual-shell representation of one of the individual
models is shown in Figure 5. The receptor model depicts
a Y-shaped form. One lobe (top right, Figure 5) is mostly
hydrophobic in nature, the stem shows large parts of
hydrogen-bond-donating and -accepting areas, and the
second lobe shows mixed hydrophobic/hydrophilic char-
acteristics.

Table 1. Experimental and Calculated IC50 for CCR-3

IC50

expt calc
name

factor off
in IC50

Test Set
112 2.0 × 10-9 1.88 × 10-9 ( 4.63 × 10-10 0.1
107 8.0 × 10-9 8.26 × 10-9 ( 3.38 × 10-9 0.0
94 4.0 × 10-8 3.01 × 10-8 ( 1.40 × 10-8 0.3
99 5.5 × 10-8 6.48 × 10-8 ( 3.61 × 10-8 0.2
92 2.4 × 10-7 6.12 × 10-7 ( 2.07 × 10-7 1.6
88 3.6 × 10-7 1.38 × 10-7 ( 5.59 × 10-8 1.6
84 4.2 × 10-7 6.85 × 10-7 ( 3.04 × 10-7 0.6
75 5.6 × 10-7 1.96 × 10-7 ( 4.28 × 10-8 1.9
39 1.8 × 10-6 5.15 × 10-7 ( 9.50 × 10-8 2.4
37 3.4 × 10-6 7.42 × 10-6 ( 4.01 × 10-6 1.2

Training Set
113 1.0 × 10-9 1.37 × 10-9 ( 3.78 × 10-10 0.4
115 1.0 × 10-9 1.35 × 10-9 ( 4.88 × 10-10 0.4
121 1.0 × 10-9 1.07 × 10-9 ( 3.25 × 10-10 0.1
111 2.0 × 10-9 2.30 × 10-9 ( 8.95 × 10-10 0.2
114 2.0 × 10-9 2.05 × 10-9 ( 4.61 × 10-10 0.0
120 2.0 × 10-9 3.09 × 10-9 ( 8.04 × 10-10 0.5
102 3.0 × 10-9 4.04 × 10-9 ( 1.63 × 10-9 0.4
110 3.0 × 10-9 3.11 × 10-9 ( 1.43 × 10-9 0.0
105 7.0 × 10-9 5.87 × 10-9 ( 1.57 × 10-9 0.2
101 8.0 × 10-9 1.15 × 10-8 ( 5.81 × 10-9 0.4
103 8.0 × 10-9 1.52 × 10-8 ( 6.12 × 10-9 0.9
104 9.0 × 10-9 6.10 × 10-9 ( 1.79 × 10-9 0.5
106 1.1 × 10-8 1.29 × 10-8 ( 3.89 × 10-9 0.2
117 1.1 × 10-8 2.41 × 10-8 ( 5.96 × 10-9 1.2
109 1.7 × 10-8 1.02 × 10-8 ( 4.12 × 10-9 0.7
119 2.1 × 10-8 1.56 × 10-8 ( 1.05 × 10-8 0.4
98 4.2 × 10-8 4.98 × 10-8 ( 2.66 × 10-8 0.2
100 4.7 × 10-8 3.92 × 10-8 ( 2.21 × 10-8 0.2
108 5.3 × 10-8 1.11 × 10-7 ( 3.42 × 10-8 1.1
97 6.4 × 10-8 7.95 × 10-8 ( 3.86 × 10-8 0.2
96 6.7 × 10-8 1.01 × 10-7 ( 4.40 × 10-8 0.5
93 8.5 × 10-8 8.25 × 10-8 ( 3.19 × 10-8 0.0
89 1.1 × 10-7 2.54 × 10-7 ( 9.67 × 10-8 1.2
77 1.3 × 10-7 7.00 × 10-8 ( 2.41 × 10-8 0.8
95 1.4 × 10-7 4.80 × 10-8 ( 1.15 × 10-8 2.0
91 2.3 × 10-7 1.97 × 10-7 ( 6.88 × 10-8 0.2
90 2.6 × 10-7 3.12 × 10-7 ( 1.44 × 10-7 0.2
76 3.1 × 10-7 4.24 × 10-7 ( 1.85 × 10-7 0.4
118 2.8 × 10-7 2.16 × 10-7 ( 9.46 × 10-8 0.3
43 4.5 × 10-7 7.06 × 10-7 ( 2.03 × 10-7 0.6
44 4.5 × 10-7 5.47 × 10-7 ( 3.07 × 10-7 0.2
85 5.3 × 10-7 3.80 × 10-7 ( 1.82 × 10-7 0.4
40 6.0 × 10-7 1.01 × 10-6 ( 2.99 × 10-7 0.7
41 7.5 × 10-7 1.19 × 10-6 ( 4.32 × 10-7 0.6
42 7.5 × 10-7 1.30 × 10-6 ( 3.05 × 10-7 0.7
86 7.8 × 10-7 1.51 × 10-6 ( 5.72 × 10-7 0.9
38 9.0 × 10-7 1.28 × 10-6 ( 3.03 × 10-7 0.4
36 2.6 × 10-6 3.11 × 10-6 ( 1.16 × 10-6 0.2
39 4.7 × 10-6 4.99 × 10-6 ( 2.50 × 10-6 0.1
40 1.1 × 10-5 1.60 × 10-5 ( 5.97 × 10-6 0.5

Figure 5. Dual-shell representation of one of the individual
models for the CCR-3 receptor (hydrophobic fields, beige;
hydrogen-bond-donating propensity, blue; hydrogen-bond-ac-
cepting propensity, red; hydrogen-bond flip-flop, green).

Figure 6. Computationally predicted versus experimentally
measured binding affinities for compounds binding to the
bradykinin B2 receptor (training set, open squares; test set,
filled circles; novel compounds (see text), open circles).
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Bradykinin B2 Receptor. Bradykinin (BK) is an
endogenous nonapeptide (Arg-Pro-Pro-Gly-Phe-Ser-Pro-
Phe-Arg) produced by proteolytic cleavage of the high
molecular weight kininogen by plasma kallikreins.
Because of its highly potent proinflammatory activity,
BK has been implicated in a variety of pathophysiologi-
cal responses, including pain, inflammation, asthma,
rhinitis, and hypotension.35 Two types of BK receptors,
referred to as B1 and B2, have been identified by
molecular cloning and pharmacological means.36 B2
receptors are expressed constitutively in many tissues
and are thought to mediate most of the biological actions
of BK. Because of the pathophysiological role of brady-
kinin, antagonists to BK are of biomedical interest.

On the basis of the IC50 values of 43 ligands synthe-
sized and biologically assessed during the development

of highly affine antagonists at Fujisawa Pharmaceuti-
cals,37 we performed a QSAR study using Raptor. The
three-dimensional structures of all ligand molecules
were generated using MacroModel 6.5 and optimized in
aqueous solution on the basis of the AMBER 4.0 force
field. On the basis of a pharmacophore hypothesis
generated at the University of Düsseldorf,38 we per-
formed a receptor-mediated alignment protocol by means
of the PrGen software.44 Thirty-two molecules thereof
were assigned to the training set and the remaining 11
used as test compounds. Most recently, an additional
set of compounds has been published,39 which feature
additional functionalities, i.e. imidazolyl, pyrazolyl,
triazolyl, diethylamine, and phenyl-substituted quino-
line derivatives. To challenge the approach, we included
only one of the additional compounds in the training
set featuring the phenyl substituent, while eight were
assigned to the test set.

Table 2. Experimental and Calculated IC50 for the Bradykinin
B2 Receptor

IC50

expt calc
name

factor off
in IC50

Prediction Set
50a 1.8E-09 2.24E-09 ( 2.61E-09 0.3
17b 2.7E-09 1.10E-09 ( 7.31E-10 1.4
50b 2.9E-09 1.90E-09 ( 3.15E-09 0.5
23b 3.3E-09 7.51E-10 ( 1.03E-09 3.3
17a 3.7E-09 3.33E-09 ( 2.36E-09 0.1
17c 4.4E-09 5.63E-09 ( 3.84E-09 0.3
23a 4.3E-09 3.38E-09 ( 9.27E-09 0.3
23c 9.1E-09 2.46E-09 ( 3.28E-09 2.6

Test Set
14a 5.1E-10 4.66E-09 ( 2.50E-09 8.2
54b 5.5E-10 1.65E-10 ( 7.26E-11 2.3
52e 8.3E-10 5.72E-09 ( 6.13E-09 5.9
57a 1.0E-09 6.73E-09 ( 3.60E-09 5.8
45a 1.6E-08 3.27E-08 ( 2.89E-08 1.1
63c 1.8E-08 3.34E-08 ( 5.43E-08 0.9
53 2.3E-08 9.47E-09 ( 4.84E-09 1.4
6b 2.3E-07 5.13E-07 ( 2.43E-07 1.2
37e 5.0E-07 1.03E-07 ( 8.00E-08 3.8
5b 4.5E-06 7.10E-06 ( 5.84E-06 0.6
5a 3.1E-05 1.07E-04 ( 1.95E-04 2.5

Training Set
90c 1.3E-10 1.78E-10 ( 9.74E-11 0.4
88a 5.0E-10 7.18E-10 ( 1.44E-10 0.4
52a 5.6E-10 5.14E-10 ( 2.96E-10 0.1
87b 5.6E-10 6.02E-10 ( 2.46E-10 0.1
50a 6.4E-10 1.38E-09 ( 2.49E-10 1.2
18c 6.6E-10 1.07E-09 ( 2.84E-10 0.6
81a 6.9E-10 1.47E-09 ( 2.91E-10 1.1
75a 1.1E-09 5.64E-10 ( 2.25E-10 0.9
190997 1.5E-09 1.46E-09 ( 5.00E-10 0.0
52f 1.6E-09 6.00E-09 ( 2.93E-09 2.7
74a 1.9E-09 1.82E-09 ( 7.41E-10 0.0
29a 2.3E-09 4.00E-09 ( 1.10E-09 0.8
75b 2.4E-09 2.06E-09 ( 1.16E-09 0.2
16 3.1E-09 2.16E-09 ( 4.41E-10 0.4
63b 3.5E-09 9.91E-09 ( 2.45E-09 1.9
74b 4.1E-09 3.25E-09 ( 7.92E-10 0.3
48d 7.8E-09 2.02E-08 ( 4.36E-09 1.6
52a 9.1E-09 2.43E-08 ( 4.47E-09 1.7
23a 1.7E-08 6.29E-09 ( 1.44E-09 1.7
29a 4.2E-08 8.14E-08 ( 3.37E-08 1.0
31a 5.4E-08 8.19E-08 ( 3.98E-08 0.5
52 g 9.0E-08 5.14E-08 ( 2.51E-08 0.8
56 1.1E-07 3.04E-08 ( 6.22E-09 2.6
58 1.7E-07 7.20E-08 ( 9.03E-09 1.4
51 3.8E-07 1.10E-07 ( 2.86E-08 2.4
45b 7.7E-07 3.17E-07 ( 5.11E-08 1.4
45c 8.1E-07 6.02E-07 ( 1.25E-07 0.3
52h 1.0E-06 7.56E-07 ( 5.06E-07 0.3
30a 1.5E-06 2.53E-06 ( 8.49E-07 0.7
45d 1.6E-06 5.00E-07 ( 1.36E-07 2.2
32a 1.8E-06 9.02E-07 ( 2.70E-07 1.0
7 7.5E-06 2.11E-05 ( 6.08E-06 1.8
5d 1.0E-05 7.01E-06 ( 2.81E-06 0.4

Figure 7. Common features determined by the Raptor models
for the bradykinin B2 receptor (hydrophobic fields, beige;
hydrogen-bond-donating propensity, blue; hydrogen-bond-ac-
cepting propensity, red).

Figure 8. Pharmacophore hypothesis for the 116 superim-
posed ligand molecules binding to the estrogen receptor.
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A family of 10 receptor models was created, resulting
in an averaged r2 of 0.949 for the training set (32 + 1
compounds) and a predictive r2 of 0.859 for the test set
(11 + 8). The maximal deviation of any ligand from the
experimental value is a factor of 1.8 in the IC50 for the
training and 8.2 for the test set, respectively (Figure 6
and Table 2). The nine new ligands39 are predicted close
to experimental error, with a maximal deviation of 3.3
in the IC50. The physicochemical properties, in common
at the 70% level for the 10 models, are shown in Figure
7. The receptor model is “V-shaped”, with the benzo-
condensated heterocyclic substituents (e.g. quinolines;
right part in Figure 4) being mainly hydrophobic in
nature. Around the central amide bond a dominant
hydrogen-bond-acceptor region is observed, and a hy-
drogen-bond-donor domain is observed around the ter-
minal amide oxygen atom. Model generation required
7 h of CPU time on a 1.8 GHz Pentium 4 computer;
evaluation of the test compounds required 5-10 s per
molecule.

Estrogen Receptor. The estrogen receptor (ER) is
a ligand-activated transcription factor. Upon binding of
estrogen, it undergoes a conformational change which
promotes its homodimerization and high-affinity bind-
ing to specific sites on DNA-estrogen response ele-
ments. Once bound to DNA, the estrogen receptor
complex regulates the expression of estrogen-responsive
genes. The effects of this are very broad and have an
influence on secondary sexual characterization for both
male and female, bone maintenance, or the cardiovas-
cular system. The ER has a broad solvent-accessible
binding site which allows for structurally diverse chemi-
cals to bind to it.

Endocrine disruptors, exogenous substances that
cause adverse health effects due to changes in the
endocrine system, mediate these effects by binding to
specific receptors including the estrogen receptor. Stud-

ies40 suggest that exposure to endocrine disruptors may
contribute to the development of hormone-dependent
cancers (e.g. breast, prostate, testicular) and to the
disorder of the male reproductive tract, as well as
compromise reproductive fitness by decreasing sperm
counts and semen volume.

Due to its broad chemical spectrum of binding com-
pounds, including neutral substances as well as posi-
tively and negatively charged ions, predicting the
binding affinities of these ligands by computational
approaches is a big challenge for every method. Since
several three-dimensional structures of small-molecule
ER complexes are deposited with the PDB,2 we used a
receptor-mediated alignment protocol to create a phar-
macophore hypothesis for a total of 116 compounds (93
training and 23 test ligands).41 Again, the ligands were
generated using MacroModel, minimized in an implicit
water solution using the AMBER force field, and an
extended conformational search was performed. All
conformers within 50 kJ/mol of the lowest-energy struc-
ture were retained and aligned using Rfit.42 For the
neutral ligands, the receptor-mediated alignment

Figure 9. Computationally predicted versus experimentally
measured binding affinities for ligand molecules binding to the
estrogen receptor (training set, open squares; test set, filled
circles).

Figure 10. Common features determined by the Raptor
models for the estrogen receptor (hydrophobic fields, beige;
hydrogen-bond-donating propensity, blue; hydrogen-bond-ac-
cepting propensity, red) with bound (a) DES and (b) raloxifene.
For comparison the binding mode of DES and raloxifene in
the true biological receptor is shown together with some
protein residues (3ERD and 1ERR, respectively).
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Table 3. Experimental and Calculated IC50 for the Estrogen Receptor

IC50

expt calc
name

log RBA
expt

factor off
in IC50

Test Set
meso-hexestrol 2.48 2.9E-10 6.96E-10 ( 6.46E-10 1.4
dimethylstilbestrol 1.16 6.2E-09 2.87E-09 ( 3.92E-09 1.1
monomethyI ether hexestrol 0.97 9.5E-09 3.61E-08 ( 2.17E-08 2.8
estrone 0.86 1.2E-08 1.11E-07 ( 1.39E-07 8.0
tamoxifen 0.21 5.5E-08 3.89E-08 ( 8.87E-08 0.4
monohydroxy methoxychloroolefin -0.63 3.8E-07 2.89E-06 ( 7.42E-06 6.6
6,4′-dihydroxyflavone -0.82 5.9E-07 2.91E-07 ( 4.41E-07 1.0
bisphenol B -1.07 1.1E-06 1.36E-06 ( 4.00E-06 0.3
diethylstilbestrol dimethyl ether -1.25 1.6E-06 3.43E-06 ( 5.70E-06 1.2
2,5-dichloro-4′-biphenylol -1.44 2.5E-06 2.13E-06 ( 5.33E-05 0.2
nonylphenol -1.53 3.0E-06 4.06E-06 ( 7.12E-06 0.3
kaempferol -1.61 3.6E-06 4.00E-06 ( 1.69E-05 0.1
heptylparaben -2.09 1.1E-05 6.29E-06 ( 4.90E-06 0.7
bisphenol A -2.11 1.2E-05 5.26E-06 ( 2.20E-06 1.2
3-deoxyestrone -2.2 1.4E-05 6.20E-06 ( 4.93E-06 1.3
4,4′-dihydoxybenzophenone -2.46 2.6E-05 8.68E-05 ( 1.11E-04 2.4
4′-hydroxyflavanone -2.65 4.0E-05 2.43E-05 ( 1.97E-05 0.6
2-chloro-4-biphenylol -2.77 5.3E-05 4.46E-05 ( 5.61E-05 0.2
p-phenylphenol -3.04 9.8E-05 6.72E-04 ( 3.46E-04 5.9
ethylparaben -3.22 1.5E-04 3.37E-04 ( 1.79E-04 1.3
4-sec-butylphenol -3.37 2.1E-04 1.78E-04 ( 1.48E-04 0.2
6-hydroxyflavone -3.41 2.3E-04 2.56E-05 ( 5.70E-05 8.0
4-tert-butylphenol -3.61 3.7E-04 5.05E-05 ( 2.20E-05 6.2

Training Set
diethylstilbestrol (DES) 2.6 2.2E-10 4.67E-11 ( 1.07E-11 3.8
ethynyl estradiol 2.28 4.7E-10 2.01E-09 ( 8.95E-10 3.3
4-OH-tamoxifen 2.24 5.1E-10 1.15E-09 ( 3.45E-10 1.3
17â-estradiol 2 8.9E-10 4.79E-09 ( 1.50E-09 4.4
4-OH-estradiol 1.82 1.3E-09 5.57E-09 ( 4.96E-09 3.2
dienestrol 1.57 2.4E-09 2.15E-09 ( 3.11E-09 0.1
2-OH-estradiol 1.47 3.0E-09 2.42E-09 ( 4.87E-09 0.2
diethylstilbestrol monomethyl ether 1.31 4.4E-09 2.11E-08 ( 9.55E-09 3.8
3,3′-dihydroxyl hexestrol 1.19 5.7E-09 3.63E-09 ( 5.80E-09 0.6
droloxifene 1.18 5.9E-09 1.44E-08 ( 8.86E-09 1.5
moxestrol 1.14 6.4E-09 2.21E-09 ( 1.08E-08 1.9
17-deoxyestradiol 1.14 6.4E-09 1.17E-07 ( 6.29E-08 17.1
2,6-dimethylhexestrol 1.11 6.9E-09 4.60E-09 ( 6.24E-09 0.5
estriol 0.99 9.1E-09 3.29E-09 ( 4.09E-09 1.8
p-(R,â-diethyl-p-methyl-phenethyl)-meso-phenol 0.6 2.2E-08 1.79E-07 ( 5.82E-08 7.0
17R-estradiol 0.49 2.9E-08 1.57E-07 ( 1.11E-07 4.5
dihydroxymethoxychloroolefin 0.42 3.4E-08 6.54E-08 ( 2.59E-07 0.9
mestranol 0.35 4.0E-08 3.04E-07 ( 2.09E-07 6.7
toremifene 0.14 6.5E-08 3.46E-08 ( 4.92E-08 0.9
R-R-dimethyl-b-ethyl allenolic acid -0.02 9.3E-08 8.54E-07 ( 5.37E-07 8.2
coumestrol -0.05 9.9E-08 7.85E-07 ( 7.87E-07 6.9
4-ethyl-7-OH-3-(p-methoxyphenyl)-dihydro-l-benzopyran-2-one -0.05 9.9E-08 1.07E-06 ( 4.91E-07 9.7
clomiphene -0.14 1.2E-07 4.20E-07 ( 2.04E-07 2.4
nafoxidine -0.14 1.2E-07 3.57E-08 ( 1.33E-08 2.4
6R-OH-estradiol -0.15 1.3E-07 4.04E-08 ( 1.67E-08 2.1
3-hydroxy-estra-1,3,5(10)-trien-16-one -0.29 1.7E-07 9.73E-08 ( 6.67E-08 0.8
3-deoxyestradiol -0.3 1.8E-07 1.08E-06 ( 5.51E-07 5.1
7,3′,4′-trihydroxyisoflavone -0.35 2.0E-07 2.57E-07 ( 5.45E-07 0.3
3,6,4′-trihydroxyflavone -0.35 2.0E-07 2.57E-07 ( 5.08E-07 0.3
genistein -0.36 2.0E-07 2.13E-07 ( 4.11E-07 0.0
4,4′-dihydroxystibene -0.55 3.2E-07 3.94E-07 ( 8.66E-07 0.2
HPTE -0.6 3.6E-07 2.09E-07 ( 1.16E-07 0.7
2,3,4,5-tetrachloro-4′-biphenylol -0.64 3.9E-07 3.75E-07 ( 6.40E-07 0.0
norethynodrel -0.67 4.2E-07 4.49E-07 ( 4.36E-07 0.1
2,2′,4,4′-tetrahydroxybenzil -0.68 4.3E-07 3.12E-07 ( 4.66E-07 0.4
equol -0.82 5.9E-07 6.38E-07 ( 1.06E-06 0.1
monohydroxy methoxychlor -0.89 6.9E-07 4.83E-07 ( 7.02E-07 0.4
3â-androstanediol -0.92 7.4E-07 1.22E-06 ( 8.57E-07 0.7
4,2′,4′-trihydroxychalcone -1.26 1.6E-06 1.92E-06 ( 2.17E-06 0.2
4,4′-(1,2-ethanediyl)bisphenol -1.44 2.5E-06 4.14E-06 ( 1.65E-05 0.7
16â-hydroxy-16-methyl-3-methylether estradiol -1.48 2.7E-06 6.55E-06 ( 4.96E-06 1.4
aurin -1.5 2.8E-06 1.61E-06 ( 1.35E-06 0.8
apigenin -1.55 3.2E-06 1.27E-06 ( 5.60E-06 1.5
daidzein -1.65 4.0E-06 7.09E-07 ( 4.45E-07 4.6
3-methylestriol -1.65 4.0E-06 1.27E-06 ( 8.95E-07 2.1
4-dodecylphenol -1.73 4.8E-06 5.08E-06 ( 4.98E-06 0.1
ethylhexylparaben -1.74 4.9E-06 1.73E-05 ( 1.55E-05 2.5
4-tert-octylphenol -1.82 5.9E-06 3.59E-06 ( 3.55E-06 0.6
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protocol was executed using the 3ERD structure,43 for
the charged species the 1ERR,13 by means of the PrGen
software44 (Figure 8).

A family of 10 receptor models was created, resulting
in an averaged r2 of 0.908 and in a predictive r2 of 0.907.
The maximal deviations from the experimental binding
affinities are a factor of 17.1 and 8.0 off in IC50, whereby
only five compounds of 93 training and none of the 23
test ligands are off more than a factor of 10. Binding of
neutral as well as positively and negatively charged
ligands was all simulated equally well. This suggests
that Raptor not only seems to reproduce the experimen-
tal binding affinities of the training set but also gives
reliable prediction for the ligands of the test set. The
experimental and calculated IC50 values are compared
in Figure 9 and Table 3. The molecules shown along
with their experimentally given IC50 values are given
in ref 45 (Tables 5-11). Model generation required 10
h of CPU time on a 1.8 GHz Pentium 4 computer;
evaluation of the test compounds required 5-10 s per
molecule.

A representation of the common features of the
receptor surrogates is depicted in Figure 10 (Figure 10a,
inner layer; Figure 10b, outer layer). A comparison with
the optimized experimental structure with bound DES43

(Figure 10a) shows that the major features of the true
biological receptor are mapped in the Raptor model, i.e.
the central hydrophobic barrel as well as the hydrophilic
domains about the phenolic hydroxyl groups of DES.

A comparison with the X-ray crystal structure with
bound raloxifene13 (Figure 10b) shows Asp351 interact-
ing with the protonated nitrogen of the antagonist
molecule. This feature could only be mapped on the
second, outer shell of the Raptor model and demon-
strates the necessity for anisotropic modeling in this
very case.

Conclusions

To quantitatively predict relative free energies of
ligand binding in receptor-modeling studies, it is of
utmost importance to simulate induced fit. In a novel
approach (software Raptor), we explicitly and anisotro-

Table 3. (Continued)

IC50

expt calc
name

log
RBA expt

factor off
in IC50

Training Set (Continued)
phenolphthalein -1.87 6.6E-06 6.55E-06 ( 3.96E-06 0.0
4-chloro-4′-biphenylol -2.18 1.4E-05 1.42E-04 ( 5.81E-05 9.5
octylphenol -2.31 1.8E-05 8.60E-06 ( 6.11E-06 1.1
fisetin -2.35 2.0E-05 2.20E-05 ( 3.99E-05 0.1
biochanin A -2.37 2.1E-05 2.03E-05 ( 4.37E-05 0.0
4′-hydroxychalcone -2.43 2.4E-05 1.17E-05 ( 8.01E-06 1.1
2,2′-methylenebis(4-chlorophenol) -2.45 2.5E-05 6.66E-05 ( 7.70E-05 1.6
benzylparaben -2.54 3.1E-05 9.78E-05 ( 8.48E-05 2.2
4-hydroxychalcone -2.55 3.2E-05 4.54E-05 ( 5.07E-05 0.4
2,4-dihydroxybenzophenone -2.61 3.6E-05 7.99E-06 ( 3.82E-06 3.6
3R-androstanediol -2.67 4.2E-05 3.31E-06 ( 1.83E-06 11.6
4-phenethylphenol -2.69 4.4E-05 1.93E-05 ( 9.65E-06 1.3
doisynoestrol -2.74 4.9E-05 1.52E-05 ( 3.23E-05 2.2
5,4′-dihydroxy-7-methoxyiso-flavone -2.74 4.9E-05 1.12E-05 ( 9.55E-06 3.4
myricetin -2.75 5.0E-05 1.20E-05 ( 1.35E-05 3.2
triphenylethylene -2.78 5.4E-05 8.79E-05 ( 7.07E-05 0.6
3′-hydroxyflavanone -2.78 5.4E-05 2.86E-05 ( 4.79E-05 0.9
chalcone -2.82 5.9E-05 8.60E-05 ( 9.85E-05 0.5
o,p′-DDT -2.85 6.3E-05 1.46E-05 ( 1.06E-05 3.3
4-heptyloxyphenol -2.88 6.8E-05 7.54E-05 ( 4.05E-05 0.1
dihydrotestosterone (DHT) -2.89 6.9E-05 3.82E-06 ( 2.39E-06 17.2
formononetin -2.98 8.5E-05 6.42E-06 ( 2.28E-06 12.3
bis(4-hydroxyphenyl)methane -3.02 9.4E-05 1.15E-04 ( 8.18E-05 0.2
6-hydroxyflavanone -3.05 1.0E-04 8.08E-06 ( 2.65E-06 11.4
4,4′-sulfonyldiphenol -3.07 1.1E-04 1.51E-04 ( 9.80E-05 0.4
butylparaben -3.07 1.1E-04 1.37E-04 ( 8.65E-05 0.3
diphenolic acid -3.13 1.2E-04 1.09E-04 ( 2.33E-04 0.1
propylparaben -3.22 1.5E-04 4.24E-04 ( 2.07E-04 1.9
3,3′,5,5′-tetrachloro-4,4′-biphenyldiol -3.25 1.6E-04 2.14E-05 ( 1.51E-05 6.4
phenolred -3.25 1.6E-04 1.04E-04 ( 1.29E-04 0.5
4-tert-amylphenol -3.26 1.6E-04 2.10E-05 ( 1.07E-05 6.8
balcalein -3.35 2.0E-04 1.04E-04 ( 1.45E-04 0.9
morin -3.35 2.0E-04 9.32E-05 ( 1.58E-04 1.2
4-chloro-3-methylphenol -3.38 2.1E-04 1.46E-03 ( 5.71E-04 5.8
3-phenylphenol -3.44 2.5E-04 1.05E-03 ( 8.81E-04 3.3
methylparaben -3.44 2.5E-04 6.72E-04 ( 5.20E-04 1.7
2-sec-butylphenol -3.54 3.1E-04 1.83E-03 ( 1.13E-03 4.9
2,4′-dichlorobiphenyl -3.61 3.7E-04 1.09E-04 ( 3.39E-05 2.3
2-chloro-4-methylphenol -3.66 4.1E-04 2.20E-04 ( 1.94E-04 0.9
phenolphthalin -3.67 4.2E-04 1.59E-04 ( 1.24E-04 1.6
4-chloro-2-methylphenol -3.67 4.2E-04 3.71E-04 ( 4.95E-04 0.1
7-hydroxyflavanone -3.73 4.8E-04 1.97E-04 ( 1.67E-04 1.5
3-ethylphenol -3.87 6.6E-04 1.85E-03 ( 1.18E-03 1.8
4-ethylphenol -4.17 1.3E-03 2.25E-04 ( 9.64E-05 4.9
4-methylphenol -4.5 2.8E-03 1.20E-03 ( 3.79E-04 1.4
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pically allow for it by a dual-shell representation of the
receptor surrogate. In contrast to other approaches in
the field, induced-fit simulation is not restricted to
topological aspects but includes the variation of the
physicochemical fields along with it. The underlying
scoring function includes directional terms for hydrogen
bonding and treats solvation effects implicitly. Electro-
static terms are deliberately omitted; instead, the func-
tion empirically assesses the very behavior by means
of terms quantifying hydrophobicity and hydrogen
bonding. This makes it independent from a partial-
charge model and, as a consequence, allows one to model
ligand molecules binding to the receptor with different
net charges.

The requirements on data size and affinity range are
comparable to the requirements in grid-based 3D-QSAR
approaches, as the shell representation in Raptor lowers
the available degrees of freedom resulting in a reduction
of the 3D optimization problem to an effective 2D
surface approach. In addition, combining the receptor
presenting points on the shells in domains lessens the
number of degrees of freedom further. We suggest using
a minimal size of 30 compounds with a range in affinity
larger than a factor of 1000.

We have applied the new concept toward the estima-
tion of ligand-binding energies associated with the
chemokine receptor-3 (50 ligands), the bradykinin B2

receptor (52), and the estrogen receptor (116). The
obtained results for the ligand molecules of the test sets
(predictive r2 ranging from 0.859 to 0.932) suggest that
this approach can be used for drug-design studies using
very diverse data sets. Updated information may be
continuously obtained from http://www.biograf.ch; the
Biographics Laboratory 3R is a nonprofit organization
aimed at the replacement of animal models in biomedi-
cal research.
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