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Acetylcholinesterase (AChE) inhibition is an important research topic because of its wide range
of associated health implications. A receptor-specific scoring function was developed herein
for predicting binding affinities for human AChE (huAChE) inhibitors. This method entails a
statistically trained weighted sum of electrostatic and van der Waals (VDW) interactions
between ligands and the receptor residues. Within the 53 ligand training set, a strong correlation
was found (R2 ) 0.89) between computed and experimental inhibition constants. Leave-one-
out cross-validation indicated high predictive power (Q2 ) 0.72), and analysis of a separate
16-compound test set also produced very good correlation with experiment (R2 ) 0.69). Scoring
function analysis has permitted identification and characterization of important ligand-receptor
interactions, producing a list of those residues making the most important electrostatic and
VDW contributions within the main active site, gorge area, acyl binding pocket, and periferal
site. These analyses are consistent with X-ray crystallographic and site-directed mutagenesis
studies.

Introduction

Acetylcholinesterase (AChE) is an enzyme that hy-
drolyzes the neurotransmitter acetylcholine (ACh) at
cholinergic synapses, accomplishing its role at a rate
faster than those of most other known enzymes.1,2

Recent research interest regarding this enzyme is not
only due to this high catalytic efficiency but also due to
the broad implications of AChE inhibition on human
health, agrochemistry, and chemical agents. For ex-
ample, Alzheimer’s disease (AD) is associated with low
in vivo levels of acetylcholine; thus, AChE has been
targeted in many drug discovery projects aimed at
maintaining ACh availability via mild or reversible
inhibitors such as tacrine3 and donepezil,4 etc. While
low-level AChE inhibition is useful for such neurological
treatments, higher levels of inhibition can be detrimen-
tal. Organophosphorus (OP) compounds, in particular,
irreversibly deactivate AChE and may induce failure of
cholinergic synaptic transmission, deterioration of neu-
romuscular junctions, flaccid muscle paralysis, and
central nervous system seizures.5,6 Effective drug design
thus requires great care in balancing the level of
inhibitive efficacy.

The availability of AChE crystal structures for various
species with and without ligands provides a solid basis
for structure-based design of novel AChE inhibitors.7
There are two principle binding sites in the AChE. The
catalytic active site is located at the base of a deep gorge
in the enzyme. It contains a catalytic triad, Ser203,
Glu334, and His447 (huAChE sequence numbering, to

be used throughout unless otherwise specified), and
nearby residues (e.g., the choline binding site: Trp86)
that collectively effect the ACh catalysis reactions.8
AChE also has a peripheral anionic site (PAS) located
near the enzyme surface at the mouth of the active site
gorge. The residue Trp286 plays a very important role
in ligand binding in the PAS. Ligand binding to the PAS
affects enzymatic activity through a combination of
steric blockade of ligands moving through the gorge and
allosteric alteration of the catalytic triad conformation
and efficiency.9 The gorge itself is a narrow hydrophobic
channel with a length of ∼20 Å, connecting the PAS site
to the active site.10 An acyl binding pocket consists of
residues Gly122, Trp236, Phe295, Phe297, and Phe338
and is responsible for interacting with the acetyl
group.11 Early inhibition research was mainly focused
on ligands binding in the active site (e.g., tacrine3,
amiridine,12 etc.). Recent efforts have focused on finding
novel ligands that bind to both sites in order to search
for more potent reversible inhibitors (e.g., TAK-147,
E2020, etc.), selectively favoring the inhibition of AChE
rather than the related butyrylcholinesterase (BChE).

Molecular modeling has proven increasingly impor-
tant in helping to design novel enzyme inhibitors. A
substantial amount of prior AChE inhibitor research
has focused on using ligand-based design methods such
as CoMFA.13-17 Given an accurate receptor structure,
molecular docking can also be very useful in character-
izing ligand-receptor binding by providing predictions
of the bound conformation for the ligand and a scheme
for energetically ranking (i.e., scoring) the ligand-
receptor interaction. Great successes have been achieved
in terms of conformational predictions via flexible
docking programs such as Dock,18 Gold,19 FlexX,20 etc.
Such conformational predictions are very important to
drug design because (1) the binding conformation of
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ligands is much easier to validate (i.e., through com-
parison with experimentally observed structures) than
is the binding affinity for different systems and (2) the
accurate prediction of the bound conformation is a
prerequisite for reliable scoring. Even with good struc-
tural predictions, however, the score may not always
agree well with experimentally determined affinities
mainly because experimental conditions include impor-
tant dynamic or entropic effects that are difficult to
rigorously represent in a general scoring function. To
account for such effects empirically, scoring functions
are typically trained via diverse sets of previously
characterized ligand-receptor interactions. Unfortu-
nately, no finite training set is likely to provide a perfect
representation for all systems of interest because of the
varying physicochemical conditions present in different
receptors. Indeed, with the AChE system, studies on
steroidal alkaloid inhibition show no correlation be-
tween the calculated binding energy and experimentally
determined activity.21 Molecular dynamics simulations
do provide a natural means for quantifying both the
entropic and enthalpic components of binding affinity
for ligand-AChE interactions;20 however, extensive
computational demands make molecuar dynamics (MD)
simulations prohibitively time-consuming for analysis
of large compound collections. In such cases, the best
compromise may be to carry out simple docking studies
but to explicitly train the scoring function to reproduce
behavior in the system of interest. Herein, we present
a new scoring function that is based on the ligand-
receptor interaction field and is trained specifically to
reproduce AChE inhibition.

Methods

The AChE crystal structures used herein were ob-
tained from the Protein Databank (PDB). Our main
docking and training activities have been focused on a
human AChE (huAChE) structure (code, 1B41)22 but
rely on ligand binding information from a Torpedo
californica AChE (tcAChE) structure (code, 1EVE) that
includes a cocrystallized E2020 inhibitor.23 Given the
absence of a firm understanding of the persistence and
roles of individual solvent molecules in and around the
AChE binding sites, all waters were removed from the
structures. To ascertain the orientation of the ligand
E2020 relative to the huAChE structure, the huAChE
structure was aligned to the tcAChE in SYBYL24 by
achieving a maximal overlap of CR atoms for corre-
sponding huAChE/tcAChE residues within the recep-
tor region. The resulting root-mean square deviation
(rmsd) between the two aligned huAChE/tcAChE struc-
tures is only 0.85 Å for the set of all backbone CR atoms
within the full enzyme subunit, suggesting good overall
alignment and substantial structural similarity. Hy-
drogen atoms were added (via SYBYL) to the resulting
huAChE-E2020 complex. The positions of these new
protons were then optimized in MOE25 via molecular
mechanics using the MMFF94s force field26 (all heavy
atoms fixed) to avoid bad interatomic contacts. The
position of E2020 was then optimized (all receptor atoms
fixed) to determine a plausible stable conformational
structure for the ligand in the receptor environment.
In both of the above simulations, MMFF94s charges
were used to account for relevant electrostatics. The

steepest descent minimization algorithm was used for
the first 100 steps (unless an rms gradient of less than
100 kcal/(mol‚Å) was first achieved), followed by 200
steps of conjugate gradient (unless an rms gradient of
less than 1 kcal/(mol‚Å) was attained), and finally
completed by 1000 steps of truncated Newton (or an rms
gradient of less than 0.01 kcal/(mol‚Å)). The resulting
E2020 structure was then extracted for subsequent
docking calculations.

Sixty-nine compounds with IC50 data measured with
human AChE assay27-30 were selected for training and
testing the scoring function. The activity among these
compounds ranges from 0.33 to 30 000 nM (Tables 1 and
2). The active site for the huAChE docking calculations
was constructed from the crystal structure by retaining
all residues within a radius of 12 Å relative to E2020
(but discarding the original ligand itself). Docking
calculations were carried out with the Gold program.19

A genetic algorithm was used in searching the binding
conformation of flexible ligands, using the default
parameters in GOLD. A maximum of 20 poses were
computed for each compound. Those docked conforma-
tions were saved in SDF format and then imported into
SYBYL for scoring calculations according to the FlexX
and CSCORE modules. The scoring methods available
included empirical methods such as ChemScore,31 FlexX
score,20 and G Score19 and knowledge-based methods
such as PMF score32 and DrugScore.33 Multilinear
regression (MLR) was used to obtain a consensus score
from these methods. One conformation was selected for
each compound to give a good compromise between the
best consensus score and those with the closest align-
ment to the original E2020 ligand. Specifically, the pose
for the scoring of the activity was selected on the basis
of having the highest consensus score (first criterion)
and ChemScore (tie-breaking criterion), with the further
stipulation that the following knowledge-based criteria
(as determined by visual inspection) must be obeyed
whenever possible: (1) good π-π overlap with residue
Trp86, as has been found to be critical for E2020
binding;23 (2) good π-π overlap with residue Trp286,
as has also been found to be very important for E2020
complexation23

The chosen conformations were used to fit an interac-
tion field whose form, basically a variant of the com-
parative binding energy (COMBINE) method,34-36 is as
follows:

where ci and dj are fitted coefficients, Ei
ele and Ej

vdw are
electrostatic and van der Waals (VDW) interactions
arising between atoms in the ith and jth residues and
the ligand. In this expression, all receptor residues
within 10 Å of the position of the original E2020 ligand
(a total of 92 residues) were included in the summation
over i, and Ei

ele and Ej
vdw were calculated via an SVL

script written for the MOE system. The statistic analy-
sis was performed in Simca-P37 with partial least
squares regression (PLS). Fifty-three of the full 69
compounds were selected as our training set, and the
other 16 compounds were used as a test set for validat-
ing the predictive power of the new scoring function.

pIC50 ) ∑
i

ciEi
ele + ∑

j

djEj
vdw (1)
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Table 1. huAChE Ligands in the Training Set
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Table 1 (Continued)
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Results and Discussion
Our scoring model built via PLS regression over

interactions within the 53-molecule training set appears
to be of reasonable quality, with a correlation coefficient
of R2 ) 0.89 and a leave-one-out cross-validation cor-
relation of Q2 ) 0.72. In using the scoring function to
evaluate the activity of the 16-molecule testing set, we
achieved good predictivity: a correlation of R2 ) 0.69
(Figure 1) between the calculated results and experi-
mental values.

To compare the precision and extensibility of our
scoring function, we contrasted the above results with
predictions made using several commercially available
scoring methods, including ChemScore,31 FlexX score,20

DrugScore,33 G Score,19 and PMF score.32 The correla-
tion between the experiment and any single scoring
method is poor. The PMF score showed the best cor-
relation but was still poor (R2 ) 0.13 for the training
set). All of the other representations gave even worse
correlations: ChemScore ) 0.07, FlexX ) 0.05, Drug-

Table 2. Testing Set of huAChE Ligands, Showing Corresponding Inhibition Data
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Score ) 0.01, G Score ) 0.004. Since those general
scoring methods were not trained in this AChE inhibi-
tion set, it is not completely fair to compare them
directly with our specially tailored energy decomposition
method. Therefore, we built a consensus score by
training (over the 53-molecule set) a weighted sum over
the above five commercially available scoring functions
as follows:

where Chemscore, Drugscore, Flexscore, Gscore, and
PMFscore refer to computed affinities from the Chem-
Score, DrugScore, FlexX score, G Score, and PMF score
methods, respectively. Although an improvement was
found for this consensus score within the training set
itself (R2 ) 0.26), its predictive potency is poor, judging
by no evident correlation within the 16-molecule testing
set.

To help verify the physical sensibility of our model,
we have mapped out the residues that contribute
significantly to the scoring function. The coefficients of
the 20 most important residues in terms of electrostatic
and VDW contributions are shown in Figure 2. In those
residues, Trp86, Ile451, Gly448, Tyr449, and Ser229 are
the most important residues in the active site for VDW
interactions. Trp86 functions by forming π-π interac-
tion with ligand aryl groups (when available), while the
other residues define the shape of the gorge base,
serving to discriminate according to ligand shape. In the
upper gorge area and the acyl binding pocket, residues
Tyr124, Phe295, Phe338, and Phe297 are responsible
for providing hydrophobic contacts. The ring of Tyr72

is almost perpendicular to the Trp286 ring and forms a
blocking wall to prevent the ligand ring from moving
away from the position where it forms a π-π interaction
with the Trp286 ring. Phe295, Phe297, Val365, and
Glu292 form another wall on the other side of the gorge,
stretching from the acyl pocket toward the PAS.

Residues Tyr449, Glu450, Ile451, Ala127, Ser128,
Tyr133, Ile118 near Trp86, and the “oxyanion hole”
residues Gly121 and Gly122 are important in providing
electrostatic interactions in the active site. Tyr337,
Asp74, Thr83, and Asn87 are the primary electrostatic
contributors in the gorge area. Gly342, Leu76, Glu285,
Trp286, His287, and Gln291 are probably helpful in
enhancing the activity of ligands with polar groups
oriented in this area, as is evidenced by reports that an
AChE inhibitor tethering in the position of His287 can
affect the binding affinity as much as 14-fold.38 Site-
directed mutagenesis in huAChE indicated that Asp74,
Tyr337, Phe338, Phe295, Phe297, Tyr133, and Glu450
can affect the affinity although it has been difficult to
determine experimentally whether these residues con-
tribute mainly electrostatic or VDW interactions.39,40

The docked ligand structures generally support the
above analysis regarding the identity of principle resi-
dues. In our current docking calculations, molecules 2-7
all share similar conformations in the PAS. The modi-
fied groups in those molecules are actually exposed to
the solvent and do not contribute directly to the ligand-

Figure 1. Correlation of the calculated activity (pIC50) with
experiment: (top) training set (R2 ) 0.89); (bottom) testing
set (R2 ) 0.69).

pIC50 ) 0.05682 Chemscore - 0.00499 Drugscore -
0.03582 Flexscore - 0.01232 Gscore +

0.01847 PMFscore + 7.62820 (2)

Figure 2. (Top) Coefficients of the 20 most important residues
for electrostatic interactions. (Bottom) Coefficients of the 20
most important residues for VDW interactions.
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receptor interaction. This is the same as observed in
previous studies.28 However, in the current work, mol-
ecule 8 takes a slightly different conformation with its
morpholino group situating in the half-buried pocket by
Trp286, His287, Ser293, Glu292, and Leu289. The
morpholino oxygen has a distance of 3.65 Å from the
backbone N of Glu292, and the morpholino nitrogen is
3.78 Å from the backbone O of Ser293. Such interactions
could slightly pull the benzisoxazole ring away from
Trp286 ring, leaving only a partial π-π interaction. This
particular conformation leads to an affinity increased
by more than 10-fold to 0.8 nM relative to molecules
2-7. This particular region has been confirmed in an
X-ray structure to be very important for the inhibitors
binding to the PAS.9

As a final point of validation, we compared the
calculated conformation for E2020 within the huAChE
crystal structure relative to its original cocrystallized
conformation in tcAChE. Our calculated structure sug-
gests that E2020 has similar but not identical binding
modes in tcAChE and huAChE (Figure 3). In the active
site, its benzyl ring forms a π-π interaction with the
indole ring of Trp86 in huAChE and Trp84 in tcAChE.
In the PAS, the indanone ring of E2020 forms a π-π
interaction with the indole ring of Trp286 in huAChE
and Trp279 in tcAChE. The charged nitrogen of the
E2020 piperidine ring undergoes a cation-π interaction
with the phenyl ring of Phe330 in tcAChE. The corre-
sponding residue Tyr337 in huAChE does not form a
similar cation-π interaction due to the steric limitations

in this area associated with an inauspicious orientation
of the Tyr337 ring. As a result, the nitrogen of the
piperidine ring of the E2020 instead interacts with the
hydroxyl groups of the Tyr337, Tyr124, and Ser125
within distances of 3.41, 3.12, and 4.18 Å relative to the
oxygen atom of the respective hydroxyl groups. To probe
the role of Tyr337, we examined the potential energy
curve for Tyr337 side chain rotation relative to the other
residues (energy evaluation according to the MMFF94s
force field with appropriate charges) but found only one
minimum in the potential curve. Closer analysis reveals
that that the Tyr337 ring is trapped in a local pocket
formed by Phe338, Tyr341, Trp439, Trp449, and His447.
In previous structural studies and molecular dynamics
simulations, it has been found that Phe330 in tcAChE
can adopt a wide range of conformations in the complex
structure and may function as a swinging gate15,23,39

that structurally couples the anionic subsite of the active
site and the PAS. It is natural to expect similar behavior
of Tyr337 in the huAChE compared with the analogous
Phe330 in tcAChE. Such a gate swing movement of the
Tyr337 ring would certainly induce a shift in attached
and neighboring residues; thus, one function of this
PAS-active site coupling could be to effect proper
residue alignment within the anionic subsite. The fact
that the huAChE crystal structure used in this study
to train our scoring function did not have a cocrystal-
lized active site inhibitor (having only a PAS-bound
fasciculin molecule22), and thus did not reflect such a
conformational shift in the Tyr337, may constitute a
subtle flaw in our model. Given our model’s fairly strong
predictive capacity, we expect the flaw to be of only
minor consequence, however.

The accord between results derived from our scoring
method and those of X-ray structures and mutagenesis
observations indicates the effectiveness of the current
analysis and the scoring function’s predictive power.
Since this method requires a set of compounds with
known activity data to fit the score function, it is most
applicable to the task of lead optimization as opposed
to de novo discovery. In contrast to the comparative
molecular field analysis (CoMFA)41 method, which uses
probe atoms such as nitrogen, carbon, etc. to calculate
possible interaction fields between ligands and a puta-
tive receptor (and does not require explicit atomic-level
representation of the receptor structure), our method
uses a “real” interaction field between the ligands and
receptor, thus requiring advance knowledge of the
receptor structure. The benefit of using the current
method is that the important residues can be directly
identified and verified by site-directed mutagenesis,
whereas CoMFA merely generates a hypothetical map
of possible favorable and unfavorable interaction regions
based on statistically postulated correlations between
activity and orientations of specific functional groups
within the ligand training set. Such a hypothetical map
may correspond to the real interaction field if the
underlying postulated statistical correlation is valid but
is unlikely to be as accurate a representation as a real
interaction field. In cases where crystal structures of
the relevant receptor are available, CoMFA-generated
hypotheses may be adjusted in order to directly cor-
respond to the real field. In this vein, there have been
successful studies that used receptor-based docking

Figure 3. (Top) Structure of E2020 binding to tcAChE. E2020
is rendered in cyan. (Bottom) Structure of the E2020 binding
in huAChE. E2020 is rendered in cyan.

5498 Journal of Medicinal Chemistry, 2004, Vol. 47, No. 22 Guo et al.



methods to align the ligands and then used CoMFA on
the resulting alignments to ascertain and analyze the
resulting grid for drug design purposes.13,14,16,17 This
method is similar in principle to the COMBINE-like
technique that we have applied herein to this huAChE
system except that COMBINE methods are easier to
compute and to understand because they only require
treatment of ligand-residue interactions (hundreds of
terms or less) rather than the thousands of grid points
in CoMFA models. Another benefit relative to CoMFA
models is that the relative simplicity of our scoring
function also allows it to be used directly in any
subsequent docking calculations, thus providing a means
to accurately score novel inhibitor candidates and
predict their bound conformations rather than having
to do so in a stepwise manner.

Conclusions

A new AChE-specific scoring function has been de-
veloped herein and used in predicting binding affinity
of AChE inhibitors. The method is based on a COM-
BINE-type approach, incorporating the electrostatic and
VDW interaction fields between the ligands and recep-
tor. A 53-compound training set was used to construct
the scoring function, and a further 16 compounds were
used to test the resulting model. Strong statistical
correlations were found between predicted and observed
affinities for both the training and testing set. Analysis
of the scoring function has permitted identification of
those receptor residues making the most important
contributions to ligand binding. These analyses are
consistent with the X-ray structure and mutagenesis
studies. A comparison with other scoring methods and
consensus scoring indicated the high effectiveness and
predictability of this method.
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