Structure–Affinity Relationship Study on N-(1,2,3,4-Tetrahydronaphthalen-1-yl)-4-Aryl-1-Piperazinealkylamides, a New Class of 5-Hydroxytryptamine₇ Receptor Agents

Marcello Leopoldo,* Francesco Berardi, Nicola A. Colabufo, Marialessandra Contino, Enza Lacivita, Mauro Niso, Roberto Perrone, and Vincenzo Tortorella

Dipartimento Farmaco-Chimico, Università degli Studi di Bari, via Orabona, 4, 70125 Bari, Italy

Received April 21, 2004

A series of N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinealkylamides was prepared and their affinity for serotonin (5-hydroxytryptamine, 5-HT) 5-HT_{1A}, 5-HT_{1A}, and 5-HT_{2A} receptors was measured by in vitro binding assays. In relation to 5-HT₇ receptor affinity, receptor binding studies indicated that (i) the optimal alkyl chain length was five methylenes, (ii) an unsubstituted 1,2,3,4-tetrahydronaphthalenyl nucleus was preferred, and (iii) the substitution pattern of the aryl ring linked to the piperazine ring played a crucial role. Several compound with high affinity for 5-HT₇ receptors were identified. Among them, 4-(2-methoxyphenyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide (28), 4-(2-acetylphenyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide (34), 4-(2-methylthiophenyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide (44), 4-(2-hydroxyphenyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide (46), and 4-(2-methylphenyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide (49) were assayed for the 5-HT₇ receptor-mediated relaxation of substance P-induced guinea pig ileum contraction. Compounds 28, 44, and 49 behaved as full agonists and compound 34 as a partial agonist, whereas derivative **46** acted as an antagonist. Among the compounds presented here, it emerged that **44** was identified as a potent 5-HT₇ receptor agonist ($K_i = 0.22$ nM, EC₅₀ = 2.56 μ M), endowed with selectivity over 5-HT_{1A} and 5-HT_{2A} receptors (200-fold and >1000-fold, respectively).

Introduction

The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) has an array of pharmacological and physiological roles within the central nervous system (CNS) and in the periphery, mediated by its interactions with a total of 14 structurally and pharmacologically distinct receptor subtypes. These receptors have been assigned to one of seven families, 5-HT₁₋₇.¹ The 5-HT₇ receptor (5-HT₇R) is the most recent addition to the 5-HT receptor family, and was cloned for the first time in 1993 from rat^{2-5} and mouse.⁶ Since then, it has been cloned from other species such as human,7 guinea pig,8 and pig.9 The 5-HT₇R was shown to be positively coupled to adenylyl cyclase via Gs proteins; however, it displays a low degree of homology (40%) with other Gs-coupled 5-HT receptors.¹⁰ Four different isoforms have been found, namely, 5-HT7a, 5-HT7b, 5-HT7c, and 5-HT7d. Only two isoforms $(5-HT_{7a} \text{ and } 5-HT_{7b})$ are present in both rat and human, whereas the 5-HT7c receptor is found exclusively in rat and the 5-HT7d is found only in human. Each of the isoforms appears to form a functionally active receptor, with the 5-HT_{7a} being the most abundant (80%) in both rat and human brain.¹¹ There appear to be no pharmacological differences among the four isoforms.¹² High concentrations of the 5-HT₇R have been detected by in situ hybridization and 5-HT₇-like immunoreactivity^{13,14} in the hypothalamus, entorhinal cortex, septal areas, substantia nigra, amygdala, raphe nuclei, and the trigeminal nucleus. In addition, moderate levels of 5-HT₇-like immunoreactivity were found in the thalamus, hippocampus, cingulate and occipital cortex, caudate putamen, and suprachiasmatic nucleus (SCN) of the rat.¹⁵ This distribution correlates well with distribution of mRNA encoding 5-HT₇R protein. In fact, the 5-HT₇R mRNA has been detected in thalamus, hypothalamus, hippocampus, amygdala, cortex, septum, and suprachiasmatic nucleus.

The potential of therapeutic effects of 5-HT₇ agents have been hypothesized on the basis of such anatomical distribution. The link between 5-HT₇Rs and the SCN suggests a potential role in circadian rhythms and sleep disorders. Lovenberg et al.³ demonstrated that phase advances in circadian neuronal activity of the SCN could be elicited by use of serotonergic ligands that display a pharmacological profile consistent with that of the 5-HT₇R. Since then, 5-HT₇Rs have been shown to be present in postsynaptic areas in the SCN where serotonergic neurons are proposed to play a key role in modulating circadian activity. Mullins et al.¹⁶ have supplied supporting evidence that implicates a possible role for 5-HT₇R in depression. They demonstrated that antidepressant-induced expression of the immediate early gene, c-Fos, in the SCN was blocked by ritanserin (a high-affinity, but nonselective, 5-HT₇R antagonist) but not by the 5-HT_{1A} antagonist pindolol or the 5-HT_{1D} antagonist Sumatriptan. This suggests that the effect is mediated through 5-HT7Rs, although, with such nonselective antagonists, the involvement of other 5-HT receptors cannot be ruled out.

Chart 1

The involvement of the 5-HT₇R in migraine pathogenesis has been proposed by Terron¹⁷ because the 5-HT₇R-mediated vasodilator mechanism operates in vascular structures that have been implicated in migraine, such as the middle cerebral and external carotid arteries. Finally, several compounds possessing high 5-HT₇R affinity have therapeutic indications as antipsychotic drugs, and this has suggested that 5-HT₇R may mediate therapeutic action of such compounds.¹⁸

It is therefore clear that the 5-HT₇R may be a valuable drug target. During the past decade, considerable research efforts have been directed toward the identification of selective 5-HT₇R antagonists, ¹⁹ allowing the identification of some interesting compounds such as SB-258719,²⁰ SB-269970,^{21,22} SB-656104,²³ DR4004,^{24,25} and LY215840²⁶ (Chart 1). However, these promising compounds present several limitations because of their low potency (SB-258719), modest selectivity (SB-656104, LY215840), and low metabolic stability (SB-269970, DR4004). Therefore, the search for selectively acting 5-HT₇R ligands as useful pharmacological tools or potential drugs is still open. It is noteworthy that most 5-HT₇R ligands reported to date act as antagonists, whereas few agonists has been reported.²⁷

Of the different chemical classes that bind to 5-HT₇-Rs, arylpiperazines (Chart 2) have received our attention as well as that of other authors. In particular, Kikuchi and co-workers^{24,28} have reported on some 1-arylpiperazines, exemplified by compound 1, N-substituted by a butyl chain, bearing in the 4-position a tetrahydrobenzindole nucleus. Lopez-Rodriguez et al.²⁹ studied 1-arylpiperazine derivatives related to **2**. Recently, we have reported structure–affinity relationship studies of two distinct classes of 5-HT₇R ligands, based on the structure of 1-arylpiperazine. Examples of these classes are represented by compounds **3**³⁰ and **4**.³¹

In the present study, we screened the 1-(2-methoxyphenyl)piperazine derivatives 5-7, previously prepared in our laboratory as 5-HT_{1A} ligands,^{32,33} against the cloned rat 5-HT₇R because they share some structural Chart 2

 $HN H + Br SO_2CH_3 HN SO_2CH_3$

features with derivatives **1** and **2**. We found that the compounds **6** and **7** possessed moderate affinities for 5-HT₇R as well as for 5-HT_{1A} receptor. We here describe the structural modifications of **7** that have led to the identification of a series of high-affinity 5-HT₇R ligands based on the *N*-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinealkylamide structure. In particular we varied (i) the intermediate alkyl chain length, (ii) the position of the methoxy group on the 1,2,3,4-tetrahydronaphthalene nucleus, and (iii) the aromatic substituent linked to the N-1 piperazine ring.

Chemistry

The starting 1-arylpiperazines were obtained from commercial sources or were prepared by literature methods (see Experimental Section), except for 1-[2-(methylsulfonyl)phenyl]piperazine (8), which was prepared by reacting anhydrous piperazine with 2-bromo-(methylsulfonyl)benzene (Scheme 1). The preparation of the final compounds is depicted in Scheme 2. Acylation of amines 9a - e with the appropriate ω -haloacyl chloride afforded the key intermediates 10a-c,e, 11ae, and 12a-e that reacted with the appropriate 1-arylpiperazine to give the final compounds 7, 15–22, and 24–50. This synthetic pathway was not useful to obtain derivative 23 in a pure form, therefore an alternative synthetic route was followed: 1-(2-methoxyphenyl)piperazine was reacted with ethyl 4-bromobutanoate to give ester 13. Hydrolysis of the latter gave carboxylic acid 14 that reacted with amine 9d to give the expected final compound. All target compounds were prepared as racemates.

Results and Discussion

The first modification performed on compound 7 was the optimization of the intermediate alkyl chain length. Therefore, we evaluated compounds **15** and **16** (Table 1) having a four- or five-methylene alkyl chain, respectively. 5-HT₇R affinity values indicated that alkyl chain

Scheme 2^a

^a Reagents: (A) w-haloacyl chloride, NaOH; (B) 1-arylpiperazine; (C) ethyl 4-bromobutanoate; (D) NaOH; (E) 9d, 1,1'-carbonyl diimidazole.

Table 1. Physical Properties and Binding Affinities of Compounds 5-7 and 15-28

					$K_{ m i},{ m nM}$	
compd	R	n	$\mathrm{formula}^a$	mp, °C	$5-\mathrm{HT}_7$	$5-\mathrm{HT}_{1\mathrm{A}}$
5^{b}	$5-CH_3O$	1			>1000	NT
6 ^c	$5-CH_3O$	2			269 ± 18	253 ± 25
7	$5-CH_3O$	3	$C_{26}H_{35}N_3O_3$ ·HCl·0.2H ₂ O	215 decomp	35 ± 3.2	254 ± 65
15	$5-CH_3O$	4	$C_{27}H_{37}N_3O_3$ ·HCl·H ₂ O	187-190	28.2 ± 4.20	54.4 ± 6.5
16	$5-CH_3O$	5	$C_{28}H_{39}N_3O_3 \cdot 2HCl \cdot 0.5H_2O$	194 - 197	20 ± 2.5	24.5 ± 1.8
17	$6-CH_3O$	3	$C_{26}H_{35}N_3O_3 \cdot 2HCl$	128 - 129	186 ± 40	257 ± 25
18	$6-CH_3O$	4	$C_{27}H_{37}N_3O_3 \cdot 2HCl$	149 - 152	43.1 ± 4.8	23.2 ± 2.3
19	$6-CH_3O$	5	$C_{28}H_{39}N_3O_3 \cdot (COOH)_2$	102 - 105	30 ± 3.15	55 ± 8.0
20	$7-CH_3O$	3	$C_{26}H_{35}N_3O_3 \cdot 2HCl \cdot H_2O$	118 - 120	129 ± 5.0	160 ± 12
21	$7-CH_3O$	4	$C_{27}H_{37}N_3O_3 \cdot 2HCl \cdot 0.4H_2O$	187 - 188	38.4 ± 4.6	78.9 ± 6.30
22	$7-CH_3O$	5	$C_{28}H_{39}N_3O_3 \cdot 2HCl$	175 - 178	41 ± 11	39 ± 6.5
23	$8-CH_3O$	3	$C_{26}H_{35}N_3O_3 \cdot 2HCl$	131 - 133	154 ± 35	441 ± 20
24	$8-CH_3O$	4	$C_{27}H_{37}N_3O_3 \cdot 2HCl \cdot 0.2H_2O$	136 - 137	64.0 ± 12	72.0 ± 18
25	$8-CH_3O$	5	$C_{28}H_{39}N_3O_3 \cdot 2HCl$	125 - 127	31.4 ± 3.5	30.0 ± 2.6
26	Н	3	$C_{25}H_{33}N_3O_2 \cdot 2HCl$	171 - 173	92.0 ± 12	245 ± 20
27	Н	4	$C_{26}H_{35}N_3O_2 \cdot 2HCl \cdot 0.8H_2O$	199 - 200	6.05 ± 0.25	9 ± 0.70
28	Н	5	$C_{27}H_{37}N_3O_2 \cdot 2HCl \cdot 0.5H_2O$	150 - 151	6.64 ± 0.60	8.6 ± 0.35
5	-CT				0.51 ± 0.01	
8-OH-DPAT					1.2 ± 0.2	

^{*a*} All compounds were recrystallized from CH₃OH/Et₂O. Analysis for C, H, N; results were within $\pm 0.4\%$ of the theoretical values for the formulas given. ^{*b*} See ref 33. ^{*c*} See ref 32.

elongation resulted in increasing affinity. Second, we shifted the methoxy group from the 5-position to the 6-, 7-, and 8-position of the tetrahydronaphthalenyl ring, because previous studies indicated that the position of the methoxy group on the terminal aromatic nucleus influenced the 5-HT₇R affinity of compounds **3** and **4**.^{30,31} This modification was performed on the compounds **7**, **15**, and **16** that displayed good 5-HT₇R affinities. Upon consideration of each group of isomers (i.e., compounds having the same alkyl chain length), no significant difference in 5-HT₇R affinity was observed. Moreover, within each group of homologues (i.e., compounds bear-

ing the methoxy group in the same position), affinity values replicate the affinity rank already noted for the 5-methoxy-substituted derivatives 7, 15, and 16. Because the position of the methoxy group at the tetrahydronaphthalenyl ring did not exert a significant role on 5-HT₇R affinity of compounds 7 and 15–25, we evaluated the unsubstituted derivatives 26, 27, and 28. This modification improved the 5-HT₇R affinity.

The results in Table 1 indicate that the modifications of either the 1,2,3,4-tetrahydronaphthalenyl nucleus or of the linker between this group and the N-(2-methoxy-

Table 2. Physical Properties and Binding Affinities of Compounds 29-32

				K _i , nM	
compd	Ar	formula"	mp, °C	5-HT ₇	5-HT _{1A}
29	- No	C ₂₇ H ₃₄ N ₄ O ₂ •2HCl•H ₂ O	164 dec	125 ± 30	3900 ± 120
30		$C_{27}H_{34}N_4O_2$	148 dec	820 ± 90	NT ^b
31		C ₂₇ H ₃₅ N ₅ O•3HCl	300 dec	356 ± 55	2600 ± 280
32	OCH3	C ₂₈ H ₃₆ N ₄ O ₃ •2HCl•H ₂ O	196-198	704 ± 30	NT

^{*a*} All compounds were recrystallized from CH₃OH/Et₂O except **30** (from CHCl₃/*n*-hexane). Analysis for C, H, N; results were within $\pm 0.4\%$ of the theoretical values for the formulas given. ^{*b*} Not tested.

phenyl)piperazine moiety of compound 7 influenced the 5-HT₇R affinity only and not the selectivity over 5-HT_{1A} receptor.

Therefore, we focused on the aromatic ring attached to the piperazine nitrogen, bearing in mind that minimal changes in this part of the molecule might result in major changes in 5-HT₇R affinity as well as in 5-HT_{1A} and 5-HT_{2A} receptor affinity, as documented.^{28,30} Because the derivatives with a five-methylene linker displayed the higher 5-HT₇R affinity values, we have further modified compound 28. Initially, on the basis of literature data, we substituted the 2-methoxyphenyl group with a bicyclic aromatic system³⁴ or a 2-acetylphenyl or a 2-cyanophenyl group.²⁸ The replacement of the 2-methoxyphenyl group with a bicyclic aromatic system (Table 2, compounds 29-32) reduced the 5-HT₇R affinity. In particular, it can be noted that the presence of the benzisoxazolyl group was detrimental for 5-HT₇ affinity (compound 29), whereas in previous studies we found that this particular replacement resulted in the opposite effect.³⁰ In contrast, compounds 33 and 34 (Table 3) retained reasonably good 5-HT₇R affinity but were unselective over 5-HT_{1A} receptors. Moreover, we prepared compounds 35 and 36 that present an additional substituent in the 4- or 3-position of the aromatic ring, because this substitution pattern has been reported to be detrimental for 5-HT_{1A} receptor affinity.^{35,36} This modification determined a loss in 5-HT₇R affinity and no significant improvement in selectivity over 5-HT_{1A} receptors. Additionally, we shifted the substituent from the 2-position of compounds 28, 33, and 34 to the 3- and 4-positions (Table 3, derivatives 37-42). Binding data of derivatives 37-42 indicate that affinity for 5-HT₇R strongly depends on the position of the substituent. In fact, the 3-substitued derivatives 37, **39**, and **41** are less potent at 5-HT₇R than the 2-substitued isomers 28, 33, and 34. The 4-substituted derivatives 38, 40, and 42 are nearly devoid of 5-HT₇R affinity. Taken together, these data confirm that this

part of the molecule is quite sensitive to minimal structural changes. Subsequently, we evaluated analogues of 28 having a substituent in the 2-position other than methoxy, as well as the unsubstituted derivative (Table 3, derivatives 43-50). For this purpose we selected several substituents with different electronic properties. Considering the unsubstituted derivative 50 as reference compound, it can be noted that the cyano, chloro, and nitro substituents (compounds 33, 47, and 48, respectively) did not change the 5-HT₇R affinity. In contrast, carboxamido and methylsulfonyl substituents (derivatives 43 and 45, respectively) caused a drop in 5-HT₇R affinity. Substitution of the 2-position by a methoxy, acetyl, methylthio, hydroxy, or methyl groups resulted in high-affinity 5-HT₇R ligands (derivatives 28, 34, 44, 46, and 49, respectively). These data indicate that the presence of a substituent in the 2-position modulates the affinity of this class of compounds for 5-HT₇R. The affinity values seem not to be related to electronic, steric, or H-bonding properties of these substituents. As a result, clear structure-affinity relationships are not evident. Moreover, the 5-HT_{1A} receptor affinities of compounds 33-50 parallel the 5-HT7R affinities, whereas 5-HT_{2A} receptor affinities are negligible. Notably, only compound 44 showed considerable selectivity over 5-HT_{1A} and 5-HT_{2A} receptors (200-fold and >1000-fold, respectively).

We tested the structurally related compounds 28, 34, 44, 46, and 49 for 5-HT₇ intrinsic activity in an isolated guinea pig ileum assay (Table 4). It has been reported that 5-HT₇ agonists produce a dose-dependent guinea pig ileum relaxation of substance P-induced contraction.³⁷ Compounds 28, 44, and 49 behaved as full agonists and compound 34 as a partial agonist, whereas derivative 46 acted as an antagonist. These results indicate that the nature of the 2-substituent is critical for the intrinsic activity. In particular, the difference in intrinsic activity between hydroxy derivative 46 and the corresponding methoxy derivative 28 might indicate

Table 3. Physical Properties and Binding Affinities of Compounds 33-50

					и, ши	
compd	R	formula ^a	mp, °C	$5-\mathrm{HT}_7$	$5\text{-}\mathrm{HT}_{1\mathrm{A}}$	$5-\mathrm{HT}_{\mathrm{2A}}$
33	2-CN	$C_{27}H_{34}N_4O$ ·HCl· $0.5H_2O$	175 - 178	48.7 ± 2.5	16.6 ± 1.4	700 ± 25
34	2-COCH_3	$C_{28}H_{37}N_3O_2$ ·HCl·H ₂ O	136 - 139	4.14 ± 0.80	3.8 ± 0.10	12200 ± 350
35	$2\text{-OCH}_3\text{-}4\text{-}Cl$	$C_{27}H_{36}N_3O_2Cl$	145 - 147	122 ± 14	332 ± 27	7168 ± 150
36	$2,5$ -di-OCH $_3$	$C_{28}H_{39}N_3O_3 \cdot 2HCl \cdot 0.6H_2O$	124 - 126	70.3 ± 5.2	911 ± 23	259 ± 20
37	$3-OCH_3$	$C_{27}H_{37}N_3O_2 \cdot 2HCl \cdot 0.5H_2O$	156 - 159	119 ± 20	105 ± 12	142 ± 20
38	$4-OCH_3$	$C_{27}H_{37}N_3O_2$	129 - 130	2100 ± 150	NT^b	NT
39	3-CN	$C_{27}H_{34}N_4O$ ·HCl	170 - 172	97.8 ± 5.6	291 ± 15	909 ± 85
40	4-CN	$C_{27}H_{34}N_4O$ ·HCl·1.5 H_2O	102 - 104	1400 ± 120	NT	NT
41	$3-COCH_3$	$C_{28}H_{37}N_3O_2 \cdot 2HCl \cdot H_2O$	146 - 148	496 ± 24	676 ± 32	1127 ± 200
42	4-COCH ₃	$C_{28}H_{37}N_3O_2$ ·2HCl	112 - 114	2639 ± 130	NT	NT
43	2-CONH_2	$C_{27}H_{36}N_4O_2 \cdot 2HCl \cdot 0.5H_2O$	184 - 187	229 ± 12	494 ± 35	>4000 (9%)
44	2-SCH_3	$C_{27}H_{37}N_3OS \cdot HCl \cdot H_2O$	181 - 182	0.22 ± 0.08	52.7 ± 3.2	326 ± 35
45	$2-SO_2CH_3$	$C_{27}H_{37}N_3O_3S \cdot HCl \cdot H_2O$	120 - 122	298 ± 16	3124 ± 260	>4000 (38%)
46	2-OH	$C_{26}H_{35}N_3O_2 \cdot 2HCl \cdot 0.3H_2O$	162 - 164	11.4 ± 2.3	24 ± 6.3	3394 ± 225
47	2-Cl	$C_{26}H_{34}ClN_3O \cdot HCl \cdot 0.3H_2O$	168 - 169	40.1 ± 6.7	96 ± 8.0	301 ± 12
48	$2-NO_2$	$C_{26}H_{34}N_4O_3$ ·HCl·0.5H ₂ O	152 - 155	63.3 ± 7.5	183 ± 15	282 ± 35
49	$2\text{-}\mathrm{CH}_3$	$C_{27}H_{37}N_3O \cdot 2HCl \cdot 0.5H_2O$	212 - 214	15.2 ± 3.2	279 ± 44	262 ± 24
50	Н	$C_{26}H_{35}N_3O{\boldsymbol{\cdot}}2HCl{\boldsymbol{\cdot}}0.5H_2O$	172 - 174	65.6 ± 4.7	128 ± 22	77.8 ± 5.7

^{*a*} All compounds were recrystallized from CH₃OH/Et₂O except **35** and **38** (from CHCl₃/*n*-hexane). Analysis for C, H, N; results were within $\pm 0.4\%$ of the theoretical values for the formulas given. ^{*b*} Not tested.

Table 4. Relaxation Effect Induced by Selected Compounds and 5-CT on Substance P-Stimulated Guinea Pig Ileum Contracture with 5-HT₇ Receptor Desensitization

compd	maximal effect, %	$\mathrm{EC}_{50}, \mu\mathrm{M}$	$\substack{pA_2\\(vs\;SB\text{-}269970)}$	Schild plot	Ν
28	91	6.32 ± 0.20	8.02 ± 1.40	1.0 (p < 0.0001)	15
34	79	2.46 ± 0.70	7.60 ± 0.49	1.3 (p < 0.0001)	14
44	100	2.56 ± 0.32	7.70 ± 0.80	0.9 (p < 0.0001)	15
46	0		7.20 ± 0.60	1.6 (p < 0.005)	16
49	98	1.82 ± 0.72	7.80 ± 0.40	0.9 (p < 0.0001)	15
5-CT	100	0.63 ± 0.04	7.48 ± 0.12	1.2 (p < 0.0001)	12

that the H-bonding donor property of the hydroxy is responsible for the antagonistic property of **46**. In contrast, an apolar group seems to promote the activation of 5-HT₇R. However, due to the limited number of compounds tested, a general trend cannot be drawn. A complete structure-activity relationship study will be carried out on a wider set of compounds, by evaluation of the capacity to stimulate cAMP production in cell lines expressing the cloned 5-HT₇R.

In conclusion, starting from N-(5-methoxy-1,2,3,4tetrahydronaphthalen-1-yl)-4-(2-methoxyphenyl)-1-piperazinebutanamide (7), we have identified a new class of 5-HT7R ligands. The structural modification introduced on 7 allowed the elucidation of the structural requirements for high 5-HT₇R affinity of this class of compounds. In particular, all structural modifications introduced on either the 1,2,3,4-tetrahydronaphthalenyl nucleus or on the linker between this particular group and the N-(2-methoxyphenyl)piperazine moiety influenced only the 5-HT₇R affinity and not the selectivity over 5-HT_{1A} receptor. In contrast, modifications of the aryl group linked to the piperazine ring resulted in major changes in 5-HT7R affinity. Therefore, the 4-aryl-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide structure was identified as a promising framework to obtain high-affinity 5-HT₇R ligands. Among the compounds displaying the highest 5-HT₇R affinity, derivatives **28**, **34**, **44**, **46**, and **49** were submitted to a functional assay to establish their intrinsic activity. Compounds **28**, **44**, and **49** behaved as full agonists and compound **34** as a partial agonist, whereas derivative **46** acted as an antagonist. Among the compounds presented here, 4-(2-methylthiophenyl)-*N*-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide (**44**) was identified as a potent 5-HT₇R full agonist ($K_i = 0.22$ nM, EC₅₀ = 2.56 μ M), with selectivity over 5-HT_{1A} and 5-HT_{2A} receptors (200-fold and > 1000-fold, respectively).

K nM

Experimental Section

Chemistry. Column chromatography was performed with 1:30 ICN silica gel 60A (63–200 $\mu m)$ as the stationary phase. Melting points were determined in open capillaries on a Gallenkamp electrothermal apparatus. Elemental analyses (C, H, N) were performed on a Eurovector Euro EA 3000 analyzer; the analytical results were within $\pm 0.4\%$ of the theoretical values for the formula given. ¹H NMR spectra were recorded at 300 MHz on a Bruker AM 300 WB spectrometer or on a Varian Mercury-VX spectrometer. All chemical shift values are reported in parts per million, ppm (δ). Recording of mass spectra was done on an HP68905973 MSD gas chromatograph/ mass spectrometer; only significant m/z peaks, with their percentage of relative intensity in parentheses, are reported. Compounds 42, 43, and 45 were characterized by ESI+/MS/ MS with an Agilent 1100 Series LC-MSD trap System VL workstation. All spectra were in accordance with the assigned structures. The purity of new compounds that were essential to the conclusions drawn in the text was determined by HPLC on a Perkin-Elmer series 200 LC instrument with a Phenomenex Prodigy ODS-3 RP-18 column (250 \times 4.6 mm, 5 μ m particle size) and equipped with a Perkin-Elmer 785A UV/vis detector setting $\lambda = 254$ nm. All compounds were eluted with CH₃OH/H₂O/EtN₃, 4:1:0.01 v/v/v, at a flow rate of 1 mL/min. A standard procedure was used to transform final compounds into their hydrochloride or oxalate salts that were recrystallized as detailed in Tables 1-3.

The following compounds were synthesized according to published procedures: 1-(2-acetylphenyl)piperazine,²⁸ 1-(3-

acetylphenyl)piperazine,³⁸ 2-bromo(methylsulfonyl)benzene,³⁹ 1-(2-carboxamidophenyl)piperazine,⁴⁰ 1-(4-chloro-2-methoxyphenyl)piperazine,⁴¹ 1-(2-cyanophenyl)piperazine,⁴⁰ 1-(3-cyanophenyl)piperazine,⁴² 1-(2,5-dimethoxyphenyl)piperazine,⁴³ 5-methoxy-1,2,3,4-tetrahydro-1-naphthalenamine,⁴⁴ 6-methoxy-1,2,3,4-tetrahydro-1-naphthalenamine,⁴⁵ 7-methoxy-1,2,3,4-tetrahydro-1-naphthalenamine,⁴⁵ 7-methoxy-1,2,3,4-tetrahydro-1-naphthalenamine,⁴⁵ 7-methoxy-1,2,3,4-tetrahydro-1-naphthalenamine,⁴⁵ 8-methoxy-1,2,3,4-tetrahydro-1-naphthalenamine,⁴⁵ 8-methoxy-1,2,3,4-tetrahydro-1-naphthalenamine,⁴⁵ 8-methoxy-1,2,3,4-tetrahydro-1-naphthalenamine,⁴⁶ 1-(2-mitrophenyl)piperazine,⁴⁷ 2-(1-piperazinyl)-1H-benzimidazole,⁴⁸ 3-(1-piperazinyl)-1,2-benzisoxazole,⁴⁹ and 2-(1-piperazinyl)-benzoxazole,⁵⁰

1-[2-(Methylsulfonyl)phenyl]piperazine (8). A mixture of 2-bromo(methylsulfonyl)benzene (1.10 g, 4.7 mmol) and anhydrous piperazine (2.02 g, 23.5 mmol) was heated at 110 °C overnight. Then, the mixture was cooled and partitioned between 2 N NaOH and CH₂Cl₂. The separated organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude residue was chromatographed (CHCl₃/CH₃OH, 9:1, as eluent) to give **8** as a white semisolid (0.36 g, 34% yield). ¹H NMR δ 2.58 (s, 1H, NH, D₂O exchanged), 2.84 (s, 4H, piperazinic), 3.14 (s, 3H, CH₃), 7.10–7.83 (m, 4H, aromatic).

General Procedure for Preparation of Alkylating Agents 10a-c,e, 11a-e, and 12a-e. A cooled solution of amine 9a-e (4.0 mmol) in CH₂Cl₂ was stirred vigorously with 2% aqueous NaOH (9.6 mL, 4.8 mmol) while the appropriate ω -haloalkyl chloride (4.8 mmol) in CH₂Cl₂ was added dropwise. The same NaOH solution was then used to maintain pH at 9, and at constant pH the layers were separated. The organic phase was washed with 3 N HCl and with H₂O and then dried over Na₂SO₄ and evaporated under reduced pressure. The crude residue was chromatographed as detailed below to give compounds 10a-c,e, 11a-e, and 12a-e as white semisolids.

N-(5-Methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-4-chlorobutanamide (10a). Eluted with CHCl₃/AcOEt, 1:1; 39% yield. ¹H NMR δ 1.72–1.86, 1.92–2.04 (m, 4H, *endo*-CH₂CH₂), 2.10–2.19 (m, 2H, CH₂CH₂CH₂) 2.37 (t, 2H, J = 7.2 Hz, COCH₂), 2.53–2.79 (m, 2H, benzylic CH₂), 3.63 (t, 2H, J = 6.0 Hz, CH₂Cl), 3.82 (s, 3H, CH₃), 5.15–5.20 (m, 1H, CH), 5.75 (br d, 1H, NH), 6.72–7.18 (m, 3H, aromatic). GC-MS *m/z* 283 (M⁺ + 2, 1), 281 (M⁺, 2), 161 (26), 160 (100), 159 (27).

N-(5-Methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-5-chloropentanamide (11a). Eluted with CH₂Cl₂; 33% yield. ¹H NMR δ 1.75−1.85, 1.93−2.01 (m, 8H, CH₂(CH₂)₂CH₂, endo-CH₂CH₂), 2.19−2.26 (m, 2H, COCH₂), 2.55−2.73 (m, 2H, benzylic CH₂), 3.52−3.58 (m, 2H, CH₂Cl), 3.81 (s, 3H, CH₃), 5.14−5.19 (m, 1H, CH), 5.73 (br d, 1H, NH), 6.71−7.17 (m, 3H, aromatic). GC-MS *m*/*z* 297 (M⁺ + 2, 2), 295 (M⁺, 5), 161 (28), 160 (100), 159 (31), 145 (20).

N-(5-Methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-6-bromohexanamide (12a). Eluted with CH₂Cl₂; 35% yield. ¹H NMR: δ 1.43–1.53 [m, 2H, (CH₂)₂CH₂(CH₂)₂], 1.61–1.99 [m, 8H, CH₂CH₂Br, COCH₂CH₂, endo-CH₂CH₂], 2.20 (t, 2H, J = 7.4 Hz, COCH₂), 2.53–2.75 (m, 2H, benzylic CH₂), 3.40 (t, 2H, J = 6.7 Hz, CH₂Br), 3.81 (s, 3H, CH₃), 5.17 (br t, 1H, CH), 5.69 (br d, 1H, NH), 6.74–7.17 (m, 3H, aromatic). GC-MS *m/z* 355 (M⁺ + 2, 1), 353 (M⁺, 1), 160 (100).

Ethyl 4-[4-(2-Methoxyphenyl)piperazin-1-yl]butanoate (13). A stirred mixture of 1-(2-methoxyphenyl)piperazine (1.50 g, 7.8 mmol), ethyl 4-bromobutanoate (0.9 mL, 6.3 mmol), and K_2CO_3 (0.87 g, 6.3 mmol) in acetonitrile was refluxed overnight. After the mixture was cooled, the mixture was evaporated to dryness and H₂O (20 mL) was added to the residue. The aqueous phase was extracted with CH_2Cl_2 (2 × 30 mL). The collected organic layers were dried over Na₂SO₄ and evaporated under reduced pressure. The crude residue was chromatographed (CHCl₃/AcOEt, 1:1, as eluent) to afford pure 13 as a pale yellow oil (1.32 g, 68% yield). ¹H NMR δ 1.24 (t, $3H, J = 7.1 Hz, CH_2CH_3), 1.79 - 1.89 (m, 2H, CH_2CH_2CO), 2.34$ (t, 2H, J = 7.3 Hz, COCH₂), 2.41 [t, 2H, J = 7.4 Hz, (CH₂)₂- NCH_2], 2.63 [br s, 4H, $(CH_2)_2NCH_2$], 3.06 [br s, 4H, $ArN(CH_2)_2$], 3.83 (s, 3H, OCH_3), 4.11 (q, 2H, J = 7.1 Hz, CH_2CH_3), 6.82– 7.00 (m, 3H, aromatic). GC-MS m/z 307 (M⁺ + 1, 18), 306 (M⁺, 77), 261 (32), 205 (100), 190 (37).

4-[4-(2-Methoxyphenyl)piperazin-1-yl)]butanoic acid (14). Ester 13 (1.20 g, 3.9 mmol) was refluxed for 4 h in 20 mL of 4% aqueous NaOH. Then the mixture was cooled and washed with CHCl₃. The separated aqueous phase was neutralized with 3 N HCl and extracted with AcOEt (3×30 mL). The collected organic layers were dried over Na₂SO₄ and evaporated under reduced pressure to give 0.58 g of acid 14 as a white solid (51% yield). ¹H NMR δ 1.84–1.89 (m, 2H, CH₂-CH₂CO), 2.58–2.62 (m, 2H, COCH₂), 2.77 (br t, 2H, (CH₂)₂-NCH₂], 2.2.96 [br s, 4H, (CH₂)₂NCH₂], 3.20 [br s, 4H, ArN-(CH₂)₂], 3.87 (s, 3H, CH₃), 6.87–7.06 (m, 3H, aromatic), 9.52 (br s, 1H, OH, D₂O exchanged). GC-MS *m/z* 279 (M⁺ + 1, 20), 278 (M⁺, 96), 219 (25), 205 (100), 190 (39).

General Procedure for Preparation of Final Compounds. A stirred mixture of alkylating agent 10a-c,e, 11a-e,or 12a-e (8.0 mmol), 1-substituted piperazine (9.6 mmol), and K₂CO₃ (8.0 mmol) in acetonitrile was refluxed overnight. After cooling, the mixture was evaporated to dryness and H₂O (20 mL) was added to the residue. The aqueous phase was extracted with AcOEt (2 × 30 mL). The collected organic layers were dried over Na₂SO₄ and evaporated under reduced pressure. The crude residue was chromatographed (CH₂Cl₂/CH₃-OH, 19:1, as eluent) to yield pure compounds 7, 15–22, 24–43, and 45–50 as pale yellow oils. Yields were 20–30% for butanamide derivatives, 35-44% for pentanamide derivatives, and 65-75% for the other compounds.

4-(2-Methoxyphenyl)-*N*-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinebutanamide (26). ¹H NMR δ 1.75–1.93, 1.98–2.10 (m, 6H, COCH₂CH₂, endo-CH₂CH₂), 2.34 (t, 2H, *J* = 7.0 Hz, COCH₂CH₂), 2.42–2.58 [m, 6H, CH₂N(CH₂)₂], 2.76– 2.78 (m, 2H, benzylic CH₂), 2.90 [br s, 4H, (CH₂)₂NAr], 3.84 (s, 3H, CH₃), 5.19–5.29 (m, 1H, CH), 6.80–7.29 (m, 9H, aromatic, NH). GC-MS *m*/*z* 408 (M⁺ + 1, 7), 407 (M⁺, 27), 392 (88), 245 (52), 205 (100).

4-(2-Methoxyphenyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinepentanamide (27). ¹H NMR δ 1.56–1.85, 2.01–2.07 [m, 8H, CH₂(CH₂)₂CH₂, endo-CH₂CH₂], 2.25 (t, 2H, J = 7.3 Hz, COCH₂CH₂), 2.43 [t, 2H, J = 7.3 Hz, CH₂N(CH₂)₂], 2.62 [br s, 4H, CH₂N(CH₂)₂], 2.71–2.79 (m, 2H, benzylic CH₂), 3.06 [br s, 4H, (CH₂)₂NAr], 3.86 (s, 3H, CH₃), 5.19–5.23 (m, 1H, CH), 5.79 (br d, 1H, NH), 6.84–7.25 (m, 8H, aromatic). GC-MS *m*/*z* 422 (M⁺ + 1, 4), 421 (M⁺, 14), 406 (41), 259 (45), 205 (100), 131 (36).

4-(2-Methoxyphenyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide (28). ¹H NMR δ 1.36–1.43 (m, 2H, CH₂CH₂CH₂CH₂CH₂), 1.51–1.59, 1.61–1.86, 2.00– 2.06 (m, 8H, CH₂CH₂CH₂CH₂CH₂, endo-CH₂CH₂), 2.21 (t, 2H, J = 7.6 Hz, COCH₂), 2.40 [br t, 2H, CH₂N(CH₂)₂], 2.64 [br s, 4H, CH₂N(CH₂)₂], 2.71–2.80 (m, 2H, benzylic CH₂), 3.09 [br s, 4H, (CH₂)₂NAr], 3.86 (s, 3H, CH₃), 5.17–5.23 (m, 1H, CH), 5.67 (br d, 1H, NH), 6.83–7.25 (m, 8H, aromatic). GC-MS m/z 436 (M⁺ + 1, 4), 435 (M⁺, 13), 420 (27), 273 (41), 205 (100).

4-(2-Acetylphenyl)-*N*-(1,2,3,4-tetrahydronaphthalen-1yl)-1-piperazinehexanamide (34). ¹H NMR δ 1.33–1.43 (m, 2H, CH₂CH₂CH₂CH₂CH₂), 1.51–1.86, 1.98–2.06 (m, 8H, CH₂CH₂CH₂CH₂CH₂, endo-CH₂CH₂), 2.21 (t, 2H, *J* = 7.4 Hz, COCH₂), 2.43 [t, 2H, *J* = 7.6 Hz, CH₂N(CH₂)₂], 2.62 [br s, 4H, CH₂N(CH₂)₂], 2.65 (s, 3H, CH₃), 2.71–2.79 (m, 2H, benzylic CH₂), 3.04 [br t, 4H, (CH₂)₂NAr], 5.17–5.29 (m, 1H, CH), 5.69 (br d, 1H, NH), 7.02–7.40 (m, 7H, aromatic). GC-MS *m/z* 448 (M⁺ + 1, 8), 447 (M⁺, 26), 299 (60), 287 (65), 273 (100), 217 (90).

4-(2-Methylthiophenyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide (44). ¹H NMR δ 1.33–1.43 (m, 2H, CH₂CH₂CH₂CH₂CH₂), 1.53–1.63, 1.66–1.86, 2.00–2.06 (m, 8H, CH₂CH₂CH₂CH₂CH₂, endo-CH₂CH₂), 2.22 (t, 2H, J = 7.4 Hz, COCH₂), 2.40 (s, 3H, CH₃), 2.43 [t, 2H, J = 7.4 Hz, CH₂N(CH₂)₂], 2.63 [br s, 4H, CH₂N(CH₂)₂], 2.74–2.79 (m, 2H, benzylic CH₂), 3.03 [br s, 4H, (CH₂)₂NAr], 5.18–5.29 (m, 1H, CH), 5.70 (br d, 1H, NH), 7.03–7.26 (m, 8H, aromatic). GC-MS m/z 452 (M⁺ + 1, 2), 451 (M⁺, 8), 273 (61), 221 (100).

4-(2-Methylphenyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide (49). ¹H NMR δ 1.34–1.44 (m, 2H, CH₂CH₂CH₂CH₂CH₂), 1.53–1.63, 1.66–1.86, 2.00– $\begin{array}{l} 2.08\ (\mathrm{m},\,\mathrm{8H},\,\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2,\,endo\,\mathrm{-CH}_2\mathrm{CH}_2),\,2.19\ (\mathrm{t},\,2\mathrm{H},\,J=7.4\ \mathrm{Hz},\,\mathrm{COCH}_2),\,2.30\ (\mathrm{s},\,3\mathrm{H},\,\mathrm{CH}_3),\,2.42\ [\mathrm{br}\ \mathrm{t},\,2\mathrm{H},\,\mathrm{CH}_2\mathrm{N-}(\mathrm{CH}_2)_2],\,2.60\ [\mathrm{br}\ \mathrm{s},\,4\mathrm{H},\,\,\mathrm{CH}_2\mathrm{N}(\mathrm{CH}_2)_2],\,2.70-2.79\ (\mathrm{m},\,2\mathrm{H},\,\mathrm{benzylic}\ \mathrm{CH}_2),\,2.95\ [\mathrm{br}\ \mathrm{t},\,4\mathrm{H},\,\,(\mathrm{CH}_2)_2\mathrm{NAr}],\,5.18-5.23\ (\mathrm{m},\,1\mathrm{H},\,\mathrm{CH}),\,5.69\ (\mathrm{br}\ \mathrm{d},\,1\mathrm{H},\,\mathrm{NH}),\,6.94-7.26\ (\mathrm{m},\,8\mathrm{H},\,\mathrm{aromatic}).\ \mathrm{GC-MS}\ m/z\ 420\ (\mathrm{M}^++1,\,2),\,419\ (\mathrm{M}^+,\,7),\,273\ (99),\,189\ (100). \end{array}$

N-(8-Methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-4-(2methoxyphenyl)-1-piperazinebutanamide (23). A mixture of carboxylic acid 14 (0.50 g, 1.8 mmol) and 1,1'-carbonyldiimidazole (0.29 g, 1.8 mmol) in 10 mL of anhydrous THF was stirred for 8 h. A solution of amine 9d (0.32 g, 1.8 mmol) in 10 mL of anhydrous THF was added and the resulting mixture was stirred for 1 h. The reaction mixture was partitioned between AcOEt and H₂O. The organic layer was washed with aqueous Na₂CO₃ solution, dried (Na₂SO₄), and concentrated in vacuo. The crude residue was chromatographed (CH₂Cl₂/ CH₃OH, 19:1, as eluent) to afford pure amide 23 (0.33 g, 42%) yield). ¹H NMR δ 1.61–1.90, 2.10–2.19 (m, 6H, COCH₂CH₂, endo-CH₂CH₂), 2.24 (t, 2H, J = 7.4 Hz, COCH₂CH₂), 2.28-2.47, 2.55-2.58 [m, 6H, CH₂N(CH₂)₂], 2.68-2.77 (m, 2H, benzylic CH₂), 2.90 [br s, 4H, (CH₂)₂N], 3.79, 3.84 (2 s, 6H, 2 CH₃), 5.27-5.29 (m, 1H, CH), 6.46 (br d, 1H, NH), 6.67-7.18 (m, 7H, aromatic). GC-MS m/z 438 (M⁺ + 1, 1), 437 (M⁺, 4), 422 (27), 205 (24), 161 (100).

4-(2-Hydroxyphenyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide (46). A stirred mixture of alkyl bromide **12e** (0.36 g, 1.1 mmol) and 1-(2-hydroxyphenyl)piperazine (0.29 g, 1.6 mmol) in acetonitrile was refluxed overnight. After the mixture was cooled, the solvent was evaporated in vacuo and a saturated aqueous solution of NaHCO₃ (20 mL) was added to the residue. The aqueous phase was extracted with AcOEt $(2 \times 30 \text{ mL})$. The collected organic layers were dried over Na₂SO₄ and evaporated under reduced pressure. The crude residue was chromatographed (CHCl₃/ CH₃OH, 19:1, as eluent) to yield pure **46** as a pale yellow oil (0.30 g, 65% yield). ¹H NMR δ 1.34–1.44 (m, 2H, CH₂CH₂CH₂-CH₂CH₂), 1.53-1.63, 1.66-1.86, 2.00-2.07 (m, 8H, CH₂CH₂- $CH_2CH_2CH_2$, endo- CH_2CH_2), 2.22 (t, 2H, J = 7.6 Hz, $COCH_2$), 2.43 [t, 2H, J = 7.6 Hz, $CH_2N(CH_2)_2$], 2.63 [br s, 4H, CH_2N -(CH₂)₂], 2.75-2.79 (m, 2H, benzylic CH₂), 2.90 [br s, 4H, (CH₂)₂-NAr], 5.18-5.29 (m, 1H, CH), 5.69 (br d, 1H, NH), 6.83-7.27 (m, 9H, aromatic, OH, 1H, D₂O exchanged). GC-MS m/z 422 $(M^+ + 1, 2), 421 (M^+, 5), 273 (100), 191 (28).$

Biological Methods. 1. General. Male Wistar Hannover rats (200–250 g) and male albino Dunkin-Hartley guinea pigs (300–350 g) were from Harlan (S. Pietro al Natisone, Italy). The animals were handled according to internationally accepted principles for care of laboratory animals (E. E. C. Council Directive 86/609, O. J. No. L358, December 18, 1986).

Rat recombinant serotonin 5-HT₇R expressed in HEK-293 cells were purchased from PerkinElmer-NEN (Betsville, MD).

[³H]LSD, [³H]-8-OH-DPAT, and [³H]ketanserin were obtained from PerkinElmer-NEN (Zaventem, Belgium). 5-CT, substance P, and ketanserin were purchased from Tocris Cookson Ltd. (Bristol, U.K.). 8-OH-DPAT hydrobromide was from RBI. SB-269970 was purchesed from Sigma-Aldrich (Milan, Italy).

For receptor binding studies, compounds **5–7** and **15–50** were dissolved in absolute ethanol. For isolated guinea pig ileum assay, compounds **28**, **34**, **44**, **46**, and **49** were dissolved in Krebs–Henseleit solution, pH 7.4.

2. Radioligand Binding Assay at Rat Cloned 5-HT₇Rs. Binding of [³H]LSD at rat cloned 5-HT₇ receptor was performed according to Jasper et al.⁵¹ with minor modifications. In 1 mL of incubation buffer (50 mM Tris, 10 mM MgCl₂, and 0.5 mM EDTA, pH 7.4) were suspended 30 μ g of membranes, 2.5 nM [³H]LSD, and the drugs or reference compound (six to nine concentrations). The samples were incubated for 60 min at 37 °C. The incubation was stopped by rapid filtration on GF/A glass fiber filters (presoaked in 0.5% polyethylenimine for 30 min). The filters were washed with 3 × 3 mL of ice-cold buffer (50 mM Tris, pH 7.4). Nonspecific binding was determined in the presence of 10 μ M 5-CT. Approximately 90% of specific binding was determined under these conditions.

3. Radioligand Binding Assay at Rat Hippocampal Membranes 5-HT_{1A} Receptors. Binding experiments were performed according to Borsini et al.52 with minor modifications. Rats were killed by decapitation, the brain was quickly removed, and the hippocampus was dissected. The hippocampus (1.0 g) was homogenized with a Brinkman Polytron (setting 5 for 3×15 s) in 25 mL of 50 mM Tris buffer, pH 7.6. The homogenate was centrifuged at 48000g for 15 min at 4 °C. The supernatant was discarded, and the pellet was resuspended in 25 mL of buffer and then preincubated for 10 min at 37 °C. The homogenate was centrifuged at 48000g for 15 min at 4 °C. The supernatant was discarded, and the final pellet was stored at -80 °C until use. Each tube received, in a final volume of 1 mL of 50 mM Tris (pH 7.6), hippocampus membranes suspension and 1 nM [3H]-8-OH-DPAT. For competitive inhibition experiments, various concentrations of drugs studied were incubated. Nonspecific binding was defined relative to 1 μ M 8-OH-DPAT. Samples were incubated at 37 °C for 20 min and then filtered on Whatman GF/B glass microfiber filters. The K_d value determined for 8-OH-DPAT was 8.8 nM.

4. Radioligand Binding Assay at Rat Cortex Membranes 5-HT_{2A} Receptors. Binding experiment was performed according to Leysen et al.⁵³ with minor modifications. Rats were killed by decapitation, the brain was quickly removed, and the cortex was dissected. The cortex (1.0 g) was homogenized with a Brinkman Polytron (setting 5 for 3×15 s) in 25 mL of 0.25 M sucrose. The homogenate was centrifuged at 2000g for 10 min at 4 °C. The supernatant was saved, and the pellet was resuspended in 25 mL of buffer. The supernatants were collected and diluted 1:10 (w/w) with 10 mM Tris, pH 7.4. The homogenate was centrifugated at 35000g for 15 min at 4 °C. The supernatant was discarded, and the final pellet was stored at -80 °C until used. Each tube received, in a final volume of 2 mL of 50 mM Tris (pH 7.7), cortex membranes suspension and 2.5 nM [3H]ketanserin. For competitive inhibition experiments, various concentrations of drugs studied were incubated. Nonspecific binding was defined relative to 10 µM ketanserin. Samples were incubated at 37 °C for 15 min and then filtered on Whatman GF/B glass microfiber filters. The $K_{\rm d}$ value determined for ketanserin was 0.42 nM.

5. Isolated Guinea Pig Ileum Assay. Guinea pigs were anesthetized and then decapitated and the proximal ileum was removed. The intestine was carefully flushed several times with warm Krebs-Henseleit solution (118 mM NaCl, 25 mM NaHCO₃, 4.7 mM KCl, 0.6 mM MgSO₄, 1.2 mM KH₂PO₄, 1.2 mM CaCl₂, and 11.2 mM glucose, pH 7.4). Whole ileal segments, of about 3 cm in length, were suspended under 1.0 g tension in Krebs solution gassed with $95\% O_2$ and $5\% CO_2$ and maintained at 37 °C. According to Eglen and co-workers³⁷ with minor modification, the bathing medium contained $1 \,\mu M$ atropine to antagonize cholinergically mediated contractions due to activation of 5-HT₃ and 5-HT₄ receptors, 1 μ M ketanserin to block 5-HT_{2A} receptors, and 1 μ M pyrilamine to block H_1 receptors. Changes in tension of the tissue were recorded by Fort 10 Original WPI isometric transducer (2Biological Instruments, Italy) connected to a PowerLab/400 workstation.⁵⁴ Tissue was contracted by 100 nM substance P. This value was preliminarily determined by concentrationresponse curves (1-200 nM). A 100 nM concentration of substance P elicited 80% of maximum contraction. The reference agonist 5-CT or tested compound was added 3 min before substance P addition, and noncumulative concentrationresponse curves were constructed (0.001 $-10 \,\mu$ M). Because we determined that 5-CT induced relaxation with maximal response (39%) at 3 μ M concentration, 5-HT₇ desensitization was achieved by equilibrating for 1 h in the presence of $3 \mu M 5$ -CT, changing the bathing solution every 15 min. Tested compounds were added 3 min before substance P addition.

Full agonists 5-CT, **28**, **44**, and **49** and partial agonist **34** were also tested in the presence of the antagonist SB-269970 $(0.1-3 \ \mu\text{M})$. The isolated guinea pig ileum was equilibrated

New Class of 5-HT₇ Receptor Agents

for 75 min with antagonist before concentration-response curves of tested compounds were constructed.

Tissue responses were recorded as gram changes in isometric tension and expressed as percentage of reduction in the height of the contraction.

6. Statistical Analysis. The inhibition curves on the different binding sites of the compounds reported in Table 1 were analyzed by nonlinear curve-fitting utilizing the Graph-Pad Prism program.⁵⁵ The value for the inhibition constant, K_i , was calculated from the Cheng–Prusoff equation.⁵⁶ Agonist potencies, expressed as EC₅₀, were obtained from nonlinear iterative curve-fitting by GraphPad Prism.

Supporting Information Available: Spectral data for compounds 7, 10b-e, 11b-e, 12b-e, 15-22, 24, 25, 29-33, 35-43, 45, 47, 48, and 50. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Hoyer, D.; Hannon, J. P.; Martin, G. R. Molecular, pharmacological and functional diversity of 5-HT receptors. *Pharmacol. Biochem. Behav.* 2002, 71, 533-554.
- (2) Shen, Y.; Monsma, F. J., Jr.; Metcalf, M. A.; Jose, P. A.; Hamblin, M. W.; Sibley, D. R. Molecular cloning and expression of a 5-hydroxytryptamine₇ serotonin receptor subtype. J. Biol. Chem. 1993, 268, 18200-18504.
- (3) Lovenberg, T. W.; Baron, B. M.; de Lecea, L.; Miller, J. D.; Prosser, R. A.; Rea, M. A.; Foye, P. E.; Racke, M.; Slone, A. L.; Siegel, B. W.; Danielson, P. E.; Sutcliffe, J. G.; Erlander, M. G. A novel adenylyl cyclase-activating serotonin receptor (5-HT₇) implicated in the regulation of mammalian circadian rhythms. *Neuron* **1993**, *11*, 449–458.
- (4) Ruat, M.; Traiffort, E.; Leurs, R.; Tardivel-Lacombe, J.; Diaz, J.; Arrang, J. M.; Schwartz, J. C. Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT₇) activating cAMP formation. *Proc. Natl. Acad. Sci. U.S.A.* **1993**, 90, 8547-5851.
- (5) Meyerhof, W. Obermuller, F., Fehr, S., Richter, D. A novel rat serotonin receptor: primary structure, pharmacology, and expression pattern in distinct brain regions. *DNA Cell Biol.* **1993**, *12*, 401–409.
- (6) Plassat, J.-L.; Amlaiky, N.; Hen, R. Molecular cloning of a mammalian serotonin receptor that activates adenylate cyclase. *Mol. Pharmacol.* **1993**, 44, 229-236
- (7) Bard, J. A.; Zgombick, J.; Adham, N.; Vaysse, P.; Branchek, T. A.; Weinshank, R. L. Cloning of a novel human serotonin receptor (5-HT₇) positively linked to adenylate cyclase. J. Biol. Chem. **1993**, 268, 23422-23426.
- (8) Tsou, A.; Kosaka, A.; Bach, C.; Zuppan, P.; Yee, C.; Tom, L.; Alvarez, R.; Ramsey, S.; Bonhaus, D. W.; Stefanich, E.; Jakeman, L.; Eglen, R. M.; Chan, H. W. Cloning and expression of a 5-hydroxytryptamine₇ receptor positively coupled to adenylyl cyclase. J. Neurochem., **1994**, 63, 456–464.
- (9) Bhalla, P.; Saxena, P. R.; Sharma, H. S. Molecular cloning and tissue distribution of mRNA encoding porcine 5-HT₇ receptor and its comparison with the structure of other species. *Mol. Cell. Biochem.* 2002, 238, 81-88.
- (10) Eglen, M.; Jasper, J. R.; Chang, D. J.; Martin, G. R. The 5-HT₇ receptor: orphan found. *Trends Pharmacol. Sci.* **1997**, *18*, 104– 107.
- (11) Heidmann, D. E.; Szot; P.; Kohen, R.; Hamblin, M. W. Function and distribution of three rat 5-hydroxytryptamine₇ (5-HT₇) receptor isoforms produced by alternative splicing. *Neuropharmacology* **1998**, 37, 1621–1632.
- (12) Krobert, K. A.; Bach, T.; Syversveen, T.; Kvingedal, A. M.; Levy, F. O.; The cloned human 5-HT₇ receptor splice variants: a comparative characterization of their pharmacology, function and distribution. *Naunyn-Schmiedebergs-Arch. Pharmacol.* 2001, 363, 620–632.
- (13) Oliver, K. R.; Kinsey, A. M.; Wainwright, A.; McAllister, G.; Sirinathsinghji, D. Localisation of 5-HT₇ and 5-HT_{5A} receptor immunoreactivity in the rat brain. *Soc. Neurosci. Abstr.* **1999**, 25, 1207.
- (14) Neumaier, J. F.; Sexton, T. J.; Yracheta, J.; Diaz, A. M.; Brownfield, M. Localization of 5-HT₇ receptors in rat brain by immunocytochemistry, in situ hybridization, and agonist stimulated cFos expression. J. Chem. Neuroanat. 2001, 21, 63-73.
- (15) Gustafson, E. L.; Durkin, M. M.; Bard, J. A.; Zgombick, J.; Branchek, T. A. A receptor autoradiographic and in situ hybridization analysis of the distribution of the 5-HT₇ receptor in rat brain. Br. J. Pharmacol. **1996**, 117, 657–666.
- (16) Mullins, U. L.; Gianutsos, G.; Éison, A. S. Effects of antidepressants on 5-HT₇ receptor regulation in the rat hypothalamus. *Neuropsychopharmacology* **1999**, *21*, 352–367.

- (17) Terron, J. A. Is the 5-HT₇ receptor involved in the pathogenesis and prophylactic treatment of migraine? *Eur. J. Pharmacol.* **2002**, 439, 1–11.
- (18) Roth, B. L.; Craigo, S. C.; Choudhary, M. S.; Uluer, A.; Monsma, F. J., Jr.; Shen, Y.; Meltzer, H. Y.; Sibley, D. R. Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. *J. Pharmacol. Exp. Ther.* **1994**, 268, 1403–1410.
- (19) Leopoldo, M. Serotonin₇ receptors (5-HT₇Rs) and their ligands. *Curr. Med. Chem.* 2004, 11, 629–661.
- (20) Forbes, I. T.; Dabbs, S.; Duckworth, D. M.; Jennings, A. J.; King, F. D.; Lovell, P. J.; Brown, A. M.; Collin, L.; Hagan, J. J.; Middlemiss, D. N.; Riley, G. J.; Thomas, D. R.; Upton, N. (R)-3,N-dimethyl-N-[1-methyl-3-(4-methylpiperidin-1-yl)propyl]benzenesulfonamide: the first selective 5-HT₇ receptor antagonist J. Med. Chem. **1998**, 41, 655-657.
- (21) Lovell, P. J.; Bromidge, S. M.; Dabbs, S.; Duckworth, D. M.; Forbes, I. T.; Jennings, A. J.; King, F. D.; Middlemiss, D. N.; Rahman, S. K.; Saunders: D. V.; Collin, L. L.; Hagan, J. J.; Riley, G. J.; Thomas, D. R. (R)-3-(2-(2-(4-Methylpiperidin-1-yl)ethyl)pyrrolidine-1-sulfonyl)phenol (SB-269970). J. Med. Chem. 2000, 43, 342-345.
- (22) Hagan, J. J.; Price, G. W.; Jeffrey, P.; Deeks, N. J.; Stean, T.; Piper, D.; Smith, M. I.; Upton, N.; Medhurst, A. D.; Middlemiss, D. N.; Riley, G. J.; Lovell, P. J.; Bromidge, S. M.; Thomas, D. R. Characterization of SB-269970-A, a selective 5-HT₇ receptor antagonist. Br. J. Pharmacol. **2000**, 130, 539–548.
- (23) Forbes, I. T.; Douglas, S.; Gribble, A. D.; Ife, R. J.; Lightfoot, A. P.; Garner, A. E.; Riley, G. J.; Jeffrey, P.; Stevens, A. J.; Stean, T. O.; Thomas, D. R. SB-656104-A: a novel 5-HT₇ receptor antagonist with improved in vivo properties. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 3341–3344.
- (24) Kikuchi, C.; Nagaso, H.; Hiranuma, T.; Koyama, M. Tetrahydrobenzindoles: selective antagonists of the 5-HT₇ receptor. J. Med. Chem. **1999**, 42, 533–535.
- (25) Kikuchi, C.; Suzuki, H.; Hiranuma, T.; Koyama, M. New tetrahydrobenzindoles as potent and selective 5-HT₇ antagonists with increased in vitro metabolic stability. *Bioorg. Med. Chem. Lett.* 2003, 13, 61–64.
- (26) Cushing, D. J.; Zgombick, J. M.; Nelson, D. L.; Cohen, M. L. LY215840, a high-affinity 5-HT₇ receptor ligand, blocks serotonin-induced relaxation in canine coronary artery. *J. Pharmacol. Exp. Ther.* **1996**, 277, 1560–1566.
- (27) Holmberg, P.; Sohn, D.; Leideborg, R.; Caldirola, P.; Zlatoidsky, P.; Hanson, S.; Mohell, N.; Rosqvist, S.; Nordvall, G.; Johansson, A. M.; Johansson, R. Novel 2-aminotetralin and 3-aminochroman derivatives as selective serotonin 5-HT₇ receptor agonists and antagonists. J. Med. Chem. **2004**, 47, 3927–3930.
- (28) Kikuchi, C.; Ando, T.; Watanabe, T.; Nagaso, H.; Okuno, M.; Hiranuma, T.; Koyama, M. 2a-[4-(Tetrahydropyridoindol-2-yl)butyl]tetrahydrobenzindole derivatives: new selective antagonists of the 5-hydroxytryptamine7 receptor. J. Med. Chem. 2002, 45, 2197-2206.
- (29) López-Rodríguez, M. L.; Porras, E.; Benhamú, B.; Ramos, J. A.; Morcillo, M. J.; Lavandera, J. L. First pharmacophoric hypothesis for 5-HT₇ antagonism. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 1097–1100.
- (30) Perrone, R.; Berardi, F.; Colabufo, N. A.; Lacivita, E.; Leopoldo, M.; Tortorella, V. Synthesis and structure-affinity relationships of 1-[ω-(4-aryl-1-piperazinyl)alkyl]-1-aryl ketones as 5-HT₇ receptor ligands. J. Med. Chem. 2003, 46, 646-649.
- (31) Leopoldo, M.; Berardi, F.; Colabufo, N. A.; Contino, M.; Lacivita, L.; Perrone, R.; Tortorella, V. Studies on 1-arylpiperazine derivatives with affinity for rat 5-HT₇ and 5-HT_{1A} receptors. J. Pharm. Pharmacol. **2004**, 56, 247–255.
- (32) Perrone, R.; Berardi, F.; Leopoldo, M.; Tortorella, V.; Fornaretto, M. G.; Caccia, C.; McArthur, R. 1-Aryl-4-[(1-tetralinyl)alkyl]piperazines: alkylamido and alkylamino derivatives. Synthesis, 5-HT_{1A} receptor affinity, and selectivity. 3. J. Med. Chem. **1996**, 39, 3195–3202.
- (33) Perrone, R.; Berardi, F.; Colabufo, N. A.; Leopoldo, M.; Tortorella, V. N-[2-[4-(4-Chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide: a potent and selective dopamine D_4 ligand. J. Med. Chem. **1998**, 41, 4903-4909.
- (34) Bromidge, S. M.; Gribble, A. D.; Lovell, P. J.; Witherington, J. Tetrahydrobenzindolone derivatives, their preparation and their use as 5-HT₇ receptor antagonists. PCT Int. Appl. WO 0129029, 2001; Chem. Abstr. 2001, 134, 311197.
- (35) Martinez-Esparza, J.; Oficialdegui, A. M.; Perez-Silanes, S.; Heras, B.; Orus, L.; Palop, J. A.; Lasheras, B.; Roca, J.; Mourelle, M.; Bosch, A.; Del Castillo, J. C.; Tordera, R.; Del Rio, J.; Monge, A. New 1-aryl-3-(4-arylpiperazin-1-yl)propane derivatives, with dual action at 5-HT_{1A} serotonin receptors and serotonin transporter, as a new class of antidepressants. *J. Med. Chem.* **2001**, *44*, 418–428.

- (36) Kuipers, W.; van Wijngaarden, I.; Kruse, C. G.; van Amstel, M. H.; Tulp, M. T. M.; IJzerman A. P. N⁴-Unsubstituted N¹arylpiperazines as high-affinity 5-HT_{1A} receptor ligands. J. Med. Chem. **1995**, 38, 1942–1954.
- (37) Carter, D.; Champney, M.; Hwang, B.; Eglen, R. M. Characterization of a postjunctional 5-HT receptor mediating relaxation of guinea-pig isolated ileum. *Eur. J. Pharmacol.* 1995, 280, 243– 250.
- (38) Kato, K.; Doi, T.; Sugiura, Y.; Kawada, M. Preparation of 3-[2-(4-arylazino)ethyl]-2-indolones and analogues as antiincontinence agents. WO 9802432, 1998; *Chem. Abstr.* 1998, 128, 140729.
- (39) Gilman, H.; Martin, G. A. Rearrangement amination of o-chloroand o-bromophenyl methyl sulfides and o-bromophenyl methyl sulfone in liquid ammonia. J. Am. Chem. Soc. 1952, 74, 5317– 5319.
- (40) Lagu, B.; Tian, D.; Nagarathnam, D.; Marzabadi, M. R.; Wong, W. C.; Miao, S. W.; Zhang, F.; Sun, W.; Chiu, G.; Fang, J.; Forray, C.; Chang, R. S. L.; Ransom, R. W.; Chen, T. B.; O'Malley, S.; Zhang, K.; Vyas, K. P.; Gluchowski, C. Design and synthesis of novel α_{1a} adrenoceptor-selective antagonists. 3. Approaches to eliminate opioid agonist metabolites by using substituted phenylpiperazine side chains. J. Med. Chem. **1999**, 42, 4794–4803.
- (41) Bantle, G. W.; Elworthy, T. R.; Guzman, A.; Jaime-figueroa, S.; Lopez-Tapia, F. J.; Morgans, D. J., Jr.; Perez-Medrano, A.; Pfister, J. R.; Sjogren, E. B.; Talamas, F. X. Preparation of pyrimidinedione, pyrimidinetrione, triazinedione, and tetrahydroquinazolinedione derivatives as α1-adrenoceptor antagonists. EP 748800, 1996; Chem. Abstr. 1996, 126, 131468.
- (42) Koyama, M.; Kikuchi, C.; Ushiroda, O.; Ando, T.; Nagaso, H.; Fuji, K.; Okuno, M.; Hiranuma, T. Preparation of tetrahydrobenzindole derivatives for the treatment or prevention of mental diseases. WO 9800400, 1998; *Chem. Abstr.* **1998**, *128*, 114961.
- (43) Perrone, R.; Berardi, F.; Colabufo, N. A.; Tortorella, V.; Fiorentini, F.; Olgiati, V.; Vanotti, E.; Govoni, S. Mixed 5-HT_{1A}/D-2 activity of a new model of arylpiperazine: 1-aryl-4-[3-(1,2dihydro-naphthalen-4-yl)-n-propyl]piperazines. 1. Synthesis and structure-activity relationships. J. Med. Chem. 1994, 37, 99– 104.
- (44) Sarges, R.; Tretter, J. R.; Tenen, S. S.; Weissman, A. 5,8-Disubstituted 1-aminotetralins. A class of compounds with a novel profile of central nervous system activity. J. Med. Chem. 1973, 16, 1003-1011.
- (45) Verhoest, P. R.; Hoffman, R. L.; Corbett, J. W.; Ennis, M. D.; Frank, K. E.; Fu, J.-M. Preparation of substituted aryl pyrazine derivatives as CRF1 receptor antagonists useful against anxiety

disorders, depression and stress related disorders. WO 20030-45924, 2003; Chem. Abstr. N **2003**, 139, 6891.

- (46) Kimura, T.; Katsube, T.; Nishigaki, T. Preparation of (trifluoromethyl)piperazinylquinolinecarboxylic acid derivatives. WO 9602512, 1996; *Chem. Abstr.* **1996**, *125*, 10854.
- (47) Romero, D. L.; Mitchell, M. A.; Thomas, R. C.; Palmer, J. R.; Tarpley, W. G.; Aristoff, P. A.; Smith, H. W. Diaromatic substituted anti-AIDS compounds. WO 9109849, 1991; *Chem. Abstr.* N 1991, 116, 21074.
- (48) Orjales, A.; Mosquera, R.; Labeaga, L.; Rodes R. New 2-piperazinylbenzimidazole derivatives as 5-HT₃ antagonists. Synthesis and pharmacological evaluation. J. Med. Chem. **1997**, 40, 586– 593.
- (49) Yevich, J. P.; New, J. S.; Smith, D. W.; Lobeck, W. G.; Catt, J. D.; Minielli, J. L.; Eison, M. S.; Taylor, D. P.; Riblet, L. A.; Temple, D. L., Jr. Synthesis and biological evaluation of 1-(1,2-benzisothiazol-3-yl)- and (1,2-benzisoxazol-3-yl)piperazine derivatives as potential antipsychotic agents. J. Med. Chem. 1986, 29, 359-369.
- (50) Sato, Y.; Yamada, M.; Yoshida, S.; Soneda, T.; Ishikawa, M.; Nizato, T.; Suzuki, K.; Konno, F. Benzoxazole derivatives as novel 5-HT₃ receptor partial agonists in the gut. *J. Med. Chem.* **1998**, *41*, 3015–3021.
- (51) Jasper, J. R.; Kosaka, A.; To, Z. P.; Chang, D. J.; Eglen, R. M. Cloning, expression and pharmacology of a truncated splice variant of the human 5-HT₇ receptor (h5-HT_{7b}). Br. J. Pharmacol. **1997**, 122, 126–132.
- (52) Borsini, F.; Giraldo, E.; Monferini, E.; Antonini, G.; Parenti, M.; Bietti, G.; Donetti, A. BIMT 17, a 5-HT_{2A} receptor antagonist and 5-HT_{1A} receptor full agonist in rat cerebral cortex. *Naunyn Schmiedebergs Arch. Pharmacol.* **1995**, 352, 276–282.
- (53) Leysen, J. E.; Niemegeers, C. J. E.; Van Nueten, J. M.; Laduron, P. M. [³H]-ketanserin (R 41 468), a selective 3H-ligand for serotonin₂ receptor binding sites. *Mol. Pharmacol.* **1986**, *21*, 301–314.
- (54) PowerLab/400 (version for Windows), ADInstruments Pty Ltd, Castle Hill, Australia.
- (55) GraphPad Prism Software (version for Windows), GraphPad Software, Inc., San Diego, CA.
- (56) Cheng, Y. C.; Prusoff, W. H. Relationship between the inhibition constant (K_i) and the concentration of inhibitor which causes 50% inhibition (IC₅₀) of an enzymatic reaction. *Biochem. Pharmacol.* **1973**, 22, 3099–3108.

JM049702F