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Knowledge-based potentials have been found useful in a variety of biophysical studies of
macromolecules. Recently, it has also been shown in self-consistent studies that it is possible
to extract quantities consistent with pair potentials from model structural databases. In this
study, we attempt to extend the results obtained from these self-consistent studies toward the
extraction of realistic pair potentials from the Protein Data Bank (PDB). The new method
utilizes a clustering approach to define atom types within the PDB consistent with the optimal
effective pairwise potential. The method has been integrated into the SMoG drug design
package, resulting in an improved approach for the rapid and accurate estimation of binding
affinities from structural information. Using this approach, it is possible to generate simple
knowledge-based potentials that correlate (R = 0.61) with experimental binding affinities in a
database of 118 diverse complexes. Furthermore, predictions performed on a random 1/3 of
the database consistently show an average unsigned error of 1.5 log K; units. It is also possible
to generate specialized knowledge-based potentials, targeted to specific protein families. This
approach is capable of generating potentials that correlate strongly with experimental binding
affinities within these families (R = 0.8—0.9). Predictions on 1/3 of these family databases
yield average unsigned errors ranging from 1.1 to 1.3 log K; units. In summary, we describe a
physically motivated approach to optimizing knowledge-based potentials for binding energy
prediction that can be integrated into a variety of stages within a lead discovery protocol.

Introduction

Knowledge-based potentials are used prodigiously in
macromolecular biophysical research. Perhaps their
most striking feature is the speed by which the energet-
ics of large systems may be estimated. This partially
explains their current use in studying large protein
systems but also their applicability to problems in the
fields of structure-based drug design and proteomics
where screening of extensive structural databases and
configurational states may be necessary.

Although their speed is an important feature, tradeoffs
between speed and accuracy yield potentials that are
not generally applicable to a broad range of systems.
Typical approximations include the assumption of pair-
wise additive potentials as well as coarse-grained
distance dependence. These approaches arise naturally
as a means of maintaining a reasonable level of preci-
sion when determining energy functions from a distri-
bution of atom—atom or residue—residue contacts.
While typical, these techniques are certainly not uni-
versal and various alternatives have been proposed in
an attempt to improve the accuracy of knowledge-based
potentials for various applications. The introduction of
density estimation to smooth radial distribution func-
tions was found to improve the knowledge-based poten-
tial's ability to handle distance dependence.! In another
study, multibody interactions were treated approxi-
mately by manipulating residue—residue interactions
based on the secondary structural element with which
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each residue was associated.? Furthermore, knowledge-
based potentials have been augmented with mean field
solvation energy terms in order to improve their ac-
curacy in predicting protein/small molecule binding
affinities.®> The aim of these and other studies is to
create a scoring function that has the speed inherent
in knowledge-based potentials but is also accurate
enough to provide some practical information.

The field of structure-based drug design is a well-
established research area, and a number of methods for
scoring the efficacy of putative inhibitors have been
developed. Currently, statistical approaches such as
guantitative structure—activity relationships (QSAR)
and CoMFA analyses play a significant role in compu-
tational lead discovery processes.*® These models
provide a primary advantage of speed, while also
maintaining a reliable level of accuracy in domains
strictly limited by their training set. Empirical energy
functions, similar to QSAR functionals, fit weights
within a linear combination of classical energy terms
in order to reproduce binding free energies.” Linear
interaction energy (LIE) methods are based on the
approximation that by evaluating ensemble averages of
weighted energy terms in the bound and unbound states
one can estimate the binding free energy.8 Finally, free
energy perturbation (FEP) approaches rely on classical
potentials and extensive ensemble averages of the
bound and unbound states as well as a number of
intermediate states in order to rigorously calculate the
binding free energy difference typically between closely
related ligands in a common active site.® Moving from
QSAR to LIE and finally to FEP methods, these ap-
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proaches become more grounded in physical principles
but simultaneously more computationally intensive.

Knowledge-based potentials, which had been used
extensively for protein studies, have recently entered
the field of rational drug design as atom-based poten-
tials were developed. Since the introduction of atomic
knowledge-based potentials, a variety of methods have
emerged to apply this technique to the problem of
binding energy prediction.1°~4 The knowledge-based
approach is advantageous in its physical derivation as
well as the speed of the corresponding energy calcula-
tions. The speed has obvious benefits in the context of
drug screening and lead discovery protocols where a
large number of putative compounds require evaluation.
The physical basis of these potentials may also have
benefits to the drug design community. Although purely
statistical methods such as QSAR and CoMFA are
currently very popular in lead discovery protocols,
physical methods have the potential for generating
robust screening functions that can improve the diver-
sity of leads.

Physically based potentials may play a significant role
in future drug design protocols. The significant amounts
of data retrieved from combinatorial chemistry tech-
niques, as well as genomics studies, have recently
propelled statistical approaches in drug screening to
new heights of popularity. However, when a completely
novel target is encountered, these techniques can be-
come bogged down. The reason may be a general feature
of most statistical techniques, namely, that novel targets
require the statistical approach to extrapolate to identify
properties of the target. The same argument can be
applied not only to novel targets but also to novel
inhibitors that bind in modes distinct from those
observed to date. The discovery of novel binding modes
can have significant implications not only for biological
challenges such as the evolution of drug resistance but
also legal issues such as avoiding patent violations. As
these issues become more relevant to scientific and
business interests, physically based techniques can
begin to play a more important role in the drug design
process. These approaches, when fundamentally based
on physical laws, have the ability to move beyond the
solution space best treated by statistical approaches.

The physical basis of knowledge-based potentials has
been challenged recently in the literature and remains
an active area of discussion among theoretical chemists.
Valid arguments against the simple physical interpreta-
tion of knowledge-based potentials have been made from
first principles as well as through simulation.1516 Recent
theoretical studies, however, have demonstrated the
hope for extracting simple pairwise potentials from
protein structural databases. These self-consistent model
studies have demonstrated that it is possible to ac-
curately extract simple pair potentials from contact
statistics in Protein Data Bank (PDB)-like databases.”18

Similar results were also observed in the context of
atomic resolution knowledge-based potentials using
small molecule growth (SMoG).1° Results demonstrated
that by designing ligands to bind receptors using a
predetermined pair potential, a quantity strongly cor-
related with the true pair potential (r > 0.8) could be
extracted from contact statistics gathered from these
structures.
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While quantities strongly correlated with simple pair
potentials have been extracted from the self-consistent
structural databases described previously, when these
approaches are implemented in real systems, the results
are less than perfect. Errors in the extracted potentials
could result from the same reason that imperfect
correlation is observed in the self-consistent studies;
however, given the strong correlations observed in these
studies, entropy may be a more likely source of the
observed errors. The correlation between the binding
free energy and the binding potential is only perfect
when entropy can be neglected. When evaluating a
broad database containing distinct targets and small
molecules, entropy may play a key role in defining the
relative binding affinity. However, when evaluating
homologous targets separately, one would expect that
entropic considerations would substantially cancel out.
Even in this scenario, the correlation between the
predicted binding enthalpy and the experimental bind-
ing affinity is weak in some families. We must then turn
to the possibility that although the procedure for
extracting interaction potentials has been optimized
within the self-consistent study, the procedure is not
perfectly transferable to the PDB. The potentials them-
selves are not being extracted with high accuracy.

In this work, we suggest a means for optimizing the
potential extraction procedure for real databases such
as the PDB. While the demonstrated ability to extract
potentials from contact statistics in self-consistent
systems is encouraging, an additional step is required
to make this approach consistent with real chemical
systems. A hidden assumption built into each of the self-
consistent studies is that there exists a one-to-one
relationship between each pair of particle types and the
true interaction potential between these types. This
means that for each pair of particle types, there exists
one and only one effective interaction between these
particles. This assumption is key to the extraction
procedure’s ability to identify unique pair potentials
between these predefined particle types. In real chemi-
cal systems, this one-to-one relationship is not built in.

If we are to expect to extract the “true” potential from
structural databases, we must have particle types
consistent with this potential. In this work, atom types
are generated by clustering atomic parameters describ-
ing classical interaction energy terms such as partial
charge and the Born radius. By grouping atoms accord-
ing to these parameters, we hope to identify atom types
that are consistent with the true effective pair potential.
Using a procedure optimized in self-consistent studies
to extract potentials highly correlated to the true
potential, we introduce native atom types to extract
truer potentials from the PDB. The knowledge-based
potential generated from these atom types is evaluated
by its ability to predict relative binding affinity in a
database of protein/ligand crystal structures.

Results

The objective of this work is to identify native atom
types or atom types consistent with the true effec-
tive pair potential. The first step in generating atom
types native to the true potential is to charac-
terize atoms based on properties intrinsic to the true
potential. Because we obviously do not know the true
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potential a priori, we choose properties characteristic
of interaction energies from empirical classical poten-
tials such as CHARMM or AMBER. Atoms are then
clustered according to these properties to define atom
types. These atom types are then used to train a
traditional knowledge-based potential based on the
approach of Ishchenko et al.1t

At this stage, atoms are described using two proper-
ties. While a number of possible property pairs have
been evaluated, the most significant properties appear
to be the partial charge and the Born radius. Atom types
based on these properties were empirically found to
yield knowledge-based potentials capable of producing
the highest correlation to experimental binding affini-
ties.

Atoms from a training database are associated with
a two-dimensional vector containing the Born radius
and partial charge mediated by a weight, which influ-
ences the relative contributions of these properties to
the atom’s description. The protein and ligand atoms
are clustered separately into 1—15 clusters. The optimal
weights and the optimal number of protein and ligand
atom types are not known a priori. Therefore, all
knowledge-based potentials resulting from the different
weights and the different number of atom types are
determined.

In this section, we will describe the results obtained
from optimizing atom types within the SMoG knowledge-
based potential. First, we describe the potentials ob-
tained by choosing atom types that maximize correlation
to experimental binding affinities within a diverse
database of 118 complexes. We show that by optimizing
atom types based solely on a single partial charge
descriptor, we are able to significantly improve the
correlation between predicted and experimental binding
affinities (R = 0.60) relative to SMoG 2001 (R = 0.43).
Furthermore, we show that optimization of atom types
based on a combination of the partial charge and the
Born radius is also able to demonstrate significant
improvement over past results (R = 0.63). A more
rigorous jackknifing test, using 1/3 or 39 of the 118
complexes, demonstrates the robustness of the opti-
mized knowledge-based potentials. An additional jack-
knifing test, in which an entire target family is removed
from the training set, is performed to examine the
practical utility of this approach for examining novel
targets.

Next, we examine the binding energy correlations
within eight protein target families that comprise the
diverse testing set of 118 complexes. We observe that
while atom types based on partial charge are capable
of demonstrating improved binding energy predictions
relative to SMoG 2001 within the diverse database,
these atom types are not capable of generally improving
the intrafamily correlations. On the contrary, however,
atom types based on a combination of partial charge and
the Born radius are capable of significantly improving
the binding energy correlations observed both within
the diverse data set and within the eight protein
families.

Finally, we optimize atom types to target families
individually, constructing family specific knowledge-
based potentials for the purpose of accurate binding
energy prediction. A different balance of the Born radius
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and partial charge properties is optimal in describing
the atom types within the different families. Energies
obtained from optimized knowledge-based potentials are
strongly correlated with experimental binding affinities
(R = 0.8-0.9). Furthermore, jackknifing results dem-
onstrate that the predictive ability of these family
specific potentials is excellent, providing accuracy ap-
proaching 1 log K unit.

Diverse Database of 118 Complexes. The first set
of calculations performed involved optimizing the atom
types in order to generate knowledge-based potentials
that correlated strongly with the known binding affini-
ties from a diverse set of protein—ligand complexes.

1. Atom Types Based Only on Partial Charge.
Atom types based on clustering partial charges would
be expected to resemble atom types typically encoun-
tered in empirical force fields such as CHARMM or
AMBER. Because Gasteiger partial charges are gener-
ated through a partial equilibration of initial formal
charges, these descriptors retain information relevant
to the local bonded connectivity. It is this local inductive
polarization effect that is the basis for atom typing in
many other potentials and is also the basis for the
“chemical intuition” that was used to identify atom types
in the previous versions of SMoG.1%1219 While some
similarity in atom type definitions is expected, this
similarity also depends on the number of resulting atom
types. As we will describe later, the number of optimal
atom type clusters does not resemble the number of
atom types described in many other potentials. Regard-
less of the expected similarity between the partial
charge-based atom types and the SMoG 2001 atom
types, an improvement was observed in the binding
energy prediction.

Using the diverse database, SMoG 2001 demonstrated
a correlation of R = 0.43 with the experimental binding
affinity.1* This correlation was increased to R = 0.60
by optimizing the partial charge-based atom types. In
other words, atoms were grouped based on their partial
charge and the number of these clusters (or atom types)
was chosen based on the optimal correlation of the
resulting knowledge-based potential to known binding
affinity data. These atom types and the corresponding
potential are shown in Table 1. A scatter plot is given
showing the predicted vs experimental binding energies
using SMoG 2001 and the optimized KB potential
(Figure 1). In this test, the optimal knowledge-based
potential is chosen based on its ability to correlate
strongly with experimental binding energies within the
testing set. For this reason, the testing set is actually
used to train this potential and therefore does not
represent an independent validation. Instead, this
analysis offers an indication of whether information
extracted from this database can improve our knowledge-
based potentials. A more rigorous jackknifing test using
independent testing and training databases is described
later.

2. Atom Types Based on Partial Charge and the
Born Radius. The improvement in the correlation
observed using partial charge atom types is also possible
using a specific combination of partial charge and Born
radius. In Figure 2a, for each increment of the weight
from O to 1, the optimal correlation associated with some
number of protein and ligand atom types is shown. This
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Table 1. Optimized Potential and Atom Type Clusters for
Diverse Complexes?

0.00-3.50 Potential

LO L1 L2
PO 0.17 —0.47 0.09
P1 —0.34 -0.27 0.1
P2 0.62 —0.23 0.32
3.50-4.50 Potential
LO L1 L2
PO —0.09 —0.03 0.06
P1 —0.12 0.29 0
P2 0.16 —0.15 —0.12
Three Protein Types
partial charge Born radius
mean SD mean SD
PO —0.293 0.041 N/A N/A
P1 —0.536 0.020 N/A N/A
P2 0.054 0.122 N/A N/A
Three Ligand Types
partial charge Born radius
mean SD mean SD
LO 0.240 0.077 N/A N/A
L1 —0.335 0.100 N/A N/A
L2 —0.001 0.067 N/A N/A

a Atom types for the protein and ligand are named PO, P1, and
P2 and LO, L1, and L2, respectively. The weighting parameter
scaling the properties is w = 1 (only partial charge is considered).

describes the maximum correlation possible given atom
types described by a combination of partial charge and
the Born radius. While the high correlation described
previously using simple partial charge-based atom types
is observed, another region of significant correlation
(average R = 0.62) is observed using atom types based
on a combination of partial charge and the Born radius.
The most frequently observed atom types described by
these weighted properties yields a potential with a
correlation of R = 0.63 to experimental binding affini-
ties. These atom types and the corresponding potential
are shown in Table 2. A scatter plot showing the
experimental binding affinities vs those obtained from
this optimized potential is shown in Figure 2b,c.

These results demonstrate that using these parameter-
based atom types, it is possible to extract information
pertinent to improving correlations between predicted
potential energies and experimental binding affinities
in a diverse collection of protein/ligand complexes. Also
shown in Figure 2a is a line representing the SMoG
2001 potential using unoptimized atom types. It is clear
that the potentials generated from optimized atom types
have the possibility of yielding improved agreement
with experimental binding energies relative to KB
potentials where the atom types are chosen using less
systematic means.

3. Jackknifing Tests.

3.1. Leave-1/3-Out Tests. Multiple jackknifing tests
were run on this data set to more rigorously examine
the predictive ability of the optimized potentials. The
jackknife tests were performed by randomly extracting
one-third of the database and measuring the ability of
the optimal potential determined on the remaining two-
thirds of the database to predict binding affinities of the
portion left out. In the diverse database, we can see that
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Figure 1. Correlation between experimental binding affinity
(log Kj) and predicted energy from (a) SMoG using partial
charge-based atom types and (b) SMoG 2001.

the predictive error follows a qualitative pattern closely
related to the correlation shown previously (Figure 3a).
It is expected if the “left-out” portion of the training set
is related to the remaining training set, that a weaker
correlation between the KB energy and the experimen-
tal binding energy will indicate a weaker predictive
ability. As a result, low predictive errors are found using
atom types based solely on partial charge, as well as
using atom types based on a combination of partial
charge and the Born radius.

To draw an independent conclusion, the predictive
error is assessed at the weight “w” corresponding to the
minimum error of the complexes “left-in” (w = 0.54). At
this minimum in the error, we see an average predictive
error of 1.5 log K; units or 2.0 kcal/mol at room
temperature based on partial charge/Born radius atom
types. Using the potential optimized for maximum
correlation to the 118 complex data set, the average
unsigned error is also 1.5 log K; units. This compares
favorably with SMoG 2001 where the predictive error
on this testing set is 1.7 log K; units or 2.3 kcal/mol at
room temperature.

Also shown is a scatter plot demonstrating the
experimental vs predicted binding affinity (in log K;
units) for 20 independent “leave-1/3-out” tests on the
118 complexes training set corresponding to the mini-
mum absolute predictive error (Figure 3b). Points within
the plot represent the average predicted energy for each



4542 Journal of Medicinal Chemistry, 2004, Vol. 47, No. 18

0.75

a)

Optimal Atom Types

Correlation (r)

Born Radius --========mmnmmmn > Partial Charge

y = 0.077x - 4.2628 °
[ ]
R = 0.625

-10

Experimental Binding Energy (log Ki)

-100 -80 -60 -40 -20 0
SMoG Score (log K;)

y = 0.3098x - 3.5181
R = 0.602

-10

Experimental Binding Energy (log Ki)

-15

-25 -20 -15 -10 -5 0
SMoG Score (log K;)

Figure 2. Atoms are described by a combination of the partial
charge and the Born radius. The relative contribution of these
two descriptors, used to cluster atoms into atom types, is scaled
between 0 and 1. Plotted in panel a is the maximum possible
correlation using clusters (atom types) based on a particular
combination of these parameters. Combinations of descriptors
that yield high correlation to the experimental binding affinity
in 118 diverse complexes are indicated as optimal atom types.
The scatter plots are shown for the two optimal atom types at
weights of (b) w = 0.55 and (c) w = 1.0.

of the 118 complexes generated through multiple jack-
knife optimizations. The error bars indicate the stand-
ard deviation (SD) of the predicted values over the
multiple jackknife optimizations. The data show that
weaker binders are clearly segregated from stronger
binders, while stronger binders are more difficult to
distinguish from one another. It also demonstrates that
the predicted energies will tend to overestimate the
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Table 2. Optimized Potential and Atom Type Clusters for
Diverse Complexes?

0.0—3.50 Potential
LO L1 L2 L3 L4 L5 L6

PO 0.97 0.08 -0.36 144 -062 -1.02 -0.1
P1 0.64 1.3 0.73 -054 -0.11 0.79 -—-1.19
P2 0.08 0.08 0.39 1.03 —0.39 0.62 -0.44
P3 0.11 0.77 0.9 0.34 -0.22 -0.05 -0.96
P4 -0.33 -0.29 -0.07 -0.61 0.06 0.72 —-0.56
P5 -052 -054 -0.26 -054 -0.03 0.42 -0.47
3.50—4.50 Potential
LO L1 L2 L3 L4 L5 L6
PO 025 -0.29 -04 -0.94 -0.17 -04 0.26
P1 -0.17 0.7 145 -1.06 0.32 0.54 -0.96
P2 -0.46 -0.44 0.22 0.12 0.01 -0.19 -0.08
P3 -0.34 0.09 0.77 —-0.53 0.17 0.17 -0.52
P4 —-0.3 0 0.2 -0.77 0.26 1.28 0.13
P5 -0.26 -0.16 0.18 -0.39 0.02 0.14 -0.32
Six Protein Types
partial charge Born radius
mean SD mean SD

PO —0.005 0.098 1.382 0.089

P1 —0.085 0.113 2.202 0.182

P2 —0.002 0.080 1.614 0.064

P3 0.003 0.103 1.839 0.080

P4 —-0.295 0.011 0.894 0.070

P5 —0.164 0.028 0.900 0.065

Seven Ligand Types
partial charge Born radius
mean SD mean SD

LO 0.003 0.094 1.764 0.084

L1 —0.001 0.086 1.537 0.063

L2 0.015 0.078 1.311 0.081

L3 0.010 0.121 2.144 0.203

L4 —0.156 0.040 0.851 0.047

L5 —0.297 0.013 0.851 0.047

L6 -0.164 0.059 1.025 0.064

a Atom types for the protein and ligand are named PO, P1, and
P2 and LO, L1, and L2, respectively. The weighting parameter
scaling the properties is w = 0.55.

binding energy of very weak binders, while no signifi-
cant bias appears in tighter binders.

3.2. Consensus Atom Types from Leave-1/3-Out
Tests. Following the jackknife tests, the atom types,
upon which each optimized potential is based, are
compiled. When the same number of protein and ligand
atom types appear frequently in multiple jackknife
tests, they are considered “consensus atom types” and
may form the basis of a robust and general KB potential.
In the current case, we examine consensus atom types
arising from the minimum in the left-in error described
above. Although not a clear minimum, atom types are
also compiled for the interesting case where w = 1.
These weights (w = 0.54 and w = 1.0) correspond to
atom types based on a combination of partial charge and
Born radius and atom types based solely on the partial
charge. The weight corresponding to the minimum error
(w = 0.54) is also closely related to that corresponding
to the maximum correlation obtained by optimizing the
potential as described previously (w = 0.55). Conse-
qguently, the consensus atom types obtained through
multiple jackknifing tests are virtually identical to the
atom types obtained by optimizing to the overall cor-
relation coefficient. The correlation between the result-
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Figure 3. Diverse data set of 118 complexes jackknifed atom type optimizations. In panel a, the thick line shows the average
unsigned error between the predicted energy and the experimentally determined binding energy (in the 1/3 of the database removed
for testing) as a function of the weighting parameter “w” that scales from a Born radius atom description to a partial charge atom
description. The error bars show the standard deviation of the unsigned errors accumulated over 20 random jackknife tests. The
thin line shows the average unsigned error in the 2/3 of the database used in the optimization. These errors are lower since they
are explicitly minimized in the optimization process. In panel b, the average predicted energies vs the experimental binding
energies are shown using atom types based solely on partial charge (the minimum average unsigned error shown in panel a) for
118 diverse complexes. The error bars indicate the standard deviation of the predicted energies based on 20 random jackknife
tests. The correlation coefficient between the average predicted affinities and the experimental affinities is R = 0.6.

ing SMoG energies using these slightly varying poten-
tials is R > 0.99. The clusters associated with the
protein and ligand consensus atom types based on
partial charge and a combination of partial charge and
the Born radius, as well as the corresponding potentials,
are shown in Tables 3 and 4.

3.3. Leave-Family-Out Test. To more fully test the
robustness and predictive ability of the model, a test
was performed in which an entire target family was
removed from the database of complexes of known
binding affinity. The binding affinities of the members
of the removed family were then predicted. This tests
the scenerio where a novel target is introduced into a
lead discovery protocol. In addition, this procedure tests
the robustness of the random 1/3 jackknife test that
demonstrated a predictive ability of 1.5 log K; units.

After excluding the aspartic protease family, the
metallo protease family and the sugar binding protein
family, respectively, results suggest a robust model. As

can be seen in Figure 4a—c, the minimum of the
absolute error in the left-in complexes is not signifi-
cantly changed by excluding any of the individual
families. In Figure 5, a scatter plot showing the cor-
relation between the experimental activity and the
predicted activity is shown for the left-in points, while
the left-out complex energies are also shown.

Binding Affinity Correlation within the Eight
Protein Families. In addition to evaluating the bind-
ing affinities of a diverse structural database of protein/
ligand complexes, it is also informative to probe the
ability of the potential to predict binding affinities in
protein families. By targeting individual families, bind-
ing enthalpy may become a better predictor of binding
affinity as many entropic effects are attenuated. Im-
proved predictors of binding affinity within protein—
drug families can also have a significant role in the drug
discovery process. While QSAR approaches have been
found to be useful in this context,*® the current
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Table 3. Consensus Potential and Atom Type Clusters for
Diverse Complexes?

0.0—3.50 Potential
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Table 4. Consensus Potential and Atom Type Clusters for
Diverse Complexes?

0.00—3.50 Potential

LO LO L1 L2 L3 L4 L5 L6
PO —-0.19 PO —048 0.38 -053 -052 -0.03 -0.51 -0.26
P1 —-0.12 P1L -119 0.7 -054 132 -016 0.65 0.76
P2 0.11 P2 -097 -0.12 035 078 -021 011 088
P3 0.21 P3 —0.44 —0.6 1.04 009 -039 0.09 041
. P4 —-057 071 -061 -029 0.06 -0.31 -—0.02
3.50—4.50 Potential P5 —0.07 -1 1.45 007 -0.6 097 -0.37
Lo 3.50—4.50 Potential
PO —-0.01
P1 006 LO L1 L2 L3 L4 L5 L6
P2 0.02 PO —-032 013 039 -016 0.01 -0.26 0.19
P3 —-0.07 PL -097 051 -107 072 027 -0.17 149
. P2 -053 013 -052 008 016 -0.34 0.78
Four Protein Types P3 -005 -0.19 012 -044 -0.01 -046 0.22
par“a' charge Born radius P4 0.14 1.27 —0.76 0 0.26 —-0.3 0.2
P5 028 -039 095 —-029 -016 0.26 -04
mean SD mean SD
PO ~0.203 0.040 N/A N/A Six Protein Types
P1 —0.536 0.020 N/A N/A partial charge Born radius
P2 0.165 0.110 N/A N/A mean SD mean D
P3 —0.027 0.037 N/A N/A
. PO —-0.161 0.029 0.920 0.067
One Ligand Type P1 ~0.082 0.111 2.250 0.186
partial charge Born radius P2 0.002 0.102 1.878 0.082
P3 —0.001 0.079 1.649 0.065
mean SD mean Sb P4 ~0.290 0.011 0.914 0.072
LO —0.079 0.216 N/A N/A P5 —0.005 0.097 1.412 0.091
a8 The consensus potential and atom type cluster definitions were Seven Ligand Types
obtained from multiple jackknifed optimizations against the . .
diverse data set of 118 complexes with a property weight of partial charge Born radius
w =1, mean SD mean SD
LO —0.156 0.063 1.054 0.066
approach to predicting structure-based determinants of L1 —-0.292 0.012 0.877 0.066
binding enthalpy could have broader applicability to L2 0.010 0.119 2.191 0.207
novel taraets L3 —0.001 0.085 1.571 0.064
gets. . . L4 —0.154 0.039 0.872 0.049
The optimal potentials found for each increment of L5 0.003 0.092 1.803 0.085
the atomic property weighting parameter w were evalu- L6 0.014 0.077 1.342 0.082

ated for their ability to correlate with binding affinities
within eight protein target families comprising the
diverse database of 118 complexes. The results demon-
strate that while the optimal potential found using
partial charge atom types showed a significant improve-
ment in overall correlation within the 118 complexes
(relative to SMoG 2001), the average intrafamily cor-
relation coefficient dropped significantly (from 0.55 in
SMoG 2001 to 0.38 using partial charge-based atom
types). These results can be seen in Figure 6a. A scatter
plot showing the intrafamily correlations based on
partial charge and Born radius/partial charge atom
types is shown in Figure 7.

To determine whether it was at all possible to derive
partial charge-based KB potentials that improve the
average intrafamily correlation, a further potential
optimization was performed. At each increment of the
weighting parameter, the optimal knowledge-based
potential is chosen such that it provides the highest
average intrafamily correlation. Previously, the optimal
knowledge-based potential was chosen based on the
highest total correlation within the diverse database of
118 complexes. The results indicate that although atom
types based on partial charge alone are capable of
generating knowledge-based potentials that improve
correlation over the entire structural database, these
atom types are not capable of improving the intrafamily
correlation relative to SMoG 2001 (Figure 6b). Further-

2 The consensus potential and atom type cluster definitions were
obtained from multiple jackknifed optimizations against the
diverse data set of 118 complexes with a property weight of w =
0.54.

more, atom types based on a combination of the Born
radius and the partial charge are capable of significantly
improving the intrafamily correlation (Table 5).

Family Specific KB Potentials. Finally, we address
the more focused approach to optimizing potentials for
individual families. This approach attempts to find atom
types whose corresponding knowledge-based potentials
are accurate predictors of binding affinity within a
specific class of protein targets. As addressed earlier,
potentials that correlate well with relative binding
affinities within individual target families could play a
key role in lead discovery protocols. Three families were
chosen in order to demonstrate the ability of optim-
ized KB potentials to fit relative binding affinities.
These families include the aspartic protease family, the
sugar binding protein family, and the metallo protease
family.

1. Optimizing the Correlation Coefficients. The
analysis described here with regard to optimizing atom
types for specific target families is symmetric with the
analysis described earlier with regard to the diverse
database of 118 complexes. Therefore, the first approach
to addressing family specific KB potentials is to choose
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atom types that maximize binding affinity correlation
within these families. As shown in Figure 8, it is
possible to find atom types based on a combination of
the Born radius and the partial charge that demonstrate
very strong correlations to experimentally determined
binding affinities for each of the three families. As in
the exploration of the diverse database, one can identify
the specific atom types that result in high correlations
within each family.

In the case of the aspartic protease target family,
potentials are found that correlate with R = 0.81 to
experimental binding affinities (Figure 9a). Specifically,
these potentials are found using a property weight of
0.61. As a reminder, this weight scales the partial
charge property by 0.61 and scales the Born radius
property by 1.0 — 0.61 = 0.39. The atom types associated
with this optimal correlation are quite unusual. The
optimal atom types correspond to six protein atom types
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Figure 5. Scatter plots from jackknifing whole families from
a diverse set of 118 complexes. The regression line and
correlation coefficient are shown corresponding to the left-in
complexes. These are representative potentials from four
potential optimization runs. The potentials are taken from the
property weight w corresponding to the minimum average
unsigned error in the left-in complexes, w = 0.54 in all three
jackknifing tests: (a) aspartic proteases, (b) sugar binding
proteins, and (c) metallo proteases. The correlation coefficients,
R, are given for the left-in complexes.

and a single ligand atom type (Table 6). This indicates
a nonspecific potential. While this nonspecific potential
may encourage a model perhaps reflective of a solvation
burial penalty, the physical interpretation of this po-
tential is challenging. The complexities of physically
interpreting these models are discussed below.
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Figure 6. Intrafamily correlation coefficients are shown as a
function of the weighting parameter between the partial
charge and the Born radius. In panel a, the average intra-
family correlation coefficient is shown based on potentials
obtained by optimizing the correlation coefficient of all 118
complexes at each weight. The dotted line indicates the
average intrafamily correlation obtained in SMoG 2001. The
“optimal atom types” label designates those weights (and
therefore potentials) that correspond to the maximum correla-
tion coefficient for all 118 complexes. In panel b, the potentials
are optimized at each weight to provide the maximum average
intrafamily correlation. Both plots show that using atom types
based on a combination of the Born radius and partial charge,
it is possible to derive potentials that improve intrafamily
correlation with respect to SMoG 2001. The plots also dem-
onstrate that this improvement is not possible using partial
charge-based atom types.

Regarding sugar binding proteins, it is found that
using a property weight of w = 0.54, it is possible to
identify potentials that correlate with binding affinity
with a coefficient of R = 0.89 (Figures 8 and 9b). The
corresponding atom types are more complex than in the
aspartic protease family, resulting in seven protein atom
types and eight ligand atom types (Table 7). A similar
situation arises with regard to the metallo protease
family. Here, a correlation of R = 0.90 was obtained
(Figures 8 and 9c) derived from a potential consisting
of 15 protein atom types and 11 ligand atom types
(Table 8). The property weight corresponding to the
maximum correlation was found to be 0.36.

As discussed, these optimized atom types and the
corresponding family specific knowledge-based poten-
tials result in high correlations. Scatter plots show the
correlation between the SMoG and the experimentally
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Table 5. Intrafamily Correlations (R) Obtained through
Various Atom Type Optimizations

family/ SMoG SMoG SMoG SMoG mean
potential 20012  (w=1.0* (w = 0.55)° optimizedd
Asp 0.62 0.49 0.61 0.42
Ser 0.84 0.86 0.68 0.71
Met 0.69 0.68 0.73 0.86
Ca 0.73 0.86 0.77 0.71
Sugar 0.47 —0.46 0.81 0.76
Endo 0.18 0.61 0.50 0.82
PnP 0.05 —0.41 0.86 0.97
others 0.74 0.30 0.48 0.58
average 0.55 0.37 0.68 0.73

aSMoG 2001 represents results derived from the algorithm
published by Ishchenko et al. (2002). b SMoG (w = 1.0) represents
the potential corresponding to partial charge atom types optimized
according to the total correlation coefficient against the full testing
set of 118 complexes. ¢ SMoG (w = 0.55) is the optimized potential
obtained using atoms described by a combination of the partial
charge and the Born radius.  SMoG (mean optimized) is the
potential obtained by explicitly optimizing the potential in order
to achieve the maximum possible average intrafamily correlation.

determined binding affinities for each target family and
are shown in Figure 9.

2. Jackknifing Tests. To get a better idea of the
predictive ability of these family optimized potentials,
jackknifing tests were performed to assess the expected
predictive error. At each weight, instead of choosing the
potential that optimizes the total correlation, a potential
is chosen that optimizes the correlation within a random
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Figure 8. Atoms in this study are described by a combination
of the partial charge and the Born radius. The relative
contribution of these two descriptors, used to cluster atoms
into atom types, is scaled between 0 and 1. Plotted is the
maximum possible correlation using clusters (atom types)
based on a particular combination of these parameters. Three
independent optimizations are performed on the aspartyl
protease family, the sugar binding protein family, and the
metallo protease family. Four optimizations are performed per
family, and some variability in the resulting correlation
coefficients is observed due to the stochastic nature of the
K-means clustering algorithm used to define the atom types
corresponding to each weight. This variability is shown in the
error bars representing one standard deviation. Combinations
of descriptors that yield high correlation to the experimental
binding affinity in these three families are indicated by circles.

2/3 of the database. The potential is evaluated by
determining the unsigned error in predicting the re-
maining 1/3 of the database that was removed for
independent testing.

2.1. Aspartic Protease Family. The first example
generates a knowledge-based potential capable of ac-
curately predicting the binding free energy within a
family of aspartic proteases to an accuracy of ap-
proximately 1.1 log K; units or 1.5 kcal/mol. It is possible
to achieve this minimal predictive error in the aspartic
protease family using a KB potential based on atom
types generated based on a combination of the Born
radius and partial charge. In other words, the minimal
left-in error is found using a weight w = 0.61 (Figure
10a). A scatter plot shows the average predicted energy
vs the experimental binding energy for the 18 complexes
comprising the aspartic protease family database (Fig-
ure 10b). The atom types and the corresponding poten-
tial for this weight are shown in Table 6. An interesting
feature in the predicted or left-out error is the minimum
at w = 1.0. Information relevant for distinguishing
solvation effects within this family, such as the Born
radius, was not required. This does not imply that
solvation effects are irrelevant in the energetics of
binding within this family. It simply implies that within
this group of protein—ligand complexes, solvation effects
may not strongly differentiate between binding propen-
sities and may cancel out in binding energy calculations.

2.2. Sugar Binding Protein Family. By investigat-
ing sugar binding proteins, however, we see a different



4548 Journal of Medicinal Chemistry, 2004, Vol. 47, No. 18

®

- y = 0.9117x - 1.4623 i
X R = 0.811
o -7
g a)
>
o
5 -8
c
w
2
5 -9
c
£
®
£ -10
[
£
211
X
w °

-12

-12 -11 -10 -9 -8 -7 -6
SMoG Binding Energy (log K;)
-2 ‘ ‘ ‘
3| y=0.1216x - 3.407 .
R = 0.891

Experimental Binding Energy (log Ki)

-60 -50 -40 -30 -20 -10 0
SMoG Binding Energy (log K;)

y = 0.1126x - 0.8024
-4 R = 0.902 ° »

c)

Experimental Binding Energy (log Ki)

-16

-120 -100 -80 -60 -40 -20 0
SMoG Binding Energy (log K;)
Figure 9. Optimized knowledge-based potentials for each of
the individual families. The SMoG energy vs the experimen-
tally determined binding energy are shown for the (a) aspartic
protease, (b) sugar binding proteins, and (c) metallo protease
families.

picture. Here, solvation effects are quite important for
differentiating the binding propensities of the ligands
within this family. Electrostatic effects have been
suspected to be quite important in binding within this
family,* and solvation properties appear to be key to
achieving small predictive errors (Figure 11a). The
optimal weight within the left-in set balances the partial
charge, and the Born radius is w = 0.55. The atom types
and corresponding potential are shown in Table 7. A
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Table 6. Optimized Potential and Atom Type Clusters for
Aspartic Proteases?

0.0—3.50 Potential

LO

PO -0.23

P1 -0.21

P2 —-0.04

P3 -0.14

P4 0.09

P5 0.03

3.50—4.50 Potential
LO

PO —-0.04

P1 0.16

P2 0

P3 0.01

P4 —0.09

P5 -0.03

Six Protein Types
partial charge Born radius
mean SD mean SD
PO —-0.182 0.031 0.785 0.066
P1 0.079 0.075 1.564 0.087
P2 0.009 0.097 1.228 0.084
P3 —0.327 0.012 0.775 0.061
P4 —0.046 0.080 1.425 0.066
P5 -0.119 0.108 1.831 0.172
One Ligand Type
partial charge Born radius
mean SD mean SD

LO —0.048 0.132 1.218 0.316

a Atom types for the protein and ligand are named PO, P1, and
P2... and LO, L1, and L2..., respectively. The scaling parameter
for the properties is w = 0.61.

scatter plot showing the results of experimental vs
predicted binding energies is also shown for the 14
complexes comprising this database (Figure 11b). These
results demonstrate that tighter binders appear more
accurately predicted than weaker binders. However, the
average predictive error is quite low at 1.3 log K; units
or 1.8 kcal/mol.

2.3. Metallo Protease Family. Finally, we investi-
gated a metallo protein data set and found again that
atom types based on a combination of the Born radii
and partial charge are beneficial in generating predic-
tive KB potentials. Although requiring a different
weight describing the balance between the Born radius
and the partial charge descriptors, the minimum pre-
dictive error was found to be quite small (Figure 12a).
The optimal weight resulting in the minimum predictive
error is w = 0.35. The atom types and corresponding
potentials are shown in Table 8. In the case of the
metallo proteins, the minimum predictive error was
found to be 1.1 log K; units or 1.5 kcal/mol. As with the
sugar binding protein family, the metallo protein family
might have been supposed to benefit from some solva-
tion information given the potentially strong electro-
static effects in binding due to bound metals. Again, also
shown is a scatter plot demonstrating a rather consist-
ent predictive ability of the minimum error model
(Figure 12b). No significant difference is found in the
model’s ability to predict the affinity of weak or tight
binders.
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Table 7. Optimized Potential and Atom Type Clusters for Sugar Binding Proteins?

0.0—3.50 Potential

LO L1 L2 L3 L4 L5 L6 L7
PO —0.1 0.85 —0.27 0.49 0.44 —0.77 —0.07 0.2
P1 0.22 —0.09 —0.15 1.48 1.14 —-1.17 0.41 —-0.11
P2 —0.74 0.82 —0.49 0.65 0.66 —1.04 0.35 0.64
P3 —0.93 1.35 —0.6 —0.2 0.08 —-0.4 0.02 1.09
P4 0.39 —0.57 —0.16 —0.57 —0.31 —0.71 —0.68 —0.72
P5 0.78 —0.99 —0.11 1.06 0.46 —1.26 0.62 —0.34
P6 —-1.14 0.08 —0.74 —0.15 —0.67 —0.15 0.74 1.35

3.50—4.50 Potential

LO L1 L2 L3 L4 L5 L6 L7

PO 0.01 -0.08 0.03 —0.09 0.67 -0.34 —0.45 —-0.34
P1 0.3 —0.88 0.34 0.66 1.32 —0.76 —0.12 —0.51
P2 0.01 —0.29 0.15 0.23 0.4 —0.12 —0.01 0.02

P3 -0.3 0.85 —0.07 -0.5 0.02 0.08 —0.44 0.2
P4 0.3 —0.57 0.01 —0.15 0.15 —0.28 -0.37 —0.49
P5 0.59 —1.26 0.39 0.73 15 —0.92 —0.06 —0.83
P6 —0.43 1.09 —0.19 —0.25 —0.49 0.23 0.34 0.96

partial charge Born radius partial charge Born radius
mean SD mean SD mean SD mean SD
Seven Protein Types Eight Ligand Types

PO 0.032 0.065 1.734 0.053 LO —0.292 0.013 0.874 0.063
P1 0.060 0.059 1.939 0.080 L1 0.008 0.129 2.429 0.223
P2 —0.156 0.020 1.891 0.113 L2 —0.153 0.039 0.868 0.047
P3 —0.016 0.073 1.575 0.054 L3 0.009 0.085 1.526 0.058
P4 —0.199 0.062 0.916 0.065 L4 0.008 0.073 1.310 0.077
P5 —0.089 0.108 2.320 0.184 L5 —0.169 0.051 1.037 0.062
P6 —0.003 0.016 1.364 0.080 L6 —0.007 0.089 1.720 0.064
L7 0.012 0.103 1.992 0.094

0.00—3.50 Potential

LO L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
PO 0.66 —1.05 0.08 1.13 0.83 0.51 0.36 —0.46 —0.52 —0.73 —0.24
P1 —0.16 —0.82 0.86 —0.84 —1.51 0.73 0.5 1.43 —-1.91 1.86 1.63
P2 —0.05 —0.41 0.98 —1.16 —1.89 —0.62 0.9 1.95 —2.2 1.97 3.13
P3 0.59 —0.96 0.22 0.89 0.8 0.23 0.17 —0.01 —0.86 —0.54 —0.02
P4 —1.36 -0.7 —0.84 —1.36 —1.48 —0.15 —0.13 —-0.1 —1.66 1.06 —0.13
P5 2.04 —0.68 0.62 2.39 2.21 —0.86 —0.66 —0.06 0.01 —1.32 —0.28
P6 —0.56 —0.95 0.36 —0.51 —0.49 0.77 0.42 1.07 —1.56 0.8 1.27
P7 0.3 —1.04 —0.24 0.7 1.97 0.31 1.28 —0.08 —0.81 —0.35 0.8
P8 —0.26 —0.37 —0.75 —0.09 3.13 —0.99 —0.87 —-0.72 —0.05 —0.07 —-0.74
P9 —0.11 —0.93 —0.07 0.27 0.31 0.52 0.62 0.03 —1.16 0.01 0.97
P10 —0.62 —0.56 —0.85 —0.72 —0.49 —0.25 0.67 -1 —0.97 0.12 —0.78
P11 —0.67 —0.85 0.19 —0.44 —0.44 1.52 0.28 0.55 —1.49 0.57 1.1
P12 0.83 —0.55 1.44 —0.06 —1.28 —-0.71 —1.48 0.8 0.55 —1.42 0.04
P13 1.87 -0.7 0.1 2.44 0.88 —0.21 —0.08 —0.07 —0.06 —-1.11 —0.62
P14 0.1 —0.96 —0.32 0.81 1.39 0.27 0.17 —0.13 —0.33 —0.66 —-0.1

3.50—4.50 Potential

LO L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
PO 0.05 —0.43 —0.48 0.43 0.38 0.12 0.35 —0.37 0.08 —0.08 —0.48
P1 -1 —-0.4 —0.22 —1.44 1.9 1.82 1.94 0.95 —151 2.6 1.57
P2 -1.2 -0.1 —0.34 —1.57 —2.02 1.39 181 1.28 —1.47 2.98 2.39
P3 0.11 —0.17 —0.38 0.27 0.27 —0.27 —0.07 —0.54 0.16 —0.09 —0.54
P4 —-0.77 —0.33 —0.54 —0.97 —1.36 0.65 1.47 0.05 —0.89 1.13 0.42
P5 0.5 —0.26 0.32 0.78 1.36 —0.58 —0.51 —-0.12 0.43 —0.56 —0.42
P6 —0.82 —0.51 —0.24 —1.02 —1.54 1.72 1.57 0.46 —1.46 1.36 1.42
P7 —0.35 —0.56 —0.58 —0.2 0.54 0.18 0.85 —0.52 —0.08 —0.02 —0.25
P8 —0.03 —0.16 —-0.17 0.05 0.44 —0.43 —0.38 —0.28 0.49 —0.15 —0.41
P9 —0.58 —0.62 —0.54 —0.55 —0.36 0.69 1.01 —-0.31 —0.66 0.45 0.08
P10 —0.64 —0.42 -0.7 —0.73 —0.77 0.21 0.6 —0.58 —0.45 0.09 —0.31
P11 —0.75 —0.5 —0.53 —0.94 —1.24 1.16 1.55 —0.07 —-1.11 0.71 0.5
P12 1.44 0 1.27 1.09 1.67 —0.57 —0.88 0.28 0.95 —-0.74 —0.18
P13 0.49 —0.28 —0.16 0.72 1.06 —0.39 0.06 —0.59 0.48 —0.32 —0.58
P14 —0.29 —0.45 —0.72 —0.03 0.39 0.08 0.53 —0.54 0.2 —0.06 —0.39

a Atom types for the protein and ligand are named PO, P1, and P2... and LO, L1, and L2..., respectively. The scaling parameter for the
properties is w = 0.54.
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Table 8. Optimized Potential and Atom Type Clusters for
Metallo Proteases?®

15 Protein Types

partial charge Born radius
mean SD mean SD
PO —0.002 0.049 2.251 0.036
P1 —0.055 0.074 3.135 0.097
P2 —0.048 0.078 3.568 0.236
P3 —0.106 0.011 2.389 0.080
P4 —0.140 0.051 1.436 0.063
P5 —0.002 0.060 1.969 0.050
P6 0.045 0.043 2.855 0.068
P7 —0.005 0.053 2.372 0.036
P8 —0.138 0.042 1.180 0.040
P9 0.030 0.042 2.497 0.041
P10 —0.126 0.046 1.291 0.033
P11 0.036 0.038 2.656 0.050
P12 —0.009 0.082 1.773 0.070
P13 —0.001 0.052 2.125 0.040
P14 —0.099 0.023 2.575 0.071
11 Ligand Types
partial charge Born radius
mean SD mean SD
LO 0.006 0.064 2.686 0.075
L1 —0.128 0.041 1.328 0.051
L2 0.001 0.061 2.451 0.057
L3 0.003 0.077 2.981 0.115
L4 0.015 0.096 3.582 0.308
L5 0.005 0.054 1.953 0.052
L6 0.009 0.048 1.758 0.063
L7 —0.005 0.057 2.276 0.947
L8 —0.079 0.063 1.532 0.061
L9 —0.126 0.047 1.170 0.049
L10 0.005 0.056 2.122 0.046

a Atom types for the protein and ligand are named PO, P1, and
P2..., and LO, L1, and L2..., respectively. The scaling parameter
for the properties is w = 0.36.

As in the case with the diverse data set, consensus
atom types were extracted from multiple jackknifing
runs for each of the three families. The resulting atom
types were nearly identical (R > 0.99) to those deter-
mined based on optimizing against the entire data set.
The small differences arise primarily due to the sto-
chastic nature of the K-means clustering.

Discussion

The objective of this work is to introduce atomic
descriptors that capture features of the optimal effective
pairwise potential. To elucidate this, we refer to the true
multibody potential describing the energetics in real
systems. We may imagine that there exists a projection
of this multibody potential to a pairwise potential that
minimizes the loss of information. It is this optimal
effective pairwise potential that we are attempting to
extract through the knowledge-based procedure. The
basic approach of extracting a true pairwise potential
from a structural database has been validated in previ-
ous self-consistent studies on artificially created data-
bases.1’"1® One significant difference preventing the
results from these self-consistent studies to be applied
to real chemical systems is the agreement between the
particle type definitions and the effective pairwise
potential. By describing the atom types within this
study according to descriptors consistent with well-
tested, classical force fields, we attempt to improve this
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agreement and extract potentials consistent with the
optimal effective pairwise potential.

The premise of characterizing particles within a
knowledge-based potential has been described previ-
ously. In one example, residues were described not only
according to the traditional classification but also based
on the residue’'s corresponding secondary structural
element.? In another example, it has even been shown
that the grouping of residues by burial can improve fold
prediction.?® In these examples, as well as other KB
potentials described in the literature, particles are typed
a priori and are not systematically optimized. The
systematic optimization of atom types is a unique aspect
of the current work and creates a hybrid between
traditional knowledge-based potentials and successful
empirical scoring functions such as those used in QSAR
models.*~6

What Are the Implications of the Optimal Atomic
Properties Found? Knowledge-based methods and
any statistical method for predicting physical quantities
may behave in unpredictable ways. When optimizing
any incomplete statistical function, including pairwise
knowledge-based potentials, the optimization process
will combine descriptors in such a way as to produce
the optimal agreement with experiment. This optimal
agreement may not result from a simple linear combi-
nation of well-known physical relationships. In other
words, the optimization process is simply a mathemati-
cal process and while the optimized function may
reproduce a physical property, the components of the
optimized function are not typically amenable to a clear
physical interpretation. Even in the case of linear
interaction models,?® where the components of the
optimized function are weighted physical interaction
terms, interpreting the magnitude of the optimized
weights as expressing the “importance” of the associated
physical interaction is questionable.

It is tempting to link the importance of the partial
charge and Born radius descriptors used in this work
to the contributions of Coulomb and solvation forces,
respectively, in the protein/ligand interactions of various
complexes. For the reasons described above, this link
is not trivial to establish. In the work presented in this
paper, optimal atom types based only on partial charge
were capable of producing an improved correlation with
binding affinity (relative to SMoG 2001) within a diverse
database of 118 complexes. Does this suggest that
Coulomb or even electrostatic interactions are sufficient
to describe these interactions? No.

To demonstrate the difficulty in ascribing a simply
physical interpreation to these optimized knowledge-
based potentials, consider an extreme case. By examin-
ing the consensus atom types that result from the
jackknifed optimization of the 118 complex database,
we find four protein atom types (clustered by partial
charge) and only one ligand atom type. Obviously, the
resulting correlation coefficient of 0.6 is not obtained
through specific Coulomb interactions represented within
the KB potential. As the model becomes more complete,
by representing more aspects of the physics of pairwise
intraatomic interactions, a more intuitive physical
model may emerge. Until statistical models can very
accurately predict the effects of intraatomic interactions
(such as binding affinity) in the context of a diverse
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Figure 10. Aspartic protease family jackknifed atom type optimizations. In panel a, the red line shows the average unsigned
error between the predicted energy and the experimentally determined binding energy (in the 1/3 of the database removed for
testing) as a function of the weighting parameter w that scales from a Born radius atom description to a partial charge atom
description. The error bars show the standard deviation of the unsigned errors accumulated over 20 random jackknife tests. The
thin line shows the average unsigned error in the 2/3 of the database used in the optimization. These errors are lower since they
are explicitly minimized in the optimization process. In panel b, the average predicted energies vs the experimental binding
energies are shown using atom types based on a weight of w = 0.61 (the minimum average unsigned error shown in panel a) for
the left-in aspartic protease complexes. The error bars indicate the standard deviation of the predicted energies based on 20
random jackknife tests. The correlation coefficient between the average predicted energies and the experimentally determined

energies is R = 0.65.

database of complexes, physical interpretations of these
models must be considered only hypotheses.

It should be noted, however, that the parameters used
in the current application do appear to contain useful
information. In Figure 14, we demonstrate the result
in using random numbers to describe atomic properties.
Obviously, in this case, it was impossible to generate
potentials that resulted in binding energies strongly
correlated with experimentally determined affinities.
While it is difficult to quantify, the atom types assigned
by chemical intuition in SMoG 2001 also resulted in
some increase in information and more effective cor-
relations with known binding affinities. By generating
atom types through clustering atomic properties such
as the Born radius and partial charge, it has been shown
that it is possible to further improve the agreement
between a simple knowledge-based potential and known
binding affinities. In summary, while it is difficult to

interpret the physical nature of the interactions, it is
clear that the physical properties used to assign atom
types is providing useful information to the knowledge-
based potential.

Assessing the Predictive Ability of Optimized
KB Potentials. Although interpreting the physical
significance of the atom types generated in this work
may not be sound, it is the model’s ability to predict
binding affinity that is of practical concern. In this
paper, we optimize atom types (and therefore KB
potentials) based on three decompositions of the protein/
ligand complex database containing associated binding
affinities. These include the correlation to binding
affinity within the entire database of 118 complexes, the
average correlation to binding affinity within each of
the eight families comprising the 118 complex database,
and the correlation to binding affinity within individual
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Figure 11. Sugar binding protein family jackknifed atom type optimizations. In panel a, the thick line shows the average unsigned
error between the predicted energy and the experimentally determined binding energy (in the 1/3 of the database removed for
testing) as a function of the weighting parameter w that scales from a Born radius atom description to a partial charge atom
description. The error bars show the standard deviation of the unsigned errors accumulated over 20 random jackknife tests. The
thin line shows the average unsigned error in the 2/3 of the database used in the optimization. These errors are lower since they
are explicitly minimized in the optimization process. In panel b, the average predicted energies vs the experimental binding
energies are shown using atom types based on a weight of w = 0.55 (the minimum average unsigned error shown in panel a) for
14 sugar binding complexes. The error bars indicate the standard deviation of the predicted energies based on 20 random jackknife
tests. The correlation coefficient between the average predicted energies and the experimentally determined energies is R = 0.68.

target families. Each of these approaches contributes
to solving practical problems in drug design.

1. Diverse Complex Database. In the first case, we
consider the entire diverse database of 118 complexes.
While training on a specific target may be preferable
in canceling out effects such as binding entropy, which
are typically difficult to model, a completely novel
protein target may require a more generalized approach.
In such cases, where little is known about alternative
inhibitors or related targets, it may still be possible to
assist lead discovery using more generic potentials. In
the work described here, we optimized atom types in
order to generate knowledge-based potentials capable
of predicting binding affinity within a diverse database
of 118 complexes. On the basis of jackknifed results, we
found potentials that were capable of predicting binding
affinity within 3.5 KT or 2.0 kcal/mol on average. In
practical terms, this suggests that within this database,
the predictive accuracy is approximately +1.5 log K;
units. While certainly not a perfect prediction, this level

of accuracy is capable of screening out poor binders.
From Figure 3b, it is clear that the predicted log K; is
capable of isolating or screening out inhibitors that bind
with micromolar affinity (log Kij = —6) or greater.
Furthermore, optimized atom types result in a po-
tential that was found to correlate to binding affinity
with a coefficient of R = 0.63. This is a significant
improvement over the correlation obtained with the
SMoG 2001 potential of 0.43. By optimizing the atom
types, this simple knowledge-based potential is consist-
ent with other scoring functions in evaluating binding
affinity in diverse databases of protein/ligand complexes.
An example of this may be seen from the PMF scoring
function.'® Using a ligand volume correction, it is found
that the knowledge-based potential is capable of greater
correlations with binding affinities in diverse data-
bases.?? In six distinct diverse databases containing
between 61 and 170 complexes, it was found that
binding correlations resulted in coefficients ranging
from 0.52 to 0.73. This is consistent with the observed



Native Atom Types for Knowledge-Based Potentials Journal of Medicinal Chemistry, 2004, Vol. 47, No. 18 4553

1.8

a)

1.6

1.4

1.2 —"Left-in" Complexes
. —| oft-gut” Complexes

Average Unsigned Error (log Ki)

0.8

0.6
0 0.2 0.4 0.6 0.8 1
Born Radius =======maceeas > Partial Charge

-15 -10 -5 Q

b)

Experimental log(K)

Predicted log(K;)

Figure 12. Metallo protein family jackknifed atom type optimizations. In panel a, the thick line shows the average unsigned
error between the predicted energy and the experimentally determined binding energy (in the 1/3 of the database removed for
testing) as a function of the weighting parameter w that scales from a Born radius atom description to a partial charge atom
description. The error bars show the standard deviation of the unsigned errors accumulated over 20 random jackknife tests. The
thin line shows the average unsigned error in the 2/3 of the database used in the optimization. These errors are lower since they
are explicitly minimized in the optimization process. In panel b, the average predicted energies vs the experimental binding
energies are shown using atom types based on a weight of w = 0.35 (the minimum average unsigned error shown in panel a) for
22 metallo protein complexes. The error bars indicate the standard deviation of the predicted energies based on 20 random jackknife
tests. The correlation coefficient between the average predicted energies and the experimentally determined energies is R = 0.84.

e

Figure 13. This cartoon illustrates the effect of mixing atom types on simple radial distribution functions. These functions
describe the local density of contacts made between particles exhibiting varying potential attraction. As the contact probability
functions corresponding to “native” atom types are mixed in arbitrary atom typing, information is lost resulting in probability
functions that primarily reflect information regarding bulk density within the system.

correlation of 0.63 observed using consensus atom types coefficient of R = 0.76 for a larger data set of 200
derived from a diverse database of 118 complexes. protein—ligand complexes.” While QSAR models are
While the optimized KB potentials described here currently equally fast and accurate relative to KB
provide results consistent with other simple KB poten- potentials, one advantage of KB potentials may be
tials, these potentials are in strict competition with the their physical basis. Although still an active area of
equally fast QSAR-like models. It should be mentioned debate,15:16.23-25 the exploration of the physical nature
that it is possible to derive QSAR-like models, or of KB potentials may eventually lead to even more
empirical scoring functions, that are capable of improved robust and accurate models of macromolecular energet-
correlations and lower predictive errors. A recent ex- ics.
ample of such a potential demonstrated a predictive 2. Analysis of Intrafamily Correlation. Next, we

error of 3.4 KT or ~2.0 kcal/mol and a correlation evaluated the intrafamily correlation coefficients within
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Figure 14. Assigning random atom types to the structural
databases used within SMoG results in a distribution of low
correlations with experimental binding affinities resulting
from the associated knowledge-based potentials. Using SMoG
2001 atom types, the correlations improve. By further optimiz-
ing the atom types, the aim of this work is to further improve
the correlation between predicted and experimental binding
energies.

the diverse database of 118 complexes. Intrafamily
correlation coefficients are advantageous with respect
to the correlation coefficient of the entire diverse
database, in that the families are more homogeneous
potentially resulting in the cancellation of entropic and
other specific energy terms. Additionally, binding con-
stants obtained from diverse complex databases are
difficult to assess when comparing distinct target pro-
teins. The reason is that binding constants are sensitive
to the conditions under which the experiment is run.
These conditions typically vary from one target to
another and therefore bring into question the inherent
limits of one’s ability to predict relative binding affinities
between disparate protein targets. Our analysis has
shown that using atom types based on both the Born
radius and the partial charge, it is possible to derive
knowledge-based potentials that can be generally ap-
plied to the determination of relative binding affinity
within a variety of target families. The average correla-
tion coefficient across eight target families was found
to be R = 0.68, and a significant improvement over the
average of R = 0.55 was found in SMoG 2001. This has
obvious applications in the lead discovery process where
one would like to either assess multiple lead compounds
to a given target or engage in an automated lead
discovery protocol. This has particular use in the begin-
ning stages of lead discovery when examining a new
target for which no structures of related complexes are
available.

Finally, we consider an approach to optimize KB
potentials for individual families. In this scenario, we
optimized three sets of atom types in order to produce
the optimal correlation within three distinct protein
families. The families chosen were the aspartic pro-
teases, the sugar binding proteins, and the metallo
proteins. As in the optimization performed on the
average intrafamily correlation, optimization on single
families further reduces the information content of the
structural database that must be extracted to generate
a predictive potential. The results are individual knowl-
edge-based potentials tailored to individual families that
are capable of predicting binding affinity with high
accuracy.

On the basis of jackknifing results, we find the that
optimized potentials are capable of predictive errors
between 1.1 and 1.3 log K; units. As expected, this
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accuracy surpasses the 1.5 log K; unit accuracy found
within the diverse database. First, we examined the
aspartic protease family. In this example, we found an
average unsigned error of only 1.1 log K; units corre-
sponding to a predictive accuracy of 1.5 kcal/mol. The
minimum unsigned error corresponds to a property
weight w = 0.61, meaning that atom types are described
by a combination of the partial charge (scaled by 0.61)
and the Born radius (scaled by 1.0 — 0.61 = 0.39). The
resulting potential is nonspecific resulting in six protein
atom types and a single ligand atom type. Given the
KB potential’'s nonspecific interactions with the ligand
atoms, a van der Waals or self-polarization solvation
effect may be described within the potential. Using these
optimized atom types, the resulting KB potential cor-
relates strongly with the entire aspartic protease family
database with a coefficient of R = 0.80. This compares
favorably with the SMoG 2001 potential, which dem-
onstrates a correlation of R = 0.62 within the aspartic
protease family.

In addition, the metallo protease family and the sugar
binding protein family were used to generate optimized
atom types. In the 22 member metallo protease family,
the corresponding optimized KB potential resulted in
an average unsigned error of 1.1 log K; units or a
predictive accuracy of 1.5 kcal/mol. On the basis of the
optimized atom types determined from multiple jack-
knifing runs, the corresponding KB potential results in
a correlation coefficient of R = 0.88. This is comparable
to the correlation coefficient of R = 0.76 found in a
family of 15 metallo proteases analyzed in PMF.22

3. Atom Types Optimized for Specific Target
Families. Finally, we examined potentials optimized
on the sugar binding protein family. In the 14 member
sugar binding protein family, the corresponding opti-
mized KB potential resulted in an average unsigned
error of 1.3 log K units or a predictive accuracy of 1.8
kcal/mol. What is interesting about this optimization
is the strong error encountered for sugar binding
proteins when the atomic descriptors are dominated by
partial charge. In the aspartic protease family, the
lowest predictive error was found using atom types
based only on partial charges. It is clear from Figure
8a that sugar binding proteins prefer a distinctly
different atom typing and corresponding KB potential.
The difference observed in optimal atom types in all
three of the families shown here demonstrates that a
single generic KB potential to describe all complexes
optimally remains elusive. The small predictive errors
in all of the families suggest that optimized KB poten-
tials for individual families may have a role in the lead
discovery process.

Summary. The development of robust KB potentials
relies upon the further development of the underlying
physical theory. This is true even, and maybe even
particularly, when these explorations reveal fundamen-
tal limitations. Are KB potentials simply scoring func-
tions, or can they be linked to a real physical quantity?
Theoretical explorations suggest the former, while
empirical studies on model systems suggest the latter.

Whatever the underlying theory, KB potentials de-
scribe energetics through an examination of local den-
sity surrounding a set of predefined particle types. If
these particle types do not map to the true or optimal
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effective pairwise potential, crucial information con-
tained within the structural database cannot be ex-
tracted. The atom typing procedure described in this
paper attempts to move closer to this correct mapping.

Conclusions

While it has been shown that pair potentials may be
extracted from contact statistics within “toy” structural
databases, these approaches have not always met with
the greatest success when applied to the PDB. To take
advantage of the results obtained in these model stud-
ies, we introduce a new method for identifying particles
consistent with the true potential. We show that in
extreme cases atom types unrelated to the true potential
are incapable of extracting any useful information from
the structural database. The method that we propose
for constructing native atom types involves clustering
atoms in the training database according to parameters
that influence pair potentials in classical empirical force
fields.

Further exploration of this model is planned, includ-
ing the explicit incorporation of more physiochemical
properties into the atom type descriptions. It has been
mentioned that the Born radius has been used in certain
models to approximate hydrophobic effects and could
also be considered to capture some of this information
within our model as well. However, it may be possible
to include the hydrophobic and other effects more
directly by including in the atom descriptors properties
coupled to the hydrophobic and other effects. These
higher dimensional descriptors could include param-
eters describing Lennard—Jones attraction as well as
field effect polarization.

In the current work, we have shown that knowledge-
based potentials constructed on the basis of atom types
grouped by the Born radius and partial charge can
improve agreement with experimentally determined
binding affinities. Specifically, the incorporation of
native atom types into the SMoG program for ab initio
drug design shows an improvement in the knowledge-
based potential's ability to predict relative binding
affinity within a diverse set of protein/ligand complexes.
Furthermore, inclusion of the Born radius as an atomic
descriptor yields potentials capable of accurately de-
scribing binding affinity within a variety of protein
families. This improvement in the intrafamily correla-
tion was not possible using atom types based only on
local partial charge information. Finally, in optimizing
potentials for individual families, we found that it was
possible to very accurately predict binding free energies
within these families. These models have strong impli-
cations for rapid drug screening or possibly ab initio
design methodologies.

Theory and Methods

Theory. The purpose of this work is to extend the
lessons learned from self-consistent studies on knowledge-
based potentials and develop an algorithm consistent
with these past studies and also applicable to real
chemical systems. To accomplish this, it is helpful to
first outline the results from these self-consistent stud-
ies as well as the effect of inconsistent atom types.

It has been described that contact statistics extracted
from dense thermodynamic ensembles reveal informa-
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tion relevant to the potential of mean force between a
pair of particles and not the simple pair potential.26:27
It is clear, however, from self-consistent studies that it
is possible to extract quantities strongly correlated with
the true pair potential from contact statistics. A more
rigorous statistical mechanical explanation of this ob-
servation is a subject that will be explored more
completely in a future paper. For the purposes of this
work, it will suffice simply to recognize the empirical
observation that quantities related to pair potentials can
be extracted in model systems.

Uii*® =a - In[py(r)] + b

where Ujt® refers to the true pair potential energy
between particles of type i and j and pjj(r) refers to the
fraction of observations where particles of type i and j
are at a distance of r.

It should be noted that in these self-consistent studies
the potential is explicitly defined as a pairwise potential
with respect to a set of predefined particle types. We
describe these particle types as native to the predefined
pairwise potential. This brings up two key challenges
in transferring the model system results to real chemical
systems. First, in a real chemical system, the true
potential is not pairwise. However, we assume that
there exists a pairwise potential and a corresponding
set of particle types that describes the true multibody
potential with a minimal loss of information. This
effective pair potential may be described as the optimal
projection of the true multibody potential. To extract
this effective pairwise potential from a real chemical
system, the native particle types must be defined in
order to determine the relevant contact statistics. This
brings us to the second key challenge, namely, how to
define the particles themselves.

As already described, a correspondence between the
particle type definitions and a true pairwise potential
is built into the self-consistent studies; however, these
“native” particle types are not known in real chemical
systems. In real chemical systems, the environment
surrounding particles or atoms i and j may influence
the effective potential felt between the atoms. One of
the biggest influences may be electrostatic solvation
effects. If atoms i and j represent atoms of opposite
charge, they will certainly feel an attractive potential.
However, the magnitude of this potential will be medi-
ated by the degree of burial or separation from the
aqueous solvent. This is one example of how under an
incompatible set of atom types, the extracted energy
may be a function of a mixture of pair frequencies based
on the true or native atom types.

Up=a- In[pij(r) + pu(N] +b

where m and n represent non-native atom types typi-
cally chosen in knowledge-based applications and i, j,
k, and | represent native atom types consistent with the
optimal pair potential. As described previously, the
optimal pair potential is pair potential, which is a
projection of the actual multibody potential, that mini-
mizes the loss of information.

By investigating an extreme case, we can further
illustrate the consequences of mistyping atoms. The
extreme case would involve atom types that are com-
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pletely uncorrelated with the native atom types. In this
situation, the pair energies are a function of a random
mixture of the pair frequencies based on the native atom
types. In this scenario, the contact frequencies between
different atom types will reflect the bulk density of the
system (not the local densities as do frequencies based
on native atom types) and will be the same for all pairs
of atom types. In the limit of an infinite training
database, interaction energies between the particles will
be identical and will therefore contain no information
relevant to atom—atom potentials.

Regardless of the specific reference state or other
details of the potential, the extracted energies are
reflective of bulk density and not local density and
therefore have lost a significant amount of information
contained within the true potential. This can be il-
lustrated by looking at the effect of averaging a variety
of radial distribution functions for fluids (Figure 13).
In this scenario, the averaged radial distribution func-
tion contains information on the excluded volume of
atoms and the bulk density of the system; however, the
crucial local density information has been averaged out.
In the case of binding energy prediction, it is obvious
that energies obtained using random atom types should
not correlate with the true potential or the experimental
binding affinities.

To test this assumption, we have assigned atom types
randomly within the SMoG training and testing struc-
tural databases. A knowledge-based potential was gen-
erated using the same approach described in a previous
paper.! Using this procedure, contact frequencies be-
tween protein and ligand atom types are obtained from
a training database of protein—ligand complexes corre-
sponding to two distance bins of 0.0—3.5 A and 3.5—4.5
A. By evaluating the contact statistics and the relative
concentrations of the various atom types, one can obtain
an association energy for each of these two bins. The
total interaction energy is the sum of the energies
obtained from these two distances. The energy expres-
sion is shown below.

E;=1In

ij
Ntotal|xi0'9|xj0'9)
where Nj; is the number of contacts found between
protein atom type i and ligand atom type j, Nital IS the
total number of contacts within the structural training
database, and X; is the mole fraction of atom type i.

The number of atom types was varied between 1 and
15 for both the protein and the ligand and the combina-
tion producing the largest correlation with experimental
binding affinities was selected. This procedure was
repeated multiple times producing a variety of randomly
assigned atom types and corresponding optimal knowl-
edge-based potentials. The distribution of correlation
coefficients obtained for these knowledge-based poten-
tials was centered close to O (Figure 14). As expected,
random atom types do not yield potentials that correlate
with the experimental binding affinity.

While random atom types are ineffective at producing
useful knowledge-based potentials, it is clear that atom
types based on “chemical intuition” such as invoked in
SMoG 2001 are more effective. One reason for this is
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that these atom types are more compatible with the
native atom types corresponding to the optimal pair
potential.

While in theory there may exist an optimal set of atom
types for knowledge-based potentials, in practice it is
unclear how to identify this ideal set. However, on the
basis of the framework described in this section, an
algorithm has been developed for optimizing atom types
within knowledge-based potentials. In the following
section, we describe an algorithm for optimizing atom
types within the SMoG potential for binding energy
prediction. These atom types are based on physical
atomic properties known to be significant in determin-
ing effective pair potentials. Furthermore, a small
number of fitting parameters are used within the model
to account for components that are unknown a priori.
This results in a model that is a hybrid between the
successful, but narrowly applicable, QSAR approaches
and the robust, but less accurate, knowledge-based
potentials.

Methods. The foundation of the work in this paper
is the automated drug design program SMoG developed
in this laboratory.!? Significant changes have been made
to the program in order to incorporate native atom
types. The OpenBabel molecular data structure library?8
has been linked into SMoG, allowing for rapid calcula-
tion of atomic properties including Gasteiger partial
charges?® used to characterize atoms in this study.

Two structural databases are involved in the develop-
ment of the SMoG knowledge-based potential: a train-
ing database used to construct the knowledge-based
potential based on contact statistics and a testing
database containing associated binding affinities used
to optimize the atom types and evaluate the resulting
potential. The training database consists of 250 protein/
ligand crystal complexes. Previous studies of the SMoG
potential have shown that the potential converges using
a relatively small training database. Furthermore,
optimized correlation coefficients obtained from the
potentials used in this study are invariant to the use of
a training database of 690 complexes. The PDB codes
identifying these structures are as follows: 148, 181l,
1821, 183l, 184l, 185I, 186l, 1871, 188l, laam, laaq,
laaw, labi, 1abj, 1abo, 1abr, lacj, lack, lacl, lacy, ladd,
lads, laec, lagp, laha, lahb, laht, laia, laib, laic,
lakb, lakc, lama, lamq, lamr, lams, lapg, lapm, lapt,
lapu, lapv, lapw, larc, lars, lasa, lasb, lasc, lasd,
lase, lasf, lasg, lasl, lasm, lasn, latl, latn, lavd,
laya, layb, layc, lazm, lbac, lbaf, 1bbr, 1bcr, 1bcs,
1bdm, 1bib, 1blc, 1blh, 1bll, 1bma, 1bmd, 1bra, 1btc,
lbyc, 1byd, 1bzm, 1cbr, 1cbs, lccg, 1cde, 1chb, 1cka,
1ckb, 1cla, 1cme, 1lcnb, 1cne, lcnf, 1com, 1cp4, 1lcpd,
lcpf, 1cpi, 1cqgh, 1crb, 1cts, lctt, 1ctu, 1cwa, lewb, lewe,
lcxa, lcyn, 1dbb, 1dbj, 1dbk, 1dbm, 1dcc, 1dgd, 1dge,
1dhf, 1dhi, 1dhj, 1dhr, 1die, 1dit, 1dld, 1dlr, 1dls, 1doc,
1dod, 1dog, 1dpp, 1drl, 1dr2, 1dr3, 1dr6, 1dr7, 1drf,
1drh, 1dtp, 1dwb, 1dwc, 1dwd, 1dwe, 1dyh, 1dyi, 1dyj,
lead, leae, leaf, leap, leas, leat, leau, lebd, leed, left,
lela, lelb, 1lelc, leld, lele, lelf, 1lelg, lels, lemy, lent,
lepb, 1lepl, 1epm, lepn, lepo, lepp, lepq, lepr, lesb,
leta, letb, letr, lets, lett, letu, 1fbc, 1fbf, 1fbg, 1fbp,
1fc2, 1fkb, 1fkg, 1fki, 1fmp, 1fnd, 1fpb, 1fpt, 1frg, 1frt,
1fut, 1gbb, 1gbc, 1gbd, 1gbf, 1gbh, 1gbi, 1gbk, 1gbl,
1gbm, 1gec, lger, 1get, 1gfi, 1ggi, 1ghb, 1gil, 1gky, 1gla,
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1glb, 1glc, 1gld, 1gle, 1glp, 1glqg, 1gmh, 1gne, 1gnp, 1gnq,
1gnr, 1gpy, 1gra, 1gre, 1grf, 1grg, 1gsq, 1lgst, 1lhag,
lhah, 1lhai, 1hbt, 1hbv, 1hcs, 1hdc, 1hdt, 1hef, 1lheg,
lhew, 1lhgt, 1hhg, 1hhh, 1hhi, 1hhj, 1hhk, 1hih, 1hii,
1him, 1hin, 1hlp, 1hlt, and 1hmr.

The testing database consists of 118 protein/ligand
crystal complexes for which experimental binding af-
finities are known. The 118 testing complexes are
further characterized as eight target families includ-
ing: serine proteases (20 complexes), aspartic proteases
(18 complexes), metallo proteins (22 complexes), car-
bonic anhydrase (19 complexes), sugar binding pro-
teins (14 complexes), endothiapepsin (11 complexes),
purine nucleoside phosphatase (five complexes), and
other proteins (nine complexes). The PDB codes and
binding affinities describing the testing set are given
in Ishchenko et al.!* The structure 4dfr contained within
the other proteins family was excluded from this
analysis.

The properties chosen to describe the atoms with this
model, providing the basis for atom typing, are the Born
radius and the Gasteiger partial charge. The Born
radius is an empirical parameter used in a variety of
models to primarily describe electrostatic solvation
effects. It effectively describes the average distance
between the center of a given atom and the solvent
boundary. This measure of “buriedness” has also been
used in certain applications to describe hydrophobic
solvation as well as electrostatic effects. The partial
charge is meant to capture the electrostatic distinctive-
ness of atoms as characterized by its direct interaction
with other atoms through Coulomb forces. By grouping
atoms by partial charge and Born radius, we hope to
group the real interactions between these atoms in
protein—ligand complexes. While it appears that we are
focusing only on electrostatic interactions when describ-
ing atoms and atom types, this is not necessarily the
case. The explicit grouping of atoms by the partial
charge and Born radius may also capture some infor-
mation relevant to hydrophobic or van der Waals
interactions. We also note that the quantitative accuracy
of these empirical descriptors is not necessary in our
model. These descriptors are used solely for clustering
atoms together with similar physiochemical properties.
The interaction energies themselves are determined
through a traditional knowledge-based approach.

The development of the native atom type knowledge-
based potentials can be described as follows. First, each
atom within the training database is assigned a partial
charge and Born radius. The partial charges are deter-
mined within the OpenBabel library using the Gasteiger
method. Born radii are determined using the approach
described by Hawkins and Truhlar.3° Each atom is then
described by these two parameters. The partial charge
of each atom is then multiplied by a weight w while the
Born radius is multiplied by a weight 1 — w. This
determines the relative importance of the two param-
eters as w is incremented from O to 1.

These points in a two-dimensional descriptor space
are clustered using a K-means algorithm.3! N clusters
are generated by first choosing N atoms randomly from
the training database. The K-means algorithm then
generates clusters by iteratively grouping the remaining
points to the closest cluster center. This is repeated
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multiple times by choosing N new random atoms, and
the resulting clusters with the minimum total variance
are chosen as the optimal clustering of the training set
into N clusters. One to 15 clusters are generated for
protein and ligand atoms separately resulting in a
compromise between the information content in the
clusters (which rises with the number of clusters) and
the precision of the resulting knowledge-based potential
(which decreases as the number of clusters or atom
types increases). This results in a total of 15 x 15 =
225 knowledge-based potentials for each choice of
weighting parameter w, constructed using the procedure
described by Ishchenko et al.1! The number of protein
and ligand atom types was limited to a maximum of 15
in order to preserve a reasonable level of precision in
the resulting statistical potentials.

The resulting 225 potentials are used to evaluate the
interaction energies between the protein and the ligand
atoms within the testing structural database. The
Pearson correlation between these predicted binding
affinities and the experimental binding affinities (log
Kj) is used to evaluate the success of the given SMoG
potential. For each weight, the optimal potential was
identified as the one potential of the 225 that produced
the largest Pearson correlation with the experimental
binding data. The optimal correlation as a function of
the weighting parameter w is shown for a variety of
testing sets.

K-means clustering is a fast and simple clustering
algorithm requiring only O(n) time to complete where
n is the number of elements or atoms that are being
clustered. One sacrifice that must be made when using
K-means is determinism. The K-means algorithm is
inherently stochastic and therefore can yield different
local clustering solutions when operating on the same
dataset. While the speed and simplicity of K-means is
desirable, the randomness of the resulting clusters is
not. Therefore, to improve the robustness of the K-
means clustering, we incorporate a small alteration to
the algorithm. Each time the n atoms within the
training database are clustered by K-means, the algo-
rithm is actually run 10 times using different random
cluster seeds. At the end of each of the 10 independent
clustering runs, the sum of the variances of each cluster
is determined. The variance of each cluster is defined
as the sum of the variances of each cluster dimension.
The run producing the minimum total variance is
chosen as the optimal K-means clustering of the n
training set atoms. This simple iterative approach
improves the ability of the clustering algorithm to locate
a global optimum rather than settling for the first local
solution.

While clustering using K-means is fast enough to be
practical for generating optimized KB potentials, future
applications of the potential evaluating new testing
complexes or even growing new inhibitors require a
faster means of assigning atom types. To avoid the time-
consuming clustering algorithm while assigning atom
types to the testing database, atoms are assigned to a
cluster based on the minimum Z-score between the new
atom and each cluster. The Z-score is the number of SDs
between the two-dimensional property vector for the
atom in question and each cluster center is computed.
The cluster resulting in the minimum number of SDs
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is assumed to describe the atom type for the atom in
guestion.

The minimum Z-score approach has been tested on
the training database (for which clustering is explicitly
performed), and it successfully predicts the cluster
assigned to a given atom with over 99% accuracy. This
is due to the fact that the clusters are relatively tight
(have small variances) and do not significantly overlap
with one another. To maintain consistency between the
testing database and the training database, atom types
are assigned to the atoms within both databases using
the minimum Z-score procedure. A flowchart describing
this procedure is given below.

Assign properties to
atoms within the training
and testing database

Cluster training set
atoms by k-means to
determine atom types

Determine potential
by typical SMoG
procedure

v v

Scale atomic l Assign types to training
properties by weights and testing set atoms by
Z-score fit to clusters

i 4

Find maximum
correlation to
binding affinities

A

. Increment Property Weight “w”
-

Note Added in Proof. The Z-score distance function
utilized in this study to assign atom types was given as
d= |Z!\"d'stcorei|._ An alternative “taxi-cab” distance
function, d = ™ Zscorej|, was also evaluated and
similar results were obtained. These results are shown
in the supplementary information available at http://
www-shakh.harvard.edu/publications.html.
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