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Abstract: Computational ligand-protein docking is routinely
used for binding mode prediction. We have quantified the effect
of considering multiple docking solutions on the success rate
of obtaining the crystallographic binding mode. By selection
of a small set of representatives, the experimentally observed
binding mode can be predicted with a higher probability after
a ligand-protein docking simulation. The proportion of cor-
rectly predicted complexes improved from 69% to 87% when
five distinct binding modes were considered.

The prediction of the correct mode of ligand-protein
binding is extremely important not only as an essential
molecular recognition problem but also for its implica-
tions for drug discovery. In the absence of experimental
structural data on binding modes, computational pro-
tein-ligand docking methods are now routinely used to
predict the binding mode of biologically active small
molecules when complexed to their protein receptors.
Observed binding affinities and biological effects can be
rationalized in terms of specific interactions with the
protein binding site.1-3

A variety of different search and optimization meth-
ods have been developed for ligand-protein docking
applications, such as genetic algorithms,4 energy mini-
mization,5 molecular dynamics,6 simulated annealing,7
and more recently parallel tempering8 and stochastic
tunneling.8,9 To be of practical importance, docking
methods have to address the balance between efficiency
and accuracy in the search for the global minimum of
the energy landscape. It has been suggested that the
energy landscape that is characteristic of ligand-
protein binding is funnel-shaped and, in that respect,
resembles the energy landscape of protein folding.10,11

Native ligands exhibit minimally frustrated pathways
to the global minimum leading to a stable binding mode,
while nonbinding ligands will have a frustrated energy
landscape leading to multiple binding modes.12 Native
ligands thus fulfill both thermodynamic stability and
kinetic accessibility criteria due to a funnel-shaped
binding energy landscape.

The search for the binding modes of ligands in protein
binding sites also depends crucially on the quality of
the approximations employed to characterize the exact
ligand-protein binding energy landscape. Approximate
functions for describing ligand-protein interactions
have been extensively investigated.13-15 The perfor-
mance of these functions is limited by the difficulties
in accurately treating the effects of solvation and the

entropic changes due to hydrophobic interactions.16 The
reliability of scoring functions in molecular docking has
been addressed by the use of consensus scoring, where
a number of scoring functions are used to rank ligand-
binding modes,17 and by the use of different scoring
functions for the ligand-binding mode search and for the
scoring of ligand-protein interactions.2

Approximate scoring functions aim to preserve the
native energy landscape to correctly identify the native
binding mode as the one with the lowest energy. The
results of molecular docking simulations suggest that
the native binding mode corresponds to a low-energy
structure but not necessarily with the lowest energy.13-15

This observation suggests that the success rate for
finding the native binding mode might be significantly
increased if a small set of distinct binding modes within
a certain energy threshold above the lowest energy
binding mode is considered.18 Other methods have dealt
with multiple binding modes using clustering tech-
niques and ranking based on population pairs.19

The accurate prediction of the mode of binding of a
ligand to a protein can be critical in a drug discovery
program. We have examined and statistically quantified
the effect of retaining a small number of low-energy
solutions on the success rate of finding the binding mode
observed in the crystal structure. First, we apply a
recently introduced quantum stochastic tunneling (QS-
TUN) docking method20 to generate multiple docking
solutions for each of the 305 ligand-protein complexes
in the CCDC/Astex data set,21 and then we select
binding modes within a certain energy threshold above
the lowest energy solution. We have found that by
selection of a small set of distinct binding mode repre-
sentatives the accuracy of the prediction of the experi-
mentally observed binding mode improves substantially.
This finding can add significant value to drug design
applications, where the subsequent rational selection
of one or more ligand-binding modes from a list of a few
distinct docking poses could be carried out on the basis
of a further more rigorous theoretical analysis and on
the basis of the known binding mode of other ligands.

There are two main stages in the methodology: (i)
docking and generation of ligand-binding modes and (ii)
analysis and selection of distinct binding modes.

Quantum stochastic tunneling20 has been reported as
an efficient method for flexible ligand-protein docking.
This is a hybrid optimization method that combines
stochastic tunneling8,9,22,23 with a path-integral Monte
Carlo24 method to allow for the quantum and stochastic
tunneling through high-energy barriers and the nonlocal
exploration of the potential energy surface.20 Two-
hundred simulations were performed for each complex
using the PLP scoring function4 to represent the poten-
tial energy surface. Several binding modes were gener-
ated with each docking simulation. This yielded a large
number of ligand-binding modes that were then rescored
using the ScreenScore scoring function.13

An analysis of the ligand-binding modes was per-
formed for each ligand-protein complex. The objective
was to find out whether, by taking the first few best
energy-ranking solutions, the success rate of correctly
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predicting the native binding mode of the ligand in-
creased significantly. Three types of analysis were
performed.

First, the best root-mean-square deviation (rmsd)
from the crystal was found from solutions within a fixed
energy threshold above the lowest binding energy.
Different energy thresholds above the lowest-energy
solution were tried in steps of 1.0 kJ/mol, and different
numbers of binding modes were collected. These thresh-
olds account for the uncertainty in the binding energy
values inherent in the scoring function used.

Second, since only a limited number of solutions can
be investigated in detail in a drug design program, a
more relevant question to ask is how the accuracy
improves if only a fixed number of binding modes is
selected. Does the success rate of predicting the correct
crystallographic binding mode increase significantly by
considering a small number of distinct binding modes?
For this purpose the ligand-binding modes were ordered
according to their binding energies. Then, starting from
the lowest-energy solution, the rmsd of each pose with
respect to all the previous lower-energy poses was
computed. If the rmsd was higher than a given thresh-
old (2.0 Å), then that pose was added to a list of distinct
solutions. The result of this procedure was a list of
distinct ligand-binding mode poses that had rmsd’s
between one another of more than the predefined
threshold. Such a selection procedure can add signifi-
cant value to drug design applications, where the
subsequent selection of one or more ligand-binding
modes from a list of a few distinct docking poses can be
carried out on the basis of a further full energy
minimization, the position and orientation of chemical
substitution points, and the known binding mode of
other ligands or simply by intuition.

Third, all docking solutions were assigned to the
nearest distinct binding mode and the distinct binding
modes were reranked according to the number of
docking solutions they attract, or their occupancy. This
ranking procedure relates to concepts from the energy
landscape theory describing the ligand-protein interac-
tion.12 Consequently, it is possible to assume that many
random initial conformations of the native ligand regu-
larly dock in the stable (and dominant) binding mode,
although because of the frustrated nature of the energy
landscape and the limited search, alternative binding
modes will also be found. Therefore, it is reasonable to
expect that the most occupied binding mode would
correspond to the native binding mode as observed
experimentally.

All 305 ligand-protein complexes in the CCDC/Astex
validation set21 were used. This data set has entries that
cover the largest populated structural classes of proteins
and their homologues. Furthermore, the complexes have
protonation and tautomeric states that have been as-
signed manually. The original validation set was further
“cleaned” by removing structures that had (i) factual and
structural errors in their PDB files, (ii) ligands with
unlikely conformations or determined inconsistently
with regard to their electron density, (iii) severe clashes
between protein and ligand atoms, and (iv) ligand
contacts to crystallographically related protein residues.
This “clean” subset contained 224 structures and was
then filtered further on the basis of the crystallographic

resolution (R) of the protein structures. Two further
subsets were used: one with protein structures that
have a resolution of 2.5 Å or better (containing 180
structures) and another that had protein structures that
have a resolution of 2.0 Å or better (containing 92
structures). Full details of the above subsets can be
found elsewhere.21 We also defined a new subset of
small structures from the “clean” CCDC/Astex data set
in a fashion similar to that in a previous study.25

Structures included in this set, which we have named
“needles”,26 were those with a molecular weight below
300 and with three or fewer rotatable bonds. The needle
subset consisted of 67 structures. These five different
subsets are referred to as All, Clean, Clean2.5, Clean2.0,
and Needles throughout the paper.

The results for the different sets of complexes are
summarized in Figures 1-3. Each figure shows the
percentage of the complexes for which a docking solution
was found within a given rmsd from the crystal struc-
ture at a specified threshold (energy or number of
distinct binding modes). First, we analyze the results
when only the best-ranking solution is considered for
each complex, and then we investigate the effect of
different thresholds above the lowest-energy solution.

Our results show (Figure 1) that by using ScreenScore
to evaluate the energy of binding, 65% of the cases in
the whole data set (All) are predicted correctly (rmsd <
2.0 Å). We can see that there is a significant improve-
ment in the success rate as the quality of the subset
improves. The success rate improves to 69% in the Clean
subset, to 70% in the Clean2.5 subset, and to 75% in
the Clean2.0 subset. These are all good figures but
clearly indicate that a docking simulation run to predict
the binding mode of a ligand could fail between 35% (for
any protein structure) and 25% (for a “clean” high-
resolution protein structure) of the cases. The highest
level of success was observed for the Needles subset,
with a 78% success rate.

The real test of a docking method is for it to be able
to identify the true crystallographic binding mode of a
ligand on the basis of its energy of binding. It is well
established that it is the scoring function (ScreenScore
in this case) that eventually becomes the limiting factor
for the success of a docking method. When docking
solutions are considered within a small threshold above

Figure 1. Changes in the success rate of finding the correct
crystallographic binding mode when using the distinct binding
mode search method. Data for five subsets of the CCDC/Astex
data set is shown. Results where binding modes were ranked
on the basis of occupancy are shown in red.
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the lowest energy, the number of cases with good
solutions increases substantially. This effect is shown
in Figure 2 for the Clean data set. For example, the
percentage of complexes with solutions within a 2.0 Å
rmsd from the crystallographic binding mode increases
from 69% to 88% within a 5.0 kJ/mol threshold and to
95% within a 10.0 kJ/mol threshold.

The effect of applying the distinct binding mode
search to each of the subsets of the CCDC/Astex data
set can also be seen in Figure 1. For the Clean subset
the success rate increased from 69% with only one
distinct binding mode to 80% for three distinct binding
modes and to 87% for five distinct binding modes. The
equivalent numbers for the Clean2.0 subset were 75%,
84%, and 90% for one, three and five distinct binding
modes, respectively. Significant improvement was also
seen for the Needles subset, starting at 78% with one
binding mode and reaching success rates of 90% and
98% for three and five binding modes, respectively.
Increasing the number of binding modes beyond five
does not seem justified in terms of the marginal further
success rate improvement and also the added complexity
of having more than five possible solutions to a docking
simulation. We have observed that the increase in the
success rate is mostly due to a large decrease in the
number of test cases with an rmsd greater than 3.0 Å
and also, to a lesser extent, to a decrease in the number
of test cases with rmsd values between 2.0 and 3.0 Å
(data not shown). This is accompanied by a large
increase in the number of test cases with an rmsd of
less than 1.0 Å and also, to a lesser extent, by an
increase in the number of test cases with an rmsd
between 1.0 and 2.0 Å.

The largest improvements of the success rates are
seen for ligands with an intermediate number of rotat-
able bonds (Figure 3). Complexes containing ligands
with up to 11 rotatable bonds show a modest improve-
ment of up to 18% points (with five binding modes). For
complexes containing ligands with 12-15 rotatable
bonds the increase is around 34% points. For ligands
with more than 16 rotatable bonds the increase is
around 16% points due to the fact that the native
binding mode was not always found. Similar trends are
observed if the binding modes are ranked according to
their occupancy (Figure 3, in red). When ranked by
occupancy, ligands with 12 or more rotatable bonds had

higher success rates compared to energy ranking. On
the other hand, energy ranking is a better predictor for
the Needles data set (Figure 1). Therefore, it should be
valuable to consider energy and occupancy ranking
when assessing docking results.

These results demonstrate that selecting a few dis-
tinct binding modes, on the basis of their pairwise rmsd
or their occupancy, can provide a small number of
alternative binding modes that can increase signifi-
cantly the chances of finding the native binding mode.
Consideration of multiple binding modes selected on the
basis of rmsd differences should be applicable to any
docking method and/or combination of scoring functions.
Furthermore, a benefit of using a stochastic docking
approach to obtain alternative binding modes is that
they reflect the shape of the ligand-protein energy
landscape and their relative occupancy can be taken as
an indicator of the “near-nativeness” of the binding
mode of a given ligand.

Figure 4 illustrates the effect of considering multiple
distinct binding modes in one of the test cases, carbonic
anhydrase I (1AZM). Three distinct docking solutions
of 5-acetamido-1,3,4-thiadiazole-2-sulfonamide are shown.
The lowest-energy solution (in pink) has an rmsd of 3.5

Figure 2. Changes in the success rate of finding the correct
crystallographic binding mode as a function of binding energy
tolerance. Results shown are for the “clean” CCDC/Astex data
set.

Figure 3. Effect of subdividing the “clean” CCDC/Astex data
set according to the number of rotatable bonds. Results where
binding modes were ranked on the basis of occupancy are
shown in red.

Figure 4. Example (1AZM) where the lowest-energy docking
solution is incorrectly predicted but where subsequently
ranked distinct binding modes provide superior solutions.
Carbon atoms represent the following: (green) rmsd < 1.0 Å;
(orange) 2.0 Å < rmsd < 3.0 Å; (pink) rmsd < 3.0 Å. The
crystallographic binding mode is shown in gray, and the Zn
atom is shown as a purple sphere.
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Å from the experimental binding mode (in gray). The
subsequent distinct binding mode (in orange) has an
energy that is 1.2 kJ/mol higher and shows a slight
improvement with an rmsd of 2.7 Å. The third distinct
binding mode (in green) is a further 2.5 kJ/mol higher
in energy and shows good agreement with the crystal-
lographic binding mode having an rmsd of only 0.8 Å.

In conclusion, we have evaluated statistically a dis-
tinct binding mode search as a means of predicting the
native ligand-protein complex. The usefulness of the
distinct binding mode search method was assessed with
the CCDC/Astex data set of ligand-protein complexes
using the QSTUN docking method and the ScreenScore
function. We have found that the success rate of docking
simulations improves significantly when a number of
distinct binding mode poses are considered, the main
effect arising from an improvement in the success rates
of those ligand-protein complexes having ligands with
a large number of rotatable bonds. We have been able
to find the correct crystallographic ligand-binding mode
in up to 87% of the cases when up to five distinct binding
modes are considered, compared to a success rate of 69%
if only the top-ranking mode is considered. Such distinct
binding modes ranked by occupancy reflect the shape
of the ligand-protein energy landscape, which dictates
the higher thermodynamic and kinetic accessibility of
near-native binding modes.

This result can add significant value to drug design
applications, where the subsequent judicious selection
of one or more ligand-binding modes from a list of a few
distinct docking poses could be carried out on the basis
of a further more rigorous theoretical analysis or on the
basis of the known binding mode of other ligands.
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