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The comparative binding energy (COMBINE) methodology has been used to identify the key
residues that modulate the inhibitory potencies of three structurally different classes of
acetylcholinesterase inhibitors (tacrines, huprines, and dihydroquinazolines) targeting the
catalytic active site of this enzyme. The extended set of energy descriptors and the partial
least-squares methodology used by COMBINE analysis on a unique training set containing
all the compounds yielded an interpretable model that was able to fit and predict the activities
of the whole series of inhibitors reasonably well (r2 ) 0.91 and q2 ) 0.76, 4 principal
components). A more robust model (q2 ) 0.81 and SDEP ) 0.25, 3 principal components) was
obtained when the same chemometric analysis was applied to the huprines set alone, but the
method was unable to provide predictive models for the other two families when they were
treated separately from the rest. This finding appears to indicate that the enrichment in
chemical information brought about by the inclusion of different classes of compounds into a
single training set can be beneficial when an internally consistent set of pharmacological data
can be derived. The COMBINE model was externally validated when it was shown to predict
the activity of an additional set of compounds that were not employed in model construction.
Remarkably, the differences in inhibitory potency within the whole series were found to be
finely tuned by the electrostatic contribution to the desolvation of the binding site and a network
of secondary interactions established between the inhibitor and several protein residues that
are distinct from those directly involved in the anchoring of the ligand. This information can
now be used to advantage in the design of more potent inhibitors.

Introduction
Ligand-receptor recognition is a complex problem to

deal with theoretically because the binding affinity of
a ligand results from the subtle interplay of forces that
takes place within the receptor binding site, usually in
competition with water molecules.1 However, when a
series of ligands display graded affinity toward a given
receptor, as is often the case in medicinal chemistry
projects, and structural information about one or more
of their complexes with the target (or a highly homolo-
gous) receptor is available, molecular modeling tech-
niques can be used to gain insight into the key features
that modulate the strength of ligand-receptor binding
within the series.2 Quantitative structure-activity re-
lationships (QSAR) can then be derived using molecular
mechanics force fields, typically including van der Waals
and Coulombic interactions, or alternative scoring func-
tions that evaluate the goodness of the fit.3-5 These
structure-based QSAR methods, however, are not devoid
of hurdles as not always do the calculated values
accurately reflect the differences in experimental activi-
ties or binding affinities. When discrepancies are found,
likely causes are inadequate parametrization, insuf-
ficient structural refinement, inappropriate modeling of
the dielectric environment, and/or omission of desolva-

tion and entropic contributions. Entropy can seldom be
directly taken into consideration as it is usually one
single conformation that is used to represent both the
bound and unbound states of the binding partners.
Multiple conformational states can, of course, be con-
sidered, also in the presence of explicit solvent mol-
ecules, as is done in free energy perturbation6,7 and
linear response methods,8 but the high computational
cost makes these two approaches impractical for the
comparative study of more than a few ligand-receptor
complexes. On the other hand, it has been shown that
cancellation of errors and enthalpy-entropy compensa-
tions are not uncommon, especially within congeneric
series.9

For QSAR studies of large series of ligand-receptor
complexes, an alternative strategy has been proposed
that is based on the partitioning of the calculated
intermolecular binding energies into contributions from
individual protein residues. A chemometric analysis is
then performed that projects the resulting matrix of
energy terms on to a small number of orthogonal “latent
variables” (or principal components, PCs) that correlate
with the activity differences using a partial least
squares (PLS) analysis. At the end of the procedure,
those pairwise interactions between the ligand and
individual protein residues that are predictive of activity
or binding free energy (i.e., the real “signal”) are selected
and given weights, according to their importance in the
model, in the form of PLS pseudocoefficients, whereas
the “noise” present in the dataset is filtered out. This
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4471J. Med. Chem. 2004, 47, 4471-4482

10.1021/jm049877p CCC: $27.50 © 2004 American Chemical Society
Published on Web 07/16/2004



approach has been termed comparative binding energy
(COMBINE) analysis, and, since its first implementa-
tion in 1995,10 several successful applications on dif-
ferent systems of medicinal chemistry11-15 and bio-
chemical16-18 interest have been reported in the litera-
ture by a number of laboratories.

There are two clear advantages in using the
COMBINE method for SAR studies: (i) it avoids the
bias of a subjective, although expert, interpretation of
structural data (often limited to one or a few complexes)
that may, or may not, be sufficient to explain the
differences in activity within a large series of ligands,
and (ii) the computational cost is much lower than that
required for state-of-the-art free energy calculations (on
the other hand, only applicable to pairs of either
compounds or targets). Nevertheless, the success of the
COMBINE methodology, as well as of other SAR
techniques, can be jeopardized by the quality of the
experimental data, especially when they come from
different sources. Ideally, lead optimization would have
to rely on a homogeneous set of structural, chemical,
and pharmacological data. In practice, however, me-
dicinal chemists have to live with the uncertainties
associated both with the use of different structural
classes of compounds in the same project and with the
fact that experimental activities may have been deter-
mined using different pharmacological assays in several
laboratories. In an even less ideal scenario, they also
may have to deal with 3D structures of drug-receptor
complexes that are not exactly the same as those used
in the experiments. In these circumstances, we asked
ourselves whether it would still be possible to extract
useful information to guide the optimization of lead
compounds.

A case in point is acetylcholinesterase (AChE), whose
blockade is currently the only clinical approach to the
symptomatic treatment of Alzheimer’s disease.19 The
therapeutic impact of this enzyme has been reinforced
by recent evidence suggesting an additional role in
mediating the aggregation and deposition of the â-
amyloid peptide.20,21 In AChE, the catalytic active site
is at the end of a deep, narrow gorge (around 20 Å long)
that penetrates into the enzyme and widens out close
to its base.22 There is also a secondary binding locus,
i.e., the peripheral site, which might act as an initial
binding site for the incoming substrate. This structural
complexity accounts for the large diversity of reversible
AChE inhibitors,23 which can interact with either the
active site, the peripheral site, or both, making use of
distinct sets of interactions.

Our first aim was to examine the benefits and
disadvantages of including three different chemical
classes of AChE inhibitors that target the active site
(21 tacrine [Table 1],24,25 7 huprine [Table 2], 26,27 and
7 dihydroquinazoline [Table 3]28 derivatives) into a
single training set versus examining each family in turn.
This sort of comparison is further complicated in this
particular case by the fact that the experimental data
(i.e., 50% inhibitory concentrations, IC50) have been
compiled from independent studies in which enzyme
sources, assay conditions and techniques differed from
one laboratory to another. Subject to this caveat, the
obvious enrichment in chemical information upon inclu-
sion of different compound families into a unique
training set for SAR studies can be negatively counter-
balanced by the “noise” inherent in the mixture of
experimental data. Thus, we decided to check whether
the COMBINE method is well suited to identify key

Table 1. Chemical Structures and pIC50 Data for Tacrine Derivatives

pIC50

compound substituents humana humanb normalizedc

t1 (tacrine) 7.47 6.60 6.69
t2 5-Cl 7.16 6.37
t3 6-Cl 8.74 8.00 8.09
t4d 7-Cl 6.13 6.26 6.35
t5 8-Cl 8.03 7.24
t6 6-CH3 7.00 7.10
t7 7-CH3 5.09 5.18
t8 6-NO2 7.55 7.64
t9 7-NO2 5.52 5.60
t10 6-F 7.06 7.15
t11 8-F 7.54 6.76
t12 7-NH2 5.42 5.51
t13 6-OCH3 6.46 6.54
t14 6,7-diCl 6.33 6.41
t15 6,7-diOCH3 5.28 5.37
t16 7-OH 6.79 6.00
t17 7.50 6.72
t18 5-Cl 7.07 6.29
t19 6-Cl 8.35 7.56
t20 7-Cl 5.96 5.17
t21 8-Cl 7.37 6.59

a Reference 24. b Reference 25. c Experimental data were renormalized by adopting an IC50 value for tacrine of 0.21 µM (ref 27). d Owing
to the discrepancy between the IC50 values observed for t1, t3, and t4 (see text), the renormalized value was obtained by considering only
the value determined spectrophotometrically (ref 25).
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ligand-receptor interactions also in a clearly unfavor-
able case involving a nonhomogeneous dataset. For the
PLS analysis, we have assessed the effect of incorporat-
ing as regressor variables not only the residue-based
ligand interactions but also the interaction energies
between the inhibitors and some individual water
molecules used in the modeling that are common to all
the complexes. We have tested as well the effect of
replacing the force field Coulombic electrostatic interac-
tions with those calculated using a continuum method,
as reported previously.9,11 In addition, and as an inno-
vation over previously reported COMBINE analyses,
some selected residue-based desolvation contributions
were calculated and used to replace the global term that
describes the desolvation of the whole receptor binding
site upon ligand binding. Finally, a test set of another
7 tacrine-related compounds, taken from an independ-
ent study (Table 6)29 and not included in model deriva-
tion, was used to assess the predictive ability of the best
resulting COMBINE model.

Results and Discussion
Dataset Description. Since all AChE inhibitors

included in this study possess the same tricyclic tetra-
hydroacridine-like structure, it is safe to assume that
they share with tacrine a common mode of binding to

AChE.30 In fact, the binding mode for huprine deriva-
tives that was anticipated from molecular modeling
studies7,26,27 and later confirmed by the X-ray crystal
structure of the AChE-huprine X complex31 shows that
the tetrahydro-9-aminoacridine rings of both tacrine and
huprine X appear virtually superimposed when the CR
traces of the enzyme in both complexes are overlaid.
Furthermore, chlorination at position 6 in tacrine and
1,4-methylenetacrine, or at the equivalent position 3 in
dihydroquinazoline and huprine, gives rise in all cases
to a significant increase in the inhibitory potencies
(Tables 1-3).23 This finding can be easily explained by
accepting that, given the similarity in their binding
modes, the chlorine atom occupies a common pocket,
which mainly involves Trp432 and Met436, according
to the crystallographic data for the AChE-huprine X
complex.31 These considerations support our contention
that the differences in inhibitory activity can be inter-
preted in terms of differential interactions of the ligands
with specific residues in the binding pocket of our
modeled complexes. Importantly, this choice of inhibi-
tors is particularly well suited for our purposes, because
the COMBINE results can be directly contrasted with
high-quality information provided by both X-ray crystal-
lographic structures30,31 and previous free energy cal-
culations.7,26,27,32

Experimental Data Normalization. IC50 values for
tacrine (Table 1) and dihydroquinazoline (Table 3)
derivatives, as well as for the test set of tacrine-related
compounds (Table 6), were derived from inhibition of
human erythrocyte AChE. On the other hand, for
huprines, the inhibitory activity was determined using
enzyme from either bovine or human (x3, x5, and x7)
erythrocytes. Moreover, the experiments were per-
formed by using either radiometric33 (for some tacrine
derivatives24 and the dihydroquinazolines28) or spectro-
photometric34 (for some tacrine derivatives,25 the hu-
prines,26,27 and the test set29) techniques. Nevertheless,
the consistency of the data was supported by inspection
of the inhibitory activity for tacrine, which was used as
the reference compound in all of these studies. Thus,
IC50 values of 33.524 and 3028 nM and of 0.25,25 0.21,27

and 0.1429 µM were reported for tacrine by using either
the radiometric or the spectrophotometric assay, re-
spectively. For our purposes, a reference IC50 value of
0.21 µM was adopted for tacrine, and the IC50 data for
the rest of tacrine (including the test set) and dihydro-
quinazoline derivatives were renormalized by using
factors derived from the ratio between the IC50 values
reported for tacrine in each independent study and the
reference value. Let us note that this implies adding
corrections (in pIC50 units) of 0.08 (ref 25), -0.18 (ref
29), -0.80 (ref 24) and -0.84 (ref 28) to the respective
pIC50 values given in the independent studies. For
huprines x1, x2, x4, and x6, the IC50 values on bovine
AChE were scaled by a factor of ∼3.6 (0.6 pIC50 units)
that corresponds to the roughly constant ratio observed
between the IC50 data determined on bovine and human
AChE for x3, x5, and x7.

It is worth stressing that the general applicability of
the renormalization procedure described above is not
completely guaranteed for all the compounds, especially
for the less active inhibitors. This is particularly notice-
able, for example, in the fact that whereas the IC50

Table 2. Chemical Structures and pIC50 Data for Huprine
Derivatives

pIC50

compound substituents bovinea humanb normalizedb

x1 9-CH3 7.33 7.88
x2 3-F,9-CH3 8.46 9.01
x3 3-Cl,9-CH3 8.94 9.49 9.49
x4 9-C2H5 7.56 8.12
x5 3-F,9-C2H5 8.17 8.68 8.68
x6 3-CH3,9-C2H5 8.35 8.89
x7 3-Cl,9-C2H5 8.89 9.49 9.49

a Reference 26. b Reference 27. c Experimental data were renor-
malized by using a factor derived from the comparison of inhibitory
activities in bovine and human AChE for x3, x5, and x7.

Table 3. Chemical Structures and pIC50 Data for
Dihydroquinazoline Derivatives

pIC50

compound substituents humana normalizedb

j1 X ) H2 5.43 4.59
j2 X ) H2; 4-Cl 5.82 4.99
j3 X ) H2; 3-Cl 6.80 6.01
j4 X ) H2; 2-Cl 6.30 5.47
j5 X ) H2; 1-Cl 5.77 4.94
j6 X ) O; 3-Cl <4.00 <3.17
j7 X ) S; 3-Cl <4.00 <3.17

a Reference 28. b Experimental data were renormalized by
adopting an IC50 value for tacrine of 0.21 µM (ref 27).
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values determined from spectrophotometric25 and ra-
diometric24 assays for tacrine (t1) and 6-chlorotacrine
(t3) have a similar ratio of ∼6, a factor close to unity is
found for the IC50 values of 7-chlorotacrine (t4), which
is one of the least potent inhibitors (see Table 1). This
discrepancy illustrates the difficulties encountered when
trying to derive a homogeneous set of pharmacological
data for QSAR studies from values reported independ-
ently by several groups. Rather inevitably, a compro-
mise has to be made between accuracy and generality,
but the question remains of whether or not the larger
content of chemical information gained from treating
an expanded dataset of related compounds, rather than
separate chemical families in turn, can be advantageous
in our attempts to identify the molecular determinants
responsible for the differences in biological activity.

COMBINE Analyses. The evolution of the figures
of merit as a function of the number of PCs extracted
for the different models encompassing the whole set of
35 inhibitors can be found in Table 4. The overall quality
of all the models is fairly good (with q2 g 0.6 for
dimensionalities between 4 and 5), but clear improve-
ments over the initial model are apparent upon incor-
poration of some of the refinements. Thus, when the
Coulombic electrostatic interactions between ligand and
individual residues calculated with the AMBER force
field (model A) were replaced with those calculated
using the continuum method (model B), the quality of
the model improved, but only marginally. Likewise, the
explicit inclusion of the two water molecules common
to all the complexes did not lead to a very significant
improvement (cf. model F vs model A, and model G vs
model B). However, incorporation of the electrostatic
contributions to the desolvation of both ligand and
receptor upon complex formation (model H) significantly
improved the quality of both the fitting and the predic-
tions (r2 ) 0.91 and q2 ) 0.72, respectively, for a 5-PC
model). Moreover, when each of these terms was con-
sidered independently, an almost negligible contribution
was apparent for the desolvation of the ligand alone
(model C) whereas the dimensionality of the model was
reduced and its quality improved even further (r2 ) 0.91
and q2 ) 0.76 for a 4-PC model) when only the desol-
vation of the receptor binding site (model D) was taken
into account. Model C behaved well for most of the
compounds but overpredicted the less active inhibitors
j6 and j7. These outliers were fitted better in model D
such that the standard deviation of error in predictions
(SDEP) for the whole set attained a remarkable value
of 0.78 (Figure 1), with the activities of only two
compounds, j4 and t18, significantly differing in more
than 1 order of magnitude between predicted and
experimental.

Given the important role ascribed to the desolvation
of the receptor binding site, we wondered whether it was
a global property or whether it would be possible to
pinpoint the most crucial residue(s) involved. To this
end, the electrostatic contributions to the desolvation
of a series of individual amino acids lining up the active
site cavity were calculated (∆Gdesolv

residue) and incorporated
as additional descriptors in place of ∆Gdesolv

R . Strik-
ingly, a marginal improvement or no improvement at
all was observed when ∆Gdesolv

residue values for residues
Trp84, Gly117, Gly118, Glu199, Phe330, Tyr334, Trp432,

and Ile439 were considered (data not shown), and only
when desolvation of Tyr442 was incorporated as an
addition to model B (∆Gdesolv

Tyr442, model E) did the SDEP
value decrease from 0.93 to 0.89 (Table 4). In view of
these results, it is clear that, at least in this particular
case, no real benefit is obtained by increasing the
computational cost of calculating and incorporating
these individual contributions in place of the overall
desolvation of the binding site (model D).

For the rest of the discussion we will concentrate on
the best predictive model (model D), which contains the

Table 4. Performance of Different COMBINE Modelsa for the
Whole Set of Inhibitors in Fitting and Prediction

data setb no. of PCs r2 SDEC q2 SDEP

A 1 0.57 1.03 0.50 1.11
2 0.70 0.86 0.59 1.00
3 0.73 0.81 0.59 1.00
4 0.76 0.76 0.60 0.99
5 0.83 0.64 0.59 1.00

B 1 0.70 0.86 0.58 1.01
2 0.79 0.71 0.59 1.00
3 0.82 0.66 0.61 0.98
4 0.86 0.58 0.64 0.93
5 0.89 0.51 0.62 0.97

C 1 0.71 0.85 0.56 1.04
2 0.79 0.72 0.55 1.05
3 0.82 0.66 0.55 1.05
4 0.84 0.62 0.59 1.00
5 0.86 0.58 0.61 0.97

D 1 0.62 0.97 0.48 1.12
2 0.72 0.82 0.55 1.05
3 0.85 0.60 0.64 0.93
4 0.91 0.47 0.76 0.78
5 0.92 0.44 0.75 0.79

E 1 0.70 0.85 0.57 1.03
2 0.81 0.68 0.61 0.98
3 0.84 0.62 0.64 0.94
4 0.88 0.54 0.68 0.89
5 0.90 0.50 0.65 0.92

F 1 0.59 1.00 0.51 1.09
2 0.73 0.82 0.63 0.95
3 0.76 0.76 0.62 0.97
4 0.82 0.67 0.62 0.96
5 0.85 0.61 0.63 0.95

G 1 0.72 0.83 0.61 0.98
2 0.77 0.74 0.60 0.99
3 0.82 0.66 0.57 1.02
4 0.86 0.58 0.56 1.04
5 0.88 0.53 0.56 1.04

H 1 0.63 0.95 0.47 1.12
2 0.73 0.82 0.51 1.06
3 0.83 0.65 0.58 0.96
4 0.87 0.56 0.66 0.87
5 0.91 0.48 0.72 0.75

a Abbreviations: PC, principal component; r2, correlation coef-
ficient; SDEC, standard deviation of errors in correlation; q2,
predictive correlation coefficient; SDEP, standard deviation of
errors in prediction. b Models include the following variables: A,
AMBER van der Waals and electrostatic interactions; B, AMBER
van der Waals and DelPhi electrostatic interactions; C, AMBER
van der Waals, DelPhi electrostatic interactions, and ∆Gdesolv

L ; D,
AMBER van der Waals, DelPhi electrostatic interactions and
∆Gdesolv

R ; E, AMBER van der Waals, DelPhi electrostatic interac-
tions, and ∆Gdesolv

Tyr442; F, AMBER van der Waals and electrostatic
interactions including two water molecules;58 G, AMBER van der
Waals and DelPhi electrostatic interactions including two water
molecules;58 H, AMBER van der Waals, DelPhi electrostatic
interactions, ∆Gdesolv

L , and ∆Gdesolv
R . The values in bold highlight

the best quality model.
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van der Waals interactions from AMBER, the electro-
static terms from DelPhi, and ∆Gdesolv

R .
To investigate the distribution of the 35 complexes

in the space defined by their ligand-receptor interaction
energies, it is useful to focus on the results of the
principal component analysis (PCA). The essential data
patterns can be easily visualized by plotting the com-
plexes in the space defined by the first and second PC
(score plot), whereas the relation between the original
variables and the new orthogonal latent variables can
be unveiled by plotting the contributions of the calcu-
lated energy descriptors to each of these PCs (loading
plot). The first PC extracted, which is mostly made up
by the electrostatic contribution to the desolvation of
the receptor binding site and van der Waals interactions
involving Gly118, Tyr121, Phe331 and His440, is enough
to clearly distinguish the huprine family from the other
two (Figure 2). This can be rationalized in terms of the
extra space that is occupied by the carbobicyclic moiety
of huprines, which fills a hydrophobic cavity31 lined by
residues Tyr121, Phe290, Phe330, and Phe331 (Figure
3). The second PC, with major contributions from the
electrostatic interactions with Glu199 and Asp72, and
van der Waals interactions with Trp84, is able to
separate dihydroquinazoline-based inhibitors (with the
exception of j2) from the tacrines.

A quantitative and rapid assessment of the relevance
of the different ligand-residue interactions to account
for the differences in activity within the whole series of
AChE inhibitors studied is provided by the normalized
PLS coefficients shown in Figure 4. The signs of these
coefficients express if favorable van der Waals and
electrostatic interactions (negative energy values) cor-
relate with an increase (negative coefficient) or a
decrease (positive coefficient) in activity (the higher the
pIC50, the greater the potency). The negative PLS
coefficients for Tyr121, Ser122, Phe290, Phe331, Tyr334,
Trp432, Ile439, and Tyr442 indicate that favorable van
de Waals interactions with these residues are beneficial

for activity. These residues form hydrophobic pockets
(Figure 3) that accommodate the substituents at posi-
tion C6 of tacrine (Ile439, Trp432) and the methyl or
ethyl group of huprines (Tyr121, Phe290, and Phe331),

Figure 1. Scatterplot comparing experimental vs predicted
activities in COMBINE model D for the 35 compounds of the
training series belonging to the three families studied.

Figure 2. (a) Score plot and (b) loading plot (2, van der Waals
variables; 4, electrostatic variables) of the first (PC1) and the
second (PC2) principal components for COMBINE model D.
Relevant energy descriptors have been labeled.

Figure 3. Superposition of the training set of inhibitors as
found in their respective complexes with AChE. Relevant
active site residues for one representative protein have been
labeled. A semitransparent solvent-accessible surface envelops
the side chains of the labeled residues (except Asp72) to
delineate the active site cavity. Water molecules and all the
hydrogen atoms have been omitted for clarity. Carbon atoms
of tacrines, huprines, and dihydroquinazolines are shown in
green, orange, and cyan, respectively.
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or are involved in water-mediated contacts with the
inhibitor (Tyr121 and Ser122).30,31 Tyr442, the desol-
vation of which was found to contribute significantly to
model E (see above), is located close to the entrance of
the hydrophobic pocket that accommodates the sub-
stituent attached to C6, and Tyr334 is fixed in position
through a hydrogen bond between its hydroxyl group
and the carboxylate of Asp72. Of all these ligand
interactions, that involving Tyr121 appears to be the
most discriminatory for activity when the three inhibitor
families are considered together.

The positive PLS coefficients for His440 and Trp84,
on the other hand, highlight the fact that favorable van
der Waals interactions with these two residues are
inversely correlated with activity. This can be striking
at first sight, as the magnitude of the van der Waals
interaction between the ligands and Trp84 is the great-

est of all, closely followed by Phe330 (Supporting
Information, Figure 1a), but it must be borne in mind
that the PLS analysis is seeking variables that can
provide effective discrimination between weak and tight
binders, and they do not need to be those with the
greater absolute values. In fact, Phe330 (the second
largest) is not even selected, meaning that differences
in van der Waals interaction energies involving this
residue cannot be used by the chemometric method to
correlate with the differences in inhibitory potency.
Thus, this interaction, although undoubtedly important
for binding, makes up a relatively constant contribution
within the series. Likewise, the counterintuitive sign
assigned to the relatively small Trp84 coefficient simply
means that the differences observed within the series
for this interaction, its importance notwithstanding,
tend to have an inverse relationship with activity.

Figure 4. Normalized PLS coefficients of model D for each of the (a) van der Waals and (b) electrostatic interaction energies
studied. Relevant residues for which the coefficients have absolute values g0.04 have been labeled.
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With respect to the electrostatic block, it is dominated
by the desolvation of the receptor binding site (the larger
the cost of the desolvation, the more detrimental for
activity) and by the interaction with Glu199 (Figure 4),
precisely the two variables mainly used by PCA to
discriminate between the three families and those in
the electrostatic block showing the largest absolute
magnitude and the greatest variation (Supporting In-
formation, Figure 1b). It is noteworthy that the sign
given here to the electrostatic interaction with His440
is negative whereas it was positive in the van der Waals
block. Our interpretation, in agreement with findings
in other systems,35 is that both terms are inversely
related in the AMBER force field when there exists a
hydrogen bond, as occurs here between the carbonyl
group of His440 and the NH group of the inhibitors
(Figure 3). Therefore, the better this hydrogen bond
between the ligand and His440, the better for activity.
On the other hand, the positive coefficient assigned by
the PLS model to the electrostatic interaction between
the positively charged ligands and Glu199 is being used
to effectively discriminate against the dihydroquinazo-
lines, in agreement with the PCA loading plot (Figure
2b). Since the three classes of molecules are positioned
in the field created by the negative charges of both
Asp72 and Glu199 (each on a different side of the
binding cavity, as shown in Figure 3), the electrostatic
interactions with these two residues are balanced. The
more potent huprines and tacrines interact more strongly
with the carboxylate group of Asp72, through a water-
mediated hydrogen bond, by virtue of the amino group
attached to their quinoline ring. Lacking this amino
group, the less potent dihydroquinazolines, which also
present a different charge distribution on their quinazo-
line ring system, interact more weakly with Asp72 but
strengthen their interaction with Glu199 at the expense
of a larger desolvation penalty.

It is interesting to note that the study of the tacrine
and the dihydroquinazoline families on their own led
in both cases to models with no predictive ability
(negative q2 values) whereas utilization of only the
huprines subset yielded a relatively modest initial model
(q2 ) 0.4), the predictive ability of which was very much
improved (q2 ) 0.81, SDEP ) 0.25 for a 3-PC model)
upon incorporation of the term representing desolvation
of the receptor binding site (Figure 5). Comparison of
the most significant PLS coefficients for this subset
(Table 5) with those derived for the whole set is
interesting as it reveals that both COMBINE models
have in common ∆Gdesolv

R , the van der Waals interac-
tion with Trp432 and Ile439, and the electrostatic
interaction with Glu199, albeit the relative importance
of each of these contributions varies. For the huprines,
additional interactions, especially with Phe330 but also
with Gly119, are used to fine-tune the binding affinity.
Remarkably, a role for both Phe330 and Glu199 in the
binding of huprine derivatives has already been pro-
posed on the basis of free energy calculations.7 Although
the biochemical role of Glu199 in catalysis is well
established,36-38 interaction with this residue does not
appear to have been exploited yet in the design of more
potent tacrine-like reversible inhibitors. In this respect,
it is worth recalling that the carboxylate of Glu199
establishes a direct hydrogen bond with a hydroxyl

group of the reversible AChE inhibitor galanthamine,39

as well as a water-mediated hydrogen bond with the
pyridine nitrogens of (-)-huperzine A,40 (-)-huperzine
B,41 and two alkylene-linked dimers of hupyridone.42

The enormous differences in model quality found for
the three families studied most likely reflect the greater
reliability of the experimental data for huprines, which
are the most active inhibitors, with activity data taken
from a single source, as well as the larger uncertainties
associated with the normalized inhibition data for the
other compounds, particularly the tacrine derivatives.
In fact, when the tacrine family was split into two
subsets, according to the experimental method employed
to evaluate their inhibitory activity,24,25 the q2 value of
each subset increased (q2 ∼ 0.3), which we take as a
clear indication of improvement in the signal-to-noise
ratio. Also, when huprines and dihydroquinazolines
were considered as the training set, a good model was
obtained (q2 ) 0.80) that could be used to predict the
activity of the tacrines with reasonable accuracy. In this
case, the external SDEP of 1.03 compared quite well
with the cross-validated SDEP of 0.92 obtained for the
other two families in the training set. All of these results
support the assumed binding mode for the dihydro-
quinazolines and reveal the advantages of including as
large a description as possible of both the chemical space
and the energy landscape around the binding site. Thus,
the extended set of energy descriptors provided by the
three structurally diverse families help to build a

Figure 5. Scatter plot comparing experimental vs predicted
activities in the COMBINE model derived for the huprine
series alone.

Table 5. Normalized PLS Coefficientsa for the COMBINE
Model Derived for the Huprine Family of AChE Inhibitors

residue van der Waals electrostatic

Gly119 0.056
Glu199 -0.067
Phe330 -0.118
Trp432 -0.261 0.042
Ile439 -0.040
∆Gdesolv

R -0.250

a Only PLS coefficients with absolute values g0.04 are shown.
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comprehensive model that is able to predict the activity
differences among the whole series of compounds with
relatively high accuracy.

As a final test of the goodness of the derived COM-
BINE model with 4 PCs, we tried to predict the activity
of an external set consisting of seven 9-amino-1,2,3,4-
tetrahydroacridine derivatives29 that were originally
designed to explore brain uptake (Table 6). The quality
of the predictions was reasonably good (Figure 6), as
assessed by an SDEP of 0.93 log unit, which is only
slightly larger than the value of 0.78 obtained for the
training set (Table 4). The fact that inhibitory potencies
can be predicted with an error of less than 1 order of
magnitude highlights the possibility of extending the

validity of the model to other classes of ligands provided
they bind in the same region that has been explored by
the training series.13

Conclusions

Exploitation of pharmacological data generated inde-
pendently by various research groups is a desired goal
in medicinal chemistry projects but is often hampered
by the logical uncertainties associated with the use of
different assays and/or experimental conditions. This is
a particularly worrying limitation when experimental
activities have to be assigned in a reliable and consistent
way to several chemical series that need to be included
in a unique training set for chemometric analysis. On
these premises, the results presented here for three
different classes of AChE inhibitors demonstrate that
the signal/noise ratio can be increased relative to the
individual series provided the experimental data are
“normalized” and a suitable chemometric tool is em-
ployed. Indeed, the extended set of energy descriptors
and the PLS analysis implemented in a COMBINE
framework enabled us to build a comprehensive QSAR
model that was able to predict the inhibitory potency
not only of a whole series of AChE inhibitors but also
of an external validation set with reasonable accuracy.
Of the three families of AChE inhibitors studied, the
more active huprines were found to provide the more
consistent results as a COMBINE model derived for this
family alone and consisting of only 3 PC was highly
predictive in cross-validation (q2 ) 0.81, SDEP ) 0.25).

Although other existing methods (e.g., free energy
perturbation [FEP] or thermodynamics integration)7 are
more useful for determining highly accurate differences
in binding free energy, there are some clear advantages
in using a method such as COMBINE analysis to exploit
the information contained in a large number of crystal-
lographic or modeled 3D structures of related drug-
receptor complexes: (i) the global picture it provides
encompasses the whole of the binding site explored by
the different ligands; (ii) the computational cost is much
lower than that required for state-of-the-art free energy
calculations, on the other hand only applicable to pairs
of either compounds or targets; and (iii) it supplements
the subjective interpretation of structural data,35 allow-
ing researchers to gain quantitative or semiquantitative
insight into the key role played by specific ligand-
receptor interactions and/or desolvation components. As
a result, those residue-based van der Waals and elec-
trostatic contributions that are endowed with a higher
discriminatory ability can be identified, which provides
clues for further chemical modification throughout the
series.

In the present example, most of the residues that are
more strongly involved in the binding of these ligands
(e.g., Trp84, Phe330, Asp72) are found not to be the most
relevant to explain the differences in activity, thus
indicating that their contribution to the binding strength
of the ligands is relatively constant within the series.
In contrast, differences in the cost of desolvating the
receptor binding site, as well as in the electrostatic
interaction with Glu199 and van der Waals interactions
with Tyr121 and Trp432, account for most of the
variation in potency. The model then points to a network
of secondary interactions between the inhibitor and

Table 6. Chemical Structures and pIC50 Data for the AChE
Inhibitors in the External Validation Set

pIC50

compound substituents humana normalizedb

ex1 X ) CH2, Y ) Z ) CH,
R′ ) F, R′′ ) H

7.10 6.95

ex2 X ) O, Y ) Z ) CH,
R′ ) R′′ ) H

6.58 6.42

ex3 X ) CH2, Y ) Z ) CH,
R′ ) OCH3, R′′ ) H

6.21 6.05

ex4 X ) O, Y ) Z ) CH,
R′ ) H, R′′ ) Cl

5.00 4.85

ex5 X ) O, Y ) N, Z ) CH,
R′ ) R′′ ) H

5.20 5.05

ex6 X ) O, Y ) CH, Z ) N,
R′ ) R′′ ) H

4.38 4.22

ex7 6.44 6.29
a Reference 29. b Experimental data were renormalized by

adopting an IC50 value for tacrine of 0.205 µM (ref 27).

Figure 6. Plot of recalculated versus experimental activities
for the training set (2) showing the predictions for the
compounds in the test set (b, series ex, Table 6) using
COMBINE model D.
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several well-defined residues, different from those usu-
ally considered for ligand anchoring and not immedi-
ately obvious from visual inspection alone, as important
for fine-tuning the inhibitory potency. This information
can now be used to advantage in the design of new
AChE inhibitors.

Methods

Building and Refinement of the Inhibitors. All 42
AChE inhibitors, including the 21 tacrine derivatives (Table
1), 7 huprine X analogues (Table 2), and 7 dihydroquinazoline
compounds (Table 3) used for model derivation, as well as the
set of 7 related molecules (Table 6) used for external validation,
were model-built in Insight-II43 utilizing standard bond lengths
and angles. The geometry of each inhibitor was then fully
optimized at the Hartree-Fock level with the 6-31G(d) basis
set44 using the Gaussian-98 program.45 According to the
basicity of the aminoquinoline ring,46 the protonated species
was considered in all cases. Charge distributions for the
inhibitors were calculated by fitting the HF/6-31G(d) electro-
static potential to atom centers using the RESP procedure,47

and van der Waals parameters for inhibitor atoms were
transferred from those defined for related atoms in the
AMBER-95 all-atom force field48 (parm98), which was also
used for protein atoms.

Choice of X-ray Structure and Modeling of the Com-
plexes. Although inhibitory potencies have been determined
using human erythrocyte AChE for most of the compounds
studied (the exceptions being huprines x1, x2, x4, and x6; see
text), no crystal structure is available of human AChE
(hAChE) in complex with a tacrine-related analogue. The
Protein Data Bank does contain a crystal structure of a
hAChE-fasciculin complex (1B41),49 with this latter toxin
bound at the outermost region of the gorge, and several
structures of mouse AChE complexed to decamethonium
(1MAA) or other inhibitors that interact at the peripheral
binding site (1J07, 1N5M, 1N5R, 1MAH), as well as an apo
form (1J06).50 This means that, at least in principle, none of
these mammalian AChE crystal structures appears to be the
best option to model the binding of inhibitors that target the
catalytic binding pocket which is located at the end of the
gorge. On the other hand, the homologous enzyme from
Torpedo californica (TcAChE) has been cocrystallized and
solved with tacrine and huprine X bound at the catalytic site
(PDB entries 1ACJ30 and 1E66,31 respectively). TcAChE is
highly homologous to the mammalian enzymes (Supporting
Information, Figure 2). In fact, since the only difference in the
active site region is a Phe330 f Tyr substitution, most
molecular modeling studies of ligand-AChE complexes have
focused on TcAChE itself (even in cases where experimental
activities have been determined using AChE from organisms
in which this residue is actually a Tyr, as in references 51 and
52) or have simply replaced Phe330 with Tyr (e.g., references
25 and 53). In the absence of direct crystallographic informa-
tion, it does indeed seem reasonable to assume that, in the
complexes of the mammalian enzymes with tacrine or huprine
X, Tyr337 will be arranged similarly to Phe330 of TcAChE
for the series of tacrine-like inhibitors examined here. This
assumption is supported by the following pieces of evidence:

(a) The side chain conformation of Phe330 in TcAChE
largely depends on the specific inhibitor being present in the
complex. Thus, the ø1 torsion angle is around -170° in the
apo enzyme or in the complexes with either huperzine A or
edrophonium, -120° in the complexes with either E2020 or
decamethonium, -140° in the complexes with bivalent ligands
related to huperzine A, and finally +160° in the complexes
with either tacrine or huprine X.23,30,31,54

(b) The side chain of Tyr337 is endowed with similar
flexibility showing ø1 angles of +167° in the apo form, +178°
in its complex with decamethonium, and -170° in the com-
plexes with inhibitors bound at the peripheral binding site.55

It has also been noted that, as a result of side chain rotations,
the hydroxyl group experiences positional deviations of up to

2 Å, and does not appear to be involved in specific, strong
hydrogen bonds with other residues, as the minimal distance
separating this phenolic oxygen and that of Tyr341 is between
3.5 Å (1MAA) and 3.8 Å (1MAH),55 surely longer than that
expected for an optimal O‚‚‚H-O interaction.

(c) Since tacrine, 1,4-methylenetacrine, dihydroquinazoline,
and huprine derivatives are structurally similar, it seems safe
to assume that they adopt a similar binding mode (experi-
mentally confirmed for tacrine and huprine X, as discussed
above) and also that the conformation of Tyr337 will be similar
in all cases. By adopting a conformation similar to that of
Phe330 in the TcAChE complexes, 1ACJ and 1E66, the
aromatic ring of Tyr337 might give rise to a cation-π interac-
tion with the positive charge of the protonated inhibitors. Such
an interaction has indeed been shown to be completely stable
in previous nanosecond-long molecular dynamics (MD) simula-
tions.7,27 Moreover, extension of these MD trajectories up to 5
ns (F.J.L., unpublished work) has revealed no relevant changes
in the stacking interactions of both tacrine and huprine X with
Trp and Phe (or Tyr).

(f) With the side chain in this conformation, the hydroxyl
group does not form specific interactions with either tacrine
or huprine X derivatives, as noted in several MD simula-
tions.7,27 Thus, Tyr and Phe at position 330 can be safely
assumed to behave very similarly in all the complexes studied.
A completely different situation can be expected, of course, for
the complexes with other inhibitors, such as (-)-huperzine A,
since not only does Tyr337 adopt a different conformation40

but also its hydroxyl group probably gets engaged in a
hydrogen bond with the ammonium group of the inhibitor.31

(g) Free energy calculations performed for inhibitors bound
to the TcAChE enzyme (with either Phe or Tyr at position 330)
satisfactorily predicted the changes in binding affinities for
mammalian AChE due to chemical modifications on huprine
derivatives.7,27

For the above reasons, the TcAChE structure was chosen
for the modeling work as it provided the finest details of both
ligand-receptor and ligand-water interactions that were
thought most relevant for the series of compounds studied.
TcAChE was modeled in its physiologically active form, as
described before,7 with neutral His440 and deprotonated
Glu327 which, together with Ser200, form the catalytic triad.
The standard ionization state at neutral pH was considered
for the rest of the ionizable residues with the exceptions of
Asp392 and Glu443, which were neutral, and His471, which
was protonated, according to previous numerical titration
studies.32

Tacrine and dihydroquinazoline derivatives were positioned
in the active site on the basis of the crystallographic structures
of the complexes of TcAChE with tacrine (PDB entry 1ACJ)
whereas the complex with huprine X (PDB entry 1E66)
provided the docking orientation for the huprine derivatives.
The missing atoms in the original PDB files were built in using
the program Insight II.43 Each modeled complex was then
hydrated by centering a sphere of 26 Å radius of TIP3P water
molecules56 around the inhibitor.

Energy Refinement of the Complexes. Each TcAChE-
inhibitor complex was energy-minimized in a sequential way.
First, the hydrogen positions were refined for 1000 steps of
steepest descent energy minimization. Then, the water mol-
ecules were allowed to reorientate in the electric field of the
complex for a further 5000 steps of steepest descent. Next,
those residues in the active site (i.e., having an atom at less
than 4 Å from any atom of the inhibitor) were relaxed for 2000
steps of steepest descent and 3000 steps of conjugate gradient.
Finally, the whole system was optimized for 2000 steps of
steepest descent and 3000 steps of conjugate gradient energy
minimization. This rather conservative minimization protocol
was deemed sufficient to take into account the minor confor-
mational adjustments reported on complex formation without
causing artifactual distortions in the protein.

Breakdown of the Intermolecular Interaction Energy
and Pretreatment of the Resulting Energy Matrix.
Individual residue contributions to the calculated ligand-
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receptor interaction energies in the refined complexes were
obtained by using the ANAL module in AMBER and including
all atom pairs in the calculation. A uniform dielectric of 1 was
used in the evaluation of electrostatic interactions. Each
inhibitor was regarded as a single fragment, and no intra-
molecular energy terms were considered. Since there are 537
amino acids in the protein and 2 energy contributions (van
der Waals and electrostatic) are considered for each residue,
1074 variables were used to characterize each complex. These
energy descriptors made up the matrix for the chemometrics
program Q2.57 No scaling or variable selection was carried out
except for a mild pretreatment that consisted of zeroing all
the variables with absolute values lower than 0.01 kcal mol-1

and by removing those variables with a standard deviation
below 0.01 kcal mol-1. This procedure reduced the number of
energy descriptors that entered the PLS analysis to around
200. For the calculations including two water molecules,58

these were considered as two more receptor residues thereby
yielding 4 additional variables.

The optimal dimensionality of the PLS models was deter-
mined by monitoring the cross-validation indexes as a function
of the number of principal components (PCs) extracted. For
cross-validation, the compounds were assigned randomly to
any of five groups of approximately the same size, and the
whole procedure was repeated 20 times. The predictive ability
of the resulting models is reported by both the cross-validated
correlation coefficient (q2) and the standard deviation of error
in predictions (SDEP). This cross-validation procedure is more
rigorous than the more widely employed leave-one-out method
and also provides more conservative results: a smaller q2 and
a higher SDEP.

For external validation, the PLS models obtained were used
to predict the biological activity of seven related analogues
(prediction set) not included in the initial training set. The
complexes were modeled and refined as described above.

Continuum Electrostatics Calculations. Finite differ-
ence solutions to the linearized Poisson-Boltzmann equation,59

as implemented in the DelPhi module of Insight II,43 were used
to describe the electrostatic effects of ligand binding in a format
appropriate for use in COMBINE analysis, as reported previ-
ously.11 In brief, following the classical approach,9 the change
in electrostatic free energy on molecular association (∆Gele) was
split into three separate components: (i) the ligand-receptor
interaction energy in the presence of the surrounding solvent
(Eele

LR), (ii) the change in solvation energy of the ligand upon
binding (∆Gdesolv

L ), and (iii) the change in solvation energy of
the receptor upon binding (∆Gdesolv

R ):

The latter two terms were calculated by considering the effects
on the respective electrostatic free energies of replacing the
high dielectric medium of the solvent with the low dielectric
medium of the other molecule in those regions that are
occupied by the binding partner in the complex. The first term
was calculated for each complex by computing the solvent-
corrected potential generated by the charges on the ligand at
the positions of each of the uncharged atoms of the receptor.
To calculate the electrostatic contribution to the desolvation
of just one protein residue, charges were assigned only to the
atoms belonging to that residue in both the protein and the
protein-ligand complex, as reported previously.60 Selected
residues for which this contribution was calculated were
Trp84, Gly117, Gly118, Glu199, Phe330, Tyr334, Trp432,
Ile439, and Tyr442.

The atomic coordinates employed were those of the AMBER-
optimized complexes once the solvent molecules used in the
energy refinement were removed (except when the two water
molecules were explicitly considered in the analysis). A
dielectric of 4 was chosen for the interior of the protein, the
ligands, and the complexes whereas the surrounding solvent
was assigned a dielectric of 80 with ionic strength of 0.145 M.
Cubic grids with a resolution of 0.75 Å were centered on the
molecular systems considered, and the charges were distrib-

uted onto the grid points.61 Solvent-accessible surfaces, cal-
culated with a spherical probe of 1.4 Å radius, defined the
solute boundaries, and a minimum separation of 5 Å was left
between any solute atom and the borders of the box. The
potentials at the grid points delimiting the box were calculated
analytically by treating each charge atom as a Debye-Hückel
sphere.
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