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A pharmacophore represents the 3D arrangement of chemical features that are shared by
molecules exhibiting activity at a protein receptor. Pharmacophores are routinely used in 3D
database searching for identifying potential lead compounds. The lack of shape constraints
causes the query to identify compounds that could not fit into the active site. In the absence
of structural information, a receptor surface model (RSM) can be used to represent the active
site. The RSM consists of a surface that envelops a set of known actives after these have been
aligned using their common features. When used for database searching, a RSM is over-
constraining as it restricts access to regions that could be occupied by ligands, such as the
solvent-protein interface or unexplored pockets. We describe a protocol for developing pruned
RSMs using information gleaned from 3D quantitative structure-activity relationship (QSAR)
models. We examined the performance of queries that consist of pharmacophores used alone
or with pruned or unpruned RSMs by performing searches on six databases containing known
actives distributed among inactives. The pruned RSMs yield an average selectivity 1.8 times
greater than that for pharmacophore queries, compared to 1.6 times for unpruned RSMs.
However, the pruned RSMs retrieve on average 73% of the actives identified using the
pharmacophores, compared to 40% for the unpruned RSMs. As such, pruned RSMs represent
a useful compromise between the high sensitivity of pharmacophores and the high selectivity
of unpruned RSMs.

Introduction
A major challenge in drug design is the identification

of novel leads using information deduced from a set of
compounds exhibiting activity at a protein receptor.
When the compounds share common structural at-
tributes and mechanisms of action, quantitative struc-
ture-activity relationships (QSAR) can be used to
capture the effects of structural variation on the activity
of a compound. However, applying a QSAR model for
identifying compounds that are structurally divergent
(i.e., contain a different scaffold) is generally unreliable;
both 2D and 3D QSAR methods have limited accuracy
when predictions are made for compounds outside the
chemical space covered by the set used for developing
the model.1,2

When the structure of the biological target is known,
docking methods can be used to predict affinity for the
target.3 In the absence of structural information, the
three-dimensional arrangement of atoms or functional
groups that participate in key ligand-receptor interac-
tions, or pharmacophore, can be deduced from the
alignment of (diverse) compounds that bind to the same
receptor.4-6 The alignment or pharmacophore can be
obtained manually or with an automated approach (see
ref 7 for a review of automated methods). The pharma-
cophore can be used to search a database of compounds
or to design “focused” combinatorial libraries.8,9

Despite their ability to identify active compounds with
inherently different structural attributes, pharmaco-
phores are known to be promiscuous when used as
queries for database searches. In addition to actives
(true positives), they identify many compounds that are
inactive when tested (false positives). Such compounds
may satisfy the pharmacophore, but the absence of
shape constraints fails to eliminate those compounds
that could not possibly fit into the active site. Many
methods have been developed for representing the
active site from the superposition of known ligands.10-16

Pseudoreceptor models use an atomistic representation
of the active site,10 while others simply represent the
receptor using a continuous surface enveloping the
known ligands11,12 (i.e., receptor surface models). Yet
others use an intermediate representation, employing
a genetic algorithm to place particles such as hydrogen
bond donors and hydrophobes around the known ligands
such that the particle-ligand interaction energies cor-
relate with observed activities.13,14 The use of surface-
based constraints12,17-19 and excluded-volume spheres20

is most prevalent in database searching. In contrast to
pharmacophore queries, receptor models constructed
from a set of active ligands are sterically overcon-
strained. Compounds that satisfy the pharmacophore
query and fit into the active site may be rejected by a
model constructed from a set of ligands that do not fully
explore the active site, giving a high rate of actives
classified as inactives (false negatives). The fact that
receptor models are little used in database searching is
testimony to their practical limitations.
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To bridge the performance gap between pharmaco-
phores and receptor surface models (RSMs) in database
searching, we describe pruned RSMs where structure-
activity information from a 3D-QSAR model is used to
remove parts of the RSM that do not correspond to the
physical limits of the active site. In particular, compara-
tive molecular similarity indices analysis21 (CoMSIA)
is used to identify regions of the RSM for which binding
affinity is influenced by steric contacts or electrostatic
interactions; other regions are pruned away. Steric field
contours are assumed to correspond to regions at which
van der Waals receptor-ligand interactions may be
occurring, while electrostatic field contours indicate
regions at which hydrogen bond or electrostatic recep-
tor-ligand interactions occur. In other words, protein
residues are likely to be present near those CoMSIA
contours. The parts of the RSM that are removed may
correspond to pockets of the active site that are not
explored by the ligands in the QSAR set or to the
solvent-protein interface. This approach combines ad-
vantages from pharmacophore and 3D-QSAR models.
A pharmacophore model can account for the key fea-
tures required for activity, but deducing information
concerning the shape of the active site from disparate
compounds with possibly multiple mappings to the
pharmacophore can be difficult. Conversely, the well-
defined alignment of compounds in a congeneric series
allows a 3D-QSAR contour map to be harnessed beyond
its usual predictive power. We validate the method by
examining the performance of pharmacophore queries
used without shape constraints or combined with pruned
and unpruned RSMs for retrieving known actives in
database searches.

Methods

The development of pruned RSMs is outlined in
Figure 1. For each of six QSAR data sets (section i), we

develop a CoMSIA model (section ii). The most active
20% of QSAR compounds are selected for creating a
RSM, which is subsequently pruned with reference to
the CoMSIA contour map (section iii). Three types of
database search queries are defined (section iv): (1) a
pharmacophore model used alone, (2) a pharmacophore
combined with the unpruned RSM, and (3) a pharma-
cophore with the pruned RSM. Databases for perform-
ing searches are assembled from MDDR compounds
having activity at the same target as the QSAR com-
pounds and from ChemACX-SC compounds assumed to
be inactive (section v). Database searches are performed
using two treatments of conformational flexibility (sec-
tion vi).

(i) QSAR Data Sets. Six data sets were selected for
developing QSAR and RSM models. The aligned struc-
tures for the BZR, COX-2, and ER sets are available in
electronic format in the Supporting Information from
our previous work;22 the reader is referred to the
“readme” file therein for details on the alignment
procedure. The compounds used in this work are
indicated in the Supporting Information.

(i.a) ACE. A set of 114 angiotensin converting enzyme
(ACE) inhibitors has been studied with CoMFA23 by
Depriest et al.24 Activities are spread over a wide range,
with pIC50 values ranging from 2.1 to 9.9.

(i.b) AchE. A set of 111 acetylcholinesterase (AchE)
inhibitors has been assembled from the work of Sugi-
moto et al., with pIC50 values ranging from 4.3 to 9.5.
A subset of these compounds has been studied with
CoMFA by Golbraikh et al.25 We use their alignment
rule (i.e., the pharmacophore described below), with
other compounds flexibly fit onto E2020. However, the
conformation of E2020 was not taken from the crystal
structure of the complex (PDB 1eve) but was deter-
mined using the MCMM routine in Macromodel 7.2
(Schrodinger; Portland, OR) with the MMFF94S force
field and GBSA implicit solvation model (500 Monte
Carlo steps, other parameters default). The lowest-
energy conformation has a heavy-atom root-mean-
square deviation (rmsd) of 0.9 Å when compared to the
conformation extracted from the crystal structure. We
did not use the ligand-bound conformation deduced from
the crystal structures for any QSAR modeling because
the purpose of this work is to develop RSM models
useful in the absence of such information.

(i.c) BZR. A set of 166 ligands for the benzodiazepine
receptor (BZR) has been assembled from the work of
Haefely et al.,26 with pIC50 values ranging from 6.1 to
8.9. We use the syn conformation for esters such as
Ro14-5974 instead of the anti conformation suggested
by Cook et al.27 (Figure 2). The syn conformer gives
better overlap with other classes of BZR ligands and
has a B3LYP/6-311+G(d,p)//HF/6-31G* energy only 2.1
kcal/mol higher than that of the anti conformer (the
structures in the Supporting Information for ref 22 are
in the anti conformation).

(i.d) COX-2. A set of 373 cyclooxygenase-2 (COX-2)
inhibitors has been assembled from the work of Seibert
et al. (see ref 22). pIC50 values range from 4.0 to 9.0.

(i.e) ER. A set of 87 estrogen receptor (ER) ligands
has been assembled from two sources;28,29 only com-
pounds that were tested by Katzenellenbogen et al.

Figure 1. Flow chart indicating steps for query definition and
3D database searching.
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using ER from lamb or rat uterine cytosol were retained
from our previous compilation. Activities expressed as
log(RBA) values range from -2.0 to 2.1.

(i.f) THR. A set of 88 thrombin inhibitors (THR) has
been taken from the CoMSIA tutorial distributed with
Sybyl; pKi values range from 4.4 to 8.5. Representative
compounds from each data set are shown in Figure 2.

(ii) CoMSIA. Comparative molecular similarity in-
dices analysis21 implemented in Sybyl 6.81 (Tripos Inc.;
St. Louis, MO) was used for developing 3D-QSAR
models for each data set. The method is conceptually
similar to CoMFA,23 in which steric and electrostatic
fields are calculated at regularly spaced grid points of
a lattice into which a series of aligned molecules are
embedded. Partial least squares (PLS) is used to obtain
a statistical model relating field values to observed
activities. In CoMSIA, Coulomb and Lennard-Jones
potentials are replaced with smooth Gaussian potentials
having the form

in which the steric or electrostatic “field” k at grid point
q for molecule j is obtaining by adding the probe atom
potential for each atom i in the molecule. The coef-
ficients w are the partial charge or atomic radius raised
to the third power for the electrostatic and steric fields,
respectively, R is a smoothing parameter set to 0.3, and
riq is the distance (Å) between atom i and grid point q.
The probe has a charge of +1 and radius of 1 Å. Net
formal charges were determined by deprotonating car-
boxylic acids and phosphates and protonating non-aryl
basic amines (except NH2 groups that coordinate Zn in
the ACE set), and scaled MNDO ESP-fit partial charges30

were calculated with MOPAC 6.0 using atomic coordi-
nates obtained by energy-minimizing the aligned mol-
ecules with the MMFF94S force field and MAXIMIN2
routine in Sybyl (200 steps; other parameters set to the
default). A lattice with a 2 Å grid spacing and extending
at least 4 Å in each direction beyond the aligned
molecules was used for calculating fields. PLS analyses
were performed after block-scaling the steric and elec-

trostatic fields (CoMFA standard scaling). The statisti-
cal significance of models was evaluated by “leave-one-
out” (LOO) cross-validation using the SAMPLS routine.
The optimal number of components was determined by
selecting the smallest sPRESS value. The final PLS model
(no cross-validation) was derived by setting the “mini-
mum σ” standard deviation threshold to 1.0 kcal/mol.
CoMSIA maps were obtained by contouring the “σ ×
coeff” field type at 25% and 75% contributions (i.e., the
value of σ × coeff at which the sum of |σ × coeff| values
reaches 25% or 75% of the sum for all grid points when
sorted according to σ × coeff values). The contour
thresholds were altered from their default values to give
larger enclosed regions and to facilitate the subsequent
RSM pruning steps.

(iii) RSMs. Receptor surface models were constructed
by selecting the first 20% of QSAR set compounds when
sorted by decreasing order of activity. These (aligned)
compounds were merged into a single “supermolecule”,
for which a solvent-accessible surface was generated
using the fast Connolly routine in the MOLCAD module
of Sybyl (default parameters). For unpruned models, all
atoms were used for generating the RSM. For pruned
models, certain parts of the unpruned RSM were opened
by excluding from the calculation atoms near regions
that were deemed “unimportant” in ligand-receptor
interactions (in some cases, it was more convenient to
place dummy atoms or fragments such as benzene near
parts of the surface that should be left open and
excluding these atoms). “Important” parts of the RSM
are selected using the following criteria:

1. Regions near grid points at which steric bulk causes
a decrease in activity are indicative of ligand-receptor
steric contacts; these are identified as yellow contours
enclosing grid points with negative PLS coefficients.

2. Regions near grid points at which steric bulk causes
an increase in activity suggest the presence of a receptor
pocket that ligands may occupy; these are identified as
green contours enclosing grid points with positive PLS
coefficients. However, if no nearby grid points have
negative coefficients, no molecule in the QSAR set is
likely to be completely occupying the putative pocket.
As such, parts of the RSM surface near such green
contours are unimportant. We identify these regions by
contouring the steric field below the value of σ × coeff
that accounts for 90% of the negative signal; the other
10% is extremely diffuse and probably meaningless.

3. Some regions near grid points associated with
electrostatic modulation of activity (blue or red contours)
are selected as important. For electrostatic contribu-
tions, it is necessary to examine whether they represent
positive or negative effects on activity. For example, grid
points for which the corresponding PLS coefficients are
positive (i.e., blue contours) may reflect a positive
(enthalpic) contribution to binding if ligand atoms near
that region bear positive charges or may reflect a
negative (entropic) contribution when ligand atoms bear
negative charges. This is readily determined by examin-
ing the charges on atoms of high-affinity compounds
near the particular region. Only contoured regions that
fall into the first category are considered important.

4. Parts of the RSM at which CoMSIA fields have
little variance (identified by contouring the “σ field” at
4.0) are considered important. In literature data sets,

Figure 2. Representative compounds from each QSAR set:
(A) enalaprat (ACE); (B) E2020 (AchE); (C) Ro14-5974 (BZR);
(D) celecoxib (COX-2); (E) estradiol (ER); (F) naphtho deriva-
tive of 4-TAPAP (THR). For Ro14-5974, the ester is shown in
the syn configuration. Ring labels correspond to those for
diazepam.
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a lack of variance at certain functional groups often
reflects their necessary presence for maintaining activ-
ity (i.e., they define the pharmacophore). The benz-
amidine group of the thrombin inhibitors and the
sulfonyl group of the COX-2 inhibitors are examples.

In summary, we prune regions of the RSM for which
there are no nearby yellow contours, no blue or red
contours deemed to have an enthalpic contribution to
affinity, and regions near green contours for which there
are no nearby grid points with (meaningful) negative
PLS coefficients. We prune only if CoMSIA fields have
sufficient variance. References to contour colors above
assume the use of Sybyl defaults.

(iv) Query Definition. Queries for performing 3D
database searches consist of a pharmacophore model
used by itself or together with a RSM, encoded in Sybyl
line notation (SLN). Pharmacophore models for each set
were taken from the literature (Figure 3; see the
Supporting Information for coordinates and constraints
of features). Where available, we have used protein-
ligand complex structures to help define pharmaco-
phores because it was not the purpose of this work to
test pharmacophore development methods. The ACE
pharmacophore31 consists of two carbonyl hydrogen
bond acceptors, a zinc coordination atom, and a donor
site on the carbonyl oxygen nearest the coordination
atom. The coordination atom was restricted to either a
carbonyl or phosphate oxygen atom, a non-aryl thiol or
thioether sulfur atom, or a basic non-aryl nitrogen atom,
all of which are present in the QSAR set. The pharma-
cophore tolerances were determined by superposing
representative QSAR set molecules using the shared
pharmacophore features. The AchE pharmacophore25

consists of a ring, a positively charged nitrogen atom,

and an acceptor atom-donor site pair (all references to
rings indicate five- or six-member rings). Tolerances
were deduced from the crystal structures of five AchE
complexes (PDB codes 1eve, 1acj, 1dx6, 1gpn, 1h23). A
BZR pharmacophore27,32 consists of two donor sites, an
acceptor site, and an aromatic ring. We have dropped
the acceptor site that accounts for inverse-agonist
activity because we make no distinction of activity types
and have added loose constraints for the acceptor atoms
that correspond to the donor sites because of the low
selectivity of the query (see below). Feature tolerances
were determined from the ligands diazadiindole, CGS-
8216, RY-80, 6-PBC, CL-218872, zolpidem, BCCE, pyr-
idodiindole, and diazepam (abbreviations are defined in
ref 27). The COX-2 pharmacophore33 consists of two
aromatic rings and an oxygen acceptor atom. Tolerances
were deduced from the crystal structures of three COX-2
complexes (PDB codes 1cx2, 3pgh, 4cox). The ER phar-
macophore28 consists of a hydroxy-substituted aromatic
ring and a hydrophobic ring. Tolerances were deduced
from the crystal structures of four ER complexes (PDB
codes 1gwr, 1gwq, 3erd, 3ert). The thrombin pharma-
cophore34 consists of three hydrophobic rings, a nitrogen
donor atom, and an acceptor atom-donor site pair.
Tolerances were deduced from crystal structures of
seven thrombin complexes (PDB codes 1c4v, 1tom,
1d6w, 1d9i, 1dwd, 1fpc, 1d4p).

In all cases, tolerances were determined by super-
posing ligands using the shared pharmacophore features
and the MULTIFIT routine in Sybyl. We did not vary
the tolerances on pharmacophore features because they
were adopted from published pharmacophores or de-
duced from multiple protein-ligand complexes.

RSMs were included in the query by adding the
MOLCAD surface as a UNITY volume constraint using
default parameters (expanding the surface by 1.0 Å
outward and allowing penetration of the surface by up
to 0.5 Å). UNITY automatically converts MOLCAD
surfaces to excluded volume constraints by placing
spheres in contact with the surface (outside for ligand-
based surfaces) at regularly spaced points on it.

(v) Database Preparation. For the purpose of
determining the sensitivity of queries, compounds hav-
ing appropriate activity codes were selected from the
MDDR database (MDL Information Systems, Inc.; San
Leandro, CA) (activity codes: ACE 31410; AchE 09221;
BZR 06210, 06211, 06212, 06213, 06216, 06214; COX-2
78454; ER 41300, 40210, 75711; THR 37110). For the
AchE, BZR, COX-2, and ER MDDR sets having corre-
sponding QSAR sets with a well-defined common scaf-
fold, compounds containing the scaffold were removed.
For the ACE and THR MDDR sets, compounds having
a Tanimoto coefficient35 Tc g 0.85 for any MDDR-QSAR
set pair were removed. This allowed us to test the
performance of queries for “extrapolating” beyond the
QSAR set. Redundancy among the remaining MDDR
compounds was reduced with a sphere-exclusion algo-
rithm36 implemented in Cerius2, version 4.8 (Accelrys,
Inc.; San Diego, CA), using as threshold 1 - Tc ) 0.15.
This gave sets for which all pairs of MDDR compounds
have Tc < 0.85. All Tc values have been determined
using 2D (structural) fingerprints in Cerius2. The
threshold Tc ) 0.85 is recommended for choosing diverse
collections of compounds.37

Figure 3. Pharmacophore queries for (A) ACE, (B) AchE, (C)
BZR, (D) COX-2, (E) ER, and (F) THR. A is an acceptor atom,
D a donor atom, DS a donor site, R a five- or six-member ring,
and AR a five- or six-member aromatic ring. Arrows indicate
plane normals. See text for other labels. The radii of the blue
spheres depict the spatial constraints associated with each
feature. Compounds shown are the same as in Figure 2 except
(C) for which diazepam is shown.
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The selectivity of each query was assessed using a
database of >10000 organic compounds selected from
the ChemACX-SC collection of >500000 screening com-
pounds (Cambridgesoft Corp.; Cambridge, MA). The
selection was not completely random but biased to
reproduce the average profile of physicochemical prop-
erties of the six MDDR sets. Five such properties having
relevance to “druglikeness” were used:38 AlogP,39 mo-
lecular weight, number of hydrogen bond donors and
acceptors, and number of rotatable bonds. This biased
selection was necessary for obtaining comparable esti-
mates of the sensitivity and selectivity of queries
because compounds from the ChemACX-SC collection
are generally “leadlike”, while those from MDDR are
“druglike”.40 The set of ChemACX-SC compounds was
further reduced to 10 000 compounds for which all pairs
have Tc < 0.85 and all ChemACX-SC-MDDR pairs
and ChemACX-SC-QSAR set pairs have Tc < 0.85. As
such, it is reasonable to assume that the fraction of
ChemACX-SC compounds showing activity at the vari-
ous targets would be negligible if they were tested.

(vi) Database Searching. Databases searches were
performed using the search3d expression generator in
Sybyl. Two approaches were considered for treating the
conformational flexibility of molecules. For each mol-
ecule, conformers were generated using (classic) dis-
tance geometry, followed by BFGS and truncated New-
ton minimization with the MM3 force field implemented
in Tinker.41 We have added to Tinker a parameter
guessing routine42 and a routine that reads Sybyl
generated MM2/MM3 input files, allowing automatic
atom-typing of molecules. This enables us to generate
conformers for large databases in reasonable time by
using distributed computing (ca. 8 h for 10 000 mol-
ecules with a 32 1.8 GHz processor PC cluster). The
number of conformers was reduced by retaining only
those having energies within 5.0 kcal/mol of the lowest-
energy conformer and those having pairwise heavy-atom
rmsd g 1.0 Å after superposition.

As an alternative to precomputed conformers, we
considered conformational flexibility at search time
using the directed-tweak algorithm43 implemented in
Sybyl/UNITY. As many as 10 conformers generated by
torsional randomization were used as starting struc-
tures for directed-tweak optimization, and ring systems
were treated flexibly; bump-checking was used to dis-
card high-energy conformers. Other parameters were
set to default values. We investigated the use of energy-
filtering of hits returned by on-the-fly flexible searches
using the MMFF94S force field in Sybyl. For pharma-
cophore queries, atoms not involved in defining phar-
macophore elements were relaxed (maximum of 50
steps, 0 simplex steps). For RSM-containing queries,
nonpharmacophore atoms were relaxed using a steep
harmonic potential (500 kcal mol-1 Å-2 constant) ap-
plied when their coordinates differ from those returned
by the flexible search by 0.5 Å or more. The energy
of (relaxed) hits was compared to that of the lowest
energy conformer obtained from distance geometry
(described above, after reminimization of conformers
with MMFF94S in Sybyl).

Figure 4. Fitted predictions vs measured activities from CoMSIA models for (A) ACE, (B) AchE, (C) BZR, (D) COX-2, (E) ER,
and (F) THR.

Table 1. Summary Statistics for CoMSIA Analysesa

ACE AchE BZR COX-2 ER THR

r2 0.83 0.82 0.72 0.64 0.75 0.84
s 0.98 0.54 0.40 0.62 0.46 0.42
F 101.5 93.8 59.1 106.1 88.6 106.1
q2 0.66 0.55 0.42 0.52 0.50 0.62
sPRESS 1.35 0.85 0.57 0.71 0.65 0.64
components 5 5 7 6 3 4
fraction
steric 0.47 0.32 0.30 0.21 0.21 0.52
electrostatic 0.53 0.68 0.70 0.79 0.79 0.48
n 114 111 166 373 91 88

a r2 is the correlation coefficient; s is the standard error of
prediction; F is Fischer’s test of statistical significance; q2 is the
LOO cross-validated correlation coefficient; sPRESS is the standard
error from cross-validation; fraction indicates the relative impor-
tance of steric and electrostatic fields in the model; n is the number
of compounds used for deriving models.

3D Database Searching Journal of Medicinal Chemistry, 2004, Vol. 47, No. 15 3781



Results

(i) CoMSIA Models. Statistically significant CoMSIA
models were obtained for all six data sets (Table 1).
Predicted vs actual activities are shown in Figure 4.

(ii) RSM Pruning. The resulting contour maps for
steric and electrostatic fields were used to prune the
RSMs created using the most active 20% of compounds
in each data set (Figure 5). For the ACE RSM, a large
section was pruned for which there was significant field
variance but no corresponding effect on activity. For the
AchE RSM, the model was pruned at the green contour
encompassing bulky substituents at ring positions 5 and
6 of E2020 because no nearby grid points have negative
steric coefficients. The opening can be seen to correspond
with that observed in the crystal structure of the
complex (Figure 6). For the BZR RSM, the model was
pruned for substituents at ring positions 3, 6, and 7 of
diazepam for which there are no nearby contours and
at the surface defined by one side of bulky R groups for
ester-containing derivatives (e.g., Ro14-5974). The op-
posite side of the RSM near the same green contour was
not pruned because of the presence of nearby grid points
having negative steric coefficients. The COX-2 RSM was

opened at position 4 of the pyrazole ring for which there
are no contours and corresponds reasonably well with
a poorly explored pocket in the active site (Figure 6).
The ER RSM was pruned at the 7R and 11â positions
having a nearby green contour but no nearby grid points
with negative steric coefficients. The two opened regions
in the resulting pruned RSM correspond to large pockets
in the active site that occupy nearly 200 Å3 29 (Figure
6). For thrombin, the RSM was pruned near the naphtho
group for which there are no nearby contours and
corresponds well with the solvent-exposed face of the
active site (Figure 6).

(iii) Database Searches. We examined the perfor-
mance of three types of queries for database searching:
(1) pharmacophores used alone, (2) pharmacophores
with unpruned RSMs, and (3) pharmacophores with
pruned RSMs. For each biological target, the fraction
of hits among MDDR compounds was used to determine
the sensitivity of queries, or true positive rate. The
ChemACX-SC compounds were used to determine the
selectivity of queries, or false positive rate. MDDR
compounds are henceforth referred to as actives, and
ChemACX-SC compounds are referred to as inactives.

Figure 5. Pruned RSMs shown with CoMSIA model contours and the compounds used for defining the RSM: (A) ACE; (B)
AchE; (C) BZR; (D) COX-2; (E) ER; (F) THR. Orientations of compounds are the same as in Figure 3.
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The enrichment ratio, calculated as the fraction of
actives contained in the screening hits divided by the
fraction of actives in the entire database, is used to
compare the performance of queries to random selection.
Enrichment ratios greater than 1 indicate that a method
is performing better than random selection.

(iii.a) Pharmacophore Query. All pharmacophore
queries retrieve a larger fraction of actives than inac-
tives (Table 2). The use of precomputed conformers gives
greater enrichment ratios than does on-the-fly flexible
searching with a simple bump-check (Table 4). The
enrichment ratio for flexible searching can be improved
by energy-filtering, in which the energy of query hits is
compared to that of the lowest-energy conformer from
distance geometry. We considered the conformation
returned by the flexible search after relaxing parts of

the molecule not used for defining the pharmacophore
features. The energy threshold that gives the closest
agreement with the hit rate obtained using precomputed
conformers was identified (Table 2). For all targets, the
selected thresholds give hit rates that differ by at most
3% of the hit rates for precomputed conformers (only
integer values were considered for thresholds). There
is good agreement between predictions from precom-
puted conformers and filtered flexible searching (Table
2). The greater range of thresholds for the actives
compared to the inactives suggests that differences in
data sets, not pharmacophores, are mostly responsible
for the variation (the active compounds are substantially
less diverse than the inactive compounds). The range
9-14 kcal/mol for the inactives might be further reduced
and lie closer to the 5 kcal/mol threshold used for

Figure 6. Crystal structure active site cavities obtained using the MOLCAD module of Sybyl: (A) AchE (PDB 1eve); (B) COX-2
(PDB 1cx2); (C) ER (PDB 1gwr); (D) THR (PDB 1ets). Orientations of compounds are the same as in Figures 3 and 5. Arrows
indicate the pockets/solvent-protein interface that correspond to pruned regions in Figure 5. For THR, the ligands are visible
through the solvent-protein interface.

Table 2. Comparison of Precomputed Conformers and On-the-Fly Flexibility for Database Searches Using Pharmacophore Queries

ACE ACHE BZR COX2 ER THR

Actives
precomp confa (%) 75.4 29.5 54.6 52.1 57.5 57.8
flexibleb (%) 99.4 37.2 78.2 71.6 59.2 74.2
filter threshc (kcal/mol) 22 14 7 7 15 22
% agree conf-flexd 64.9 93.2 72.2 87.4 96.6 75.9
rank (av ( σ)e 2.0 ( 1.8 1.8 ( 1.6 1.6 ( 1.5 1.8 ( 1.8 1.1 ( 0.5 1.9 ( 1.7

Inactives
precomp confa (%) 0.88 10.1 41.5 28.7 2.11 1.7
flexibleb (%) 3.65 17.4 75.2 57.1 3.89 3.55
filter threshc (kcal/mol) 13 11 9 9 12 14
% agree conf-flexd 98.8 93.3 71.0 76.1 98.6 98.7
rank (av ( σ)e 2.4 ( 2.2 2.0 ( 2.0 2.3 ( 2.1 2.0 ( 1.9 2.1 ( 2.1 1.7 ( 1.4

a Percentage of actives or inactives retrieved using precomputed conformers. b Percentage of actives or inactives using flexible searching
with no energy-filtering. c Energy threshold that gives the best agreement between hit rates from precomputed conformers and energy-
filtered flexible searching. d As in footnote c but with the percentage of compounds having identical predictions of activity indicated.
e Average and standard deviation of the number of flexible search hits that must be considered before one that satisfies the energy threshold
for filtering is found.
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precomputed conformers if pharmacophore elements
were relaxed within their imposed tolerances (note that
9-14 kcal/mol refers to MMFF94S energies, while the
5 kcal/mol threshold for precomputed conformers refers
to MM3 energies; after reminimization of precomputed
conformers with MMFF94S in Sybyl, the 5 kcal/mol
threshold is stretched to ∼10 kcal/mol). Because we
prefer precomputed conformers for pharmacophore
searches, we have not considered this possibility. Typi-
cal search times per molecule on a 1.8 GHz PC are 0.5
s for precomputed conformers, 0.7 s for flexible search-
ing with no filtering, and 1.9 s when filtering with
relaxation of hits. It is possible to use energy-filtering
of flexible search hits without prior relaxation. However,
the range of thresholds that gives closest agreement
with searches using precomputed conformers is almost
double that obtaining when relaxing hits. Dispensing
with relaxation of hits results in only marginally faster
searches (1.8 s/molecule).

As shown by the average rank of hits that satisfy the
energy thresholds (Table 2), it is necessary to consider
multiple hits from the flexible search when using
energy-filtering. When increasing the maximum num-
ber of hits returned from 10 to 20, average increases in
hit rates are 2% for actives and 7% for inactives, despite
a large increase in search time. For pharmacophore
searching with precomputed conformers, retaining con-
formers having pairwise heavy-atom rmsd g 0.5 Å
instead of 1.0 Å gives hit rates that are at most 3%
higher but requires on average 346 kB storage per
molecule compared to 230 kB when using the larger
threshold.

Many MDDR compounds having AchE activity are
tacrine and huperzine derivatives that do not contain
the pharmacophore element A; this is reflected by the
lower sensitivity of the query. We suspect that the low
enrichment rate for the BZR query (described in ref 32)
is caused by the use of site points instead of donor/
acceptor atoms; examination of a typical organic mol-
ecule reveals a proliferation of UNITY site points about
the molecule.

(iii.b) Pharmacophore + RSM Queries. We use a
two-pass approach for queries containing a RSM. In the
first pass, compounds that satisfy the pharmaco-
phore are identified, using precomputed conformers for
treating conformational flexibility. In the second pass,
the hits are evaluated further with the RSM-containing
queries. We have found it necessary to use flexible
searching for the second pass; using precomputed
conformers retrieves 25-50% of actives identified using
flexible searching with energy-filtering. Queries con-
taining pruned RSMs retrieve a larger fraction of actives
than unpruned RSMs (Table 3) while yielding enrich-
ment ratios similar to those obtained using unpruned
RSMs and greater than those obtained using pharma-
cophores alone (Table 4). In contrast to the behavior
observed for pharmacophore searches, there are only
small differences in enrichment ratios for flexible search-
ing with or without energy-filtering. By use of precom-
puted conformers for the initial pharmacophore search,
compounds that cannot satisfy the pharmacophore in a
low-energy conformation have been excluded. The search
without energy-filtering is substantially faster because
it proceeds to the next compound as soon as one hit has

been identified. When using energy-filtering, it is neces-
sary to consider multiple hits from the flexible search.
As for the filtered flexible pharmacophore search,
increasing the maximum number of hits returned from
10 to 20 leads to marginal increases in the number of
actives that satisfy the imposed energy threshold.
Typical search times per compound for flexible search-
ing are 50 s with energy-filtering and 20 s without with
energy-filtering (excluding a 12 s setup time, which
must be done once for the database in UNITY but for
every compound using %search3d in Sybyl).

Nearly identical sensitivity and selectivity for the
pruned and unpruned AchE RSMs are observed because
the radius of gyration of compounds used for defining
the RSM is greater than that for any of the hits.

In some cases, using precomputed conformers for the
pharmacophore search may be impractical because of
CPU and storage usage. Instead, pharmacophore hits
can be identified with a flexible search and checked
against the RSM-containing queries in a second pass
(no energy-filtering for either search). The pruned RSMs
retrieve a greater fraction of actives than unpruned
RSMs (not shown), with enrichment rates for both
pruned and unpruned RSMs exceeding those obtained
using the pharmacophore alone (Table 4).

Discussion

We have described a method that allows users to
develop pruned receptor surface models with tools that
are available in widely used software packages. The

Table 3. Comparison of Database Searches Using
RSM-Containing Queries for Refining Precomputed Conformer
Pharmacophore Hits

ACE ACHE BZR COX2 ER THR

Actives
unpruned filtera (%) 40.9 8.0 7.9 36.7 8.9 5.3
pruned filter (%) 45.0 8.3 30.3 39.1 49.3 16.7
unpruned no filterb (%) 63.2 9.4 9.5 37.7 8.9 7.7
pruned no filter (%) 69.0 9.4 34.1 40.5 51.4 23.2

Inactives
unpruned filtera (%) 0.22 1.6 4.6 5.9 0.35 0.06
pruned filter (%) 0.24 1.6 20.6 6.3 0.51 0.10
unpruned no filterb (%) 0.59 2.0 5.9 7.7 0.46 0.09
pruned no filter (%) 0.69 2.0 25.2 8.6 0.66 0.14

a Percentage of actives or inactives retrieved using flexible
searches with energy-filtering (20 kcal/mol threshold). b Without
energy-filtering.

Table 4. Enrichment Rates Obtained Using Pharmacophore
and RSM-Containing Queries

no. of actives:
ACE
171

ACHE
339

BZR
317

COX2
215

ER
146

THR
431

Pharmacophore
precomp conf 35.4 2.7 1.3 1.8 19.8 14.4
flexible 18.9 2.1 1.0 1.2 12.6 11.5

Pharmacophore + RSM on Precomputed
Conformer Pharmacophore Hits

unpruned filter 45.3 4.3 1.7 5.7 18.8 19.2
pruned filter 45.3 4.5 1.5 5.6 40.7 21.3
unpruned no filter 38.5 4.3 1.6 4.5 15.3 19.0
pruned no filter 37.5 4.3 1.3 4.4 37.0 21.2

Pharmacophore + RSM on Flexible Search
Pharmacophore Hits (No Filter)

unpruned no filter 24.8 3.3 1.1 3.2 10.1 18.6
pruned no filter 24.3 3.3 1.1 3.2 29.2 19.7
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simple definition of the RSM allows for rapid identifica-
tion of steric clashes within the putative receptor. When
combined with a pharmacophore, the query can be used
for efficient 3D database searching. The performance
of pruned RSMs used in conjunction with pharmaco-
phores was compared to the performance of the phar-
macophores used alone or the pharmacophores with
unpruned RSMs. Here, performance is quantified by
examining the fraction of known actives retrieved by
the query (true positives) and the fraction of compounds
retrieved from a database of inactives (false positives).
In virtual screening, one also makes reference to the
enrichment rate, or the fraction of actives contained in
the screening hits divided by the fraction of actives in
the entire database.

The performance of the three approaches for database
screening is generally consistent with our expectations
based on intuition. The pharmacophore query retrieves
the largest fraction of known actives but suffers from a
high rate of false positives. The resulting enrichment
rate is therefore the lowest of the three approaches. The
use of a pharmacophore and unpruned RSM retrieves
the smallest fraction of known actives but also retrieves
fewer inactive compounds. Larger enrichment rates are
observed at the expense of missing many actives. When
a pruned RSM is used together with a pharmacophore,
the enrichment rate is similar to that for the unpruned
RSM, but the fraction of known actives retrieved is
greater. As such, using the pruned RSM represents a
reasonable compromise between the high specificity of
the unpruned RSM and the high sensitivity of the
pharmacophore query. All three approaches performed
better than random screening.

While additional fields are sometimes used in 3D-
QSAR modeling, we have chosen to use only steric- and
electrostatic-type fields because we seek to identify
regions in space at which receptor-ligand interactions
occur. In other words, we wish to identify enthalpic
contributions to binding. As for many approaches to
QSAR, this assumes that the variation in binding free
energy is largely governed by differences in binding
enthalpies. The success of CoMFA23 in deriving QSAR
models for hundreds of data sets and the observation
that there exists a good correlation between ∆H and
T∆S in some congeneric series of compounds44 suggest
that this is often a reasonable supposition.

Our use of CoMSIA contours for pruning RSMs
assumes that the fields they enclose are causal variables
in the SAR, not lurking variables simply correlated with
those truly responsible for variation in activity. Some
workers have cautioned against viewing the contours
as a low-resolution representation of the active site.23,45,46

There exist many published examples of 3D-QSAR
models for which contours were found to be compatible
with the positions of active site residues (e.g., refs 47-
50). In the present work, the positions of most contoured
regions were found to be compatible with active site
residues when such a comparison was possible (all but
ACE and BZR). The exceptions could be traced to two-
level variables, for which fields fall near two distinct
values; they are essentially sophisticated indicator
variables and can be easily identified.

It has been suggested that defining unpruned RSMs
using all QSAR compounds rather than only the most

active 20% may provide more tolerant shape constraints
at the parts of the pruned RSMs that are open, achiev-
ing a similar result without the additional complications
of pruning. The problem with this approach is that some
low-activity compounds will have bulky groups directly
overlapping the active site residues, loosening shape
constraints at those parts where they are most neces-
sary. For example, the large yellow contour in Figure
5F coincides with Tyr60A in the thrombin active site;
it is not occupied by any of the most active 20% of
compounds but is occupied by several low-activity
compounds. Using all compounds for defining an un-
pruned thrombin RSM yields an enrichment rate of 16.1
compared to 14.4 for the pharmacophore used alone,
21.3 for the pruned RSM, and 19.2 for the unpruned
RSM defined with the most active compounds (Table
4). For this reason, RSMs are usually developed with
high-activity compounds only.11

There is a degree of subjectivity involved in choosing
a CoMSIA contouring level, whether certain parts of the
RSM are sufficiently far from contoured regions to
warrant their removal, whether to prune the receptor
in regions that show only positive steric contributions,
and whether to open parts of the RSM where the data
set shows no field variance. The smooth and continuous
contours obtained from CoMSIA compared to “tradi-
tional” field-based 3D-QSAR methods (e.g., CoMFA,23

GRID45) reduce difficulties in selecting which parts of
the RSM to prune, although other approaches that
improve the “interpretability” of contours could also be
used.51,52 If there is a lack of variation among the ligands
that is not associated with pharmacophore features, it
is sensible to synthesize and test a few additional
derivatives that have a clear relationship to the existing
compounds rather than attempting to obtain this infor-
mation from disparate compounds identified by the
database search. In many cases, examining the perfor-
mance of different database queries in retrieving known
actives can help one choose that most promising for
identifying new leads.

While not the primary purpose of this work, some
remarks can be made about conformational treatment
in 3D database searching. We have considered two
approaches: using precomputed conformers and treat-
ing conformational flexibility at search time. Smellie et
al. have indicated that precomputed conformers retrieve
a large fraction of true positives while minimizing false
positives,53 but Pearlman claims that flexibility should
be considered at search time.54 When only a pharma-
cophore is used, the directed tweak method43 with a
simple bump-check gives a higher rate of false positives
than observed with precomputed conformers, yielding
lower enrichment rates. As we have shown, the use of
a force field energy filter gives results similar to those
obtained with precomputed conformers. It is necessary
to consider multiple hits from the directed-tweak search,
and the use of energy-filtering requires that the global
energy minimum be identified. Therefore, the use of
precomputed conformers is more efficient. However, it
may not always be necessary to use energy-filtering of
flexible search hits. For comparing or designing com-
binatorial libraries, knowing the relative quantity of hits
may be sufficient. Treating conformational flexibility at
search time would be more efficient, both for the total
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CPU time used (including the time required to generate
conformers) and storage requirements.

The situation is different when the query includes a
pruned or unpruned RSM. When using precomputed
conformers, very few actives were identified. It was
necessary to consider flexibility at search time, allowing
for the search to “fold up” molecules into the RSM. In
contrast, pharmacophores involve core parts of mol-
ecules, causing the search to be less sensitive to the
particular conformation of substituents. These observa-
tions are consistent with the conclusions from a com-
parison of active site bound and low free energy con-
formations.55 The energy threshold (20 kcal/mol) that
we have adopted for filtering hits of the RSM pharma-
cophore query appears high in light of the <5 kcal/mol
difference often observed between the lowest energy and
active site bound conformers.56 This discrepancy may
be explained with the following arguments: we use the
in vacuo conformer energy, not that in solution; allowing
relaxation of the pharmacophore elements within the
imposed constraints would cause a reduction in the
energy; the threshold is not too distant from the range
of values found to give good agreement with the results
from precomputed conformers when using only a phar-
macophore; a pruned RSM is at best only a crude model
of the active site and likely remains overconstraining.
This threshold is the same as that suggested by Hann
et al.17 in their use of unpruned RSMs for database
searches. For greater efficiency, it is possible to dispense
with energy-filtering when low-energy pharmacophore
hits are subsequently filtered through the RSM, with
only small decreases in enrichment rates.

We are not the first to recognize that receptor models
are sterically overconstrained. Hahn et al.11 have made
provisions in their program allowing the user to prune
the receptor surface model although it provides no
assistance in determining if or where the model should
be pruned. The genetic algorithms used in the semi-
atomistic model development methods of Walters et al.13

and Vedani et al.14 can be used to automatically develop
active site models where regions are not delimited by
particles; both methods are directed toward QSAR
rather than 3D database searching applications. To our
knowledge, neither approach has been validated by
examining their ability to correctly identify such regions
in the receptors of proteins having known structures.
Recently, Van Drie has described the extension of his
“shrink-wrap” surfaces12 allowing compounds to pro-
trude through parts of the surface that are not traversed
by inactive compounds.6 This approach is distinct from
that presented here. Unfortunately, he provides no
comparison of the modified shrink-wrap surfaces to
queries lacking shape constraints or the unmodified
surfaces for database searching. Among the methods
that have been applied to virtual screening of databases,
this issue has been largely neglected.

In summary, we have presented a method for devel-
oping pruned receptor surface models that are more
useful than unpruned models in identifying potential
lead compounds. Using screening sets for six biological
targets, we have shown how pruned RSMs yield higher
selectivity than pharmacophore models used alone,
without the large decrease in sensitivity typical of
unpruned RSMs. This methodology, which can be

readily used with existing 3D database search methods,
should prove to be useful in identifying new leads when
structural information regarding the target is not avail-
able.
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