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Deriving general knowledge from high-throughput screening data is made difficult by the
significant amount of noise, arising primarily from false positives, in the data. The paradigm
established for screening an encoded combinatorial library on polymeric support, an ECLiPS
library, has a significant amount of built-in redundancy. Because of this redundancy, the
resulting data can be interpreted through a rigorous statistical analysis procedure, thereby
significantly reducing the number of false positives. Here, we develop the statistical models
used to analyze data from high-throughput screens of ECLiPS libraries to derive unbiased
true hit rates. These hit rates can also be calculated on subsets of the collection such as those
compounds containing a carboxylic acid or those with molecular weight below 350 Da. The
relative value of the hit rate on the subset of the collection can then be compared to the overall
hit rate to determine the effect of the substructure or physical property on the likelihood of a
molecule having biological activity. Here, we show the effects that various functional groups
and the standard physical properties, molecular weight, hydrogen bond donors, hydrogen bond
acceptors, log P, and rotatable bonds, have on the likelihood of a compound being biologically
active. To our knowledge this is the first published account of the use of high-throughput
screening data to elucidate the effects of physical properties and substructures on the likelihood
of compounds showing biological activity over a broad range of pharmaceutically relevant
targets.

1. Introduction
Establishing the relationship between the likelihood

of a small molecule being biologically active, i.e., specif-
ically binding to a protein, and its physical-chemical,
pharmacophoric, and structural properties is a problem
of paramount importance in drug discovery. Despite the
abundance of data from sources such as high-through-
put screening and medicinal chemistry programs, this
problem remains particularly challenging in part be-
cause the available data have fundamental limitations.
Data from medicinal chemistry programs come from
multiple measurements and so are generally of high
quality. The difficulty with using data of this type to
address general questions about biological activity is the
amount of bias introduced by the human decisions made
during the programs. Decisions are often based on
factors such as availability and cost of reagents, prefer-
ences of individual scientists, pharmacokinetic issues,
etc. It is nearly impossible to separate the bias toward
“druglike” molecules, which is implicit in every medici-
nal chemist’s goals from the true characteristics of
biological activity. For example, one might find that
carboxylic acids are underrepresented historically in
medicinal chemistry programs. This conclusion leads to
the legitimate question: Are they underrepresented
because they decrease the likelihood of biological activity
or because they are avoided to improve the likelihood
of the molecules being bioavailable?

Data from high-throughput screens do not suffer from
the same problems as data generated during medicinal

chemistry programs. For high-throughput screening
data, the compounds screened establish the baseline.
To continue with the example from the preceding
paragraph, if 10% of all actives from a wide range of
high-throughput screens contain a carboxylic acid while
only 5% of the compounds screened contain a carboxylic
acid, then one can conclude that compounds that contain
a carboxylic acid are 2 times more likely to be biologi-
cally active than the average compound. Though it is
in general less biased than data from medicinal chem-
istry programs, data from high-throughput screens
suffer from problems of its own. High-throughput
screening data are generally considered to be of signifi-
cantly lower quality than data from medicinal chemistry
programs and are particularly plagued by false posi-
tives. The reason that the false positives cause such a
problem is that in a typical screen the inactive com-
pounds vastly outnumber the active compounds. This
is best illustrated through an example. Suppose we have
a collection of 1 000 000 compounds and that our assays
are 99.9% accurate, i.e., 99.9% of active compounds are
classified as active and 99.9% of inactive compounds are
classified as inactive. Next we assume that for an
average target, 1 in a 1000 compounds are truly active.
Researchers at Pfizer have found that they must screen
approximately 120 000 compounds on average to find
one lead series,1 so the assumption of 1 in a 1000
compounds being truly active is clearly an overestimate.
With these assumptions, on average from a single screen
we would expect 0.999 × 1000 ) 999 true positives and
999000 × 0.001 ) 999 false positives. Thus, even with
a nearly perfect assay the false positives are still equal
in number to the true positives. Furthermore, if we
assume a more realistic true hit rate of 1 in 10 000
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compounds, we would on average find 10 false positives
for every true positive. Any conclusions drawn from data
that consist primarily of false positives are suspect.
Ultimately, the key to deriving reliable knowledge from
high-throughput screening data is minimizing the num-
ber of false positives.

ECLiPS2 (encoded combinatorial library on polymeric
support) library synthesis is a form of solid-phase library
synthesis that uses a modified version3 of split and mix
as a means to efficiently generate libraries with a large
number of compounds, often in excess of 50 000 mem-
bers. The chief difference between an ECLiPS library
and the more traditional forms of combinatorial syn-
thesis is that during each step of the synthesis molec-
ular tags are attached to the solid support in order to
encode for the step and reagent used. Once the synthesis
of the library is complete, the exact identity of a
compound on any particular bead is not known except
through detaching and reading the molecular tags. The
only information known about the compound at the time
of screening is the reagent used in the last synthetic
step. The compounds with a common final synthetic step
are referred to as a sublibrary. To screen an ECLiPS
library, individual beads are placed in wells in a plate.
The compound is cleaved from the bead and filtered to
a second plate, while the tagged bead remains in the
original plate. The second plate is then screened as in
any high-throughput screening program. When a well
shows sufficient activity, the identity of the molecular
tags on the corresponding bead is determined. Because
the tags form a binary code for the synthetic history of
the compound originally on the bead, the tags contain
the necessary information to determine the exact iden-
tity of the compound. For this reason, we refer to a
compound found in an active well as a decode. Accord-
ingly, we use the terms “active”, “decode”, and “decoded
compound” interchangeably to mean the compound
found in a well that has been deemed active by the
biological assay.

The data from high-throughput screens of ECLiPS2

libraries are amenable to a rigorous statistical inter-
pretation that provides a means to eliminate the major-
ity of the false positives for the purposes of data mining.
The statistical analysis relies on two features unique
to the ECLiPS screening process. First, the compounds
being screened are essentially blind to the scientist
performing the experiment. As stated above, in these
experiments single compounds are put in wells with the
only thing known about the compounds being the
sublibrary from which they came. Only when a well
shows some level of activity is the identity of the
compound determined via decoding tags placed on the
solid support during the compounds’ solid-phase syn-
thesis. Thus, the identities of only the compounds in
active wells are determined, and these identities are not
determined until after the well is deemed active. The
purpose of a blind experiment is to separate the
observation from prior expectations, thereby eliminating
bias. The concept of a blind experiment is most well-
known from clinical trials in which “double blind” trials
are routinely run. Clinical trials are run in this fashion
to eliminate the bias of those participating in or observ-
ing the trial. In the language of statistics, each well is
an independent identically distributed experiment from

a sublibrary with outcomes being that either the well
is inactive or the particular compound in the well is
active.

The second and most important feature of an ECLiPS
screening experiment is its inherent redundancy. Be-
cause the identities of the compounds are not known
when the compounds are put in the wells, there is no
way to guarantee that each compound in a sublibrary
is in fact screened in any particular assay. To offset this
uncertainty, more than 1 equivalent of each active
sublibrary is screened with a single compound per well.
The effect is that while a small fraction of the com-
pounds are not screened the majority will be screened
two, three, or more times. Figure 1 shows the distribu-
tion of the number of times compounds are screened at
1, 2, and 3 equivalents. Typically, we screen 3 equiva-
lents of every active sublibrary. For example, in a
sublibrary with 1000 members 3000 compounds are
screened with a single compound per well. The effect is
that approximately 5% of the compounds in a sublibrary
are not screened, 15% are screened one time, 22% are
screened two times, 22% are screened three times, 10%
are screened four times, etc. Of course, it is not known
which compounds are screened three times, only that a
certain fraction of the compounds are. This redundancy,
though probabilistic in nature, provides a means to
assess whether a set of decodes is consistent with true
activity or with simply random compound selection.
Random compound selection results in virtually no
compounds being decoded more than one time, whereas
true activity should result in a reasonable distribution
of replication within the decodes; i.e., some compounds
appear in single active wells, some in two active wells,
some in three active wells, and so on. The statistics
around these distributions are developed rigorously in
section 2.1.

Figure 1. Redundancy in the ECLiPS screening experiment.
The white bars represent the distribution of the number of
times the compounds are screened if a single equivalent, i.e.,
the same number of wells as there are compounds, of the
sublibrary is screened. The gray bars represent the distribu-
tion of the number of times the compounds are screened if two
equivalents, i.e., twice the number of wells as there are
compounds, of the sublibrary are screened. The black bars
represent the distribution of the number of times the com-
pounds are screened if three equivalents, i.e., three times the
number of wells as there are compounds, of the sublibrary is
screened. Typically, we screen three equivalents of any active
sublibrary. From this figure if we screen three equivalents,
5% of the compounds in the sublibrary are not screened at
all, 15% are screened one time, 22% are screened two times,
22% are screened three times, etc.
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Since the influential work of Lipinski and co-workers,4
significant effort has gone into determining the proper-
ties and substructures of compounds that make them
more likely to become drugs.4-7 The chief difference
between the aim of this large body of work and the
present study is that the present study is focused on
isolating those factors associated with specific biological
activity rather than isolating the factors associated with
desirable properties, such as good solubility or high
absorption, that are necessary for a compound to become
a drug. Gillet and co-workers8 adopted a different
strategy in an effort to delineate the factors associated
with biological activity rather than those associated with
“druglikeness”. In this work the WDI9 database was
used as representative of biologically active molecules
and the SPRESI10 database was used as representative
of biologically inactive compounds. The distributions of
various molecular properties were calculated for the two
databases, and the resulting distributions were com-
pared. A number of descriptors showed statistically
significant differences between the two databases. In
particular, in decreasing order of significance the num-
ber of hydrogen bond donors, the number of hydrogen
bond acceptors, molecular weight, the 2κR shape indices,
the number of rotatable bonds, and the number of
aromatic rings all showed some level of statistically
significant separation of the two databases. The WDI
contained more compounds with a large number of
hydrogen bond donors and with a large number of
hydrogen bond acceptors and of high molecular weight,
which differs from the majority of the work done on
“druglikeness” suggesting that the effects captured in
this study are indeed distinct from those captured in
the aforementioned “druglikeness” studies. The chief
difference between the present study and the study of
Gillet and co-workers is the data used with the present
study relying on high-throughput screening data and
Gillet and co-workers relying on data primarily from
medicinal chemistry programs.

In addition to the work on the influence of physical
properties, considerable effort has gone into understand-
ing the role of substructures in specific biological activity
and “druglikeness”. For convenience we split this large
body of work into three main areas. The first area is
the use of substructure analyses to develop “druglike-
ness” models11,12 or models of related phenomena such
as bioavailability13,14 and mutagenicity.15 The second
area where substructure analysis has played a key role
is in developing models for the activity of a set of
compounds against a single target. There are numerous
published examples of the utility of this approach to
understanding a structure-activity data set, and we cite
only a handful of the earlier examples.16-19 The general
approach in these studies is to look for substructures
that are enriched/deriched in the active compounds
relative to the inactive compounds. In spirit these
analyses are similar to the substructure analysis pre-
sented in this work with the chief difference being the
scope; in this work we look at high-throughput screening
data from a large number of targets. The third main
area of substructure analysis is in the identification of
“privileged structures”20-24 where a “privileged struc-
ture” is defined as a substructure that occurs frequently
in ligands for a variety of targets. Much of this work is

focused on “privileged structures” for G-protein-coupled
receptors and relies primarily on the intuition and
experience of individual scientists.20,24 Hajduk and co-
workers,21 however, performed a statistical analysis of
NMR-derived binding data from 11 protein targets.
They found that compounds containing a carboxylic acid
were statistically enriched within the active compounds
for 6 of the 11 targets and that compounds containing
a biphenyl were statistically enriched for 5 of the 11
targets. The next most frequently enriched substructure
was enriched in only 3 of the 11 targets.

For this work, the combined results of 100 high-
throughput screens were analyzed using the statistical
techniques described below. The screens cover a range
of pharmaceutically relevant drug targets. The proper-
ties and substructures of the actives are compared to
those of our overall collection. Because factors such as
metabolic stability and absorption are not factors in the
assay determinations, any differences between the
active set of compounds and our compound collection
should be attributable primarily to true biological
activity with solubility being the other possible contrib-
uting factor. Since these data are less complex than data
used in previous studies, these comparisons shed light
on the relationship between the likelihood of a com-
pound being biologically active and its physical-chemi-
cal and structural properties.

2. Materials and Methods

The materials and methods used for this work are
split into three subsections: a rigorous derivation of the
statistical interpretation of data produced from a screen
of an ECLiPS sublibrary (section 2.1), a concrete ex-
ample of the process by which the data is analyzed
(section 2.2), and a summary of the screens and data
that produced the data used (section 2.3).

2.1. Statistical Interpretation of Decode Data.
The notation in this section is somewhat involved and
as a result is collected and summarized in Table 1. In
this section we rigorously develop a statistical model
for the screening observation from an ECLiPS subli-
brary based on three unknown parameters: (1) the
fraction of the library that is active, ε; (2) the probability
that a well is deemed active (decoded) given the com-
pound in the well is active, P11; (3) the probability that
a well is deemed active (decoded) given the compound
in the well is inactive, P10. The parameter ε is the true
hit rate. The parameter P10 has the physical interpreta-
tion as the well false positive rate; i.e., the probability
a well is deemed active when the compound it contains
is inactive. The parameter P11 is the true positive rate.
Therefore 1 - P11 is the well false negative rate.

For the purposes of this manuscript the observations
made from our high-throughput screens are the number
of compounds that are decoded one time (Z1), the
number of compounds that are decoded two times (Z2),
the number of compounds that are decoded three times
(Z3), etc. Accordingly, the goal is to derive probability
distributions for the screening observations, Zn, in terms
of the unknown parameters ε, P11, and P10 and the
known parameters, the number of distinct compounds
in the sublibrary, N, and the number of wells screened
with single compounds from the sublibrary, M. If the
screen is nearly ideal (P11 ) 1 and P10 ) 0), then these
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distributions should look like those in Figure 1. If the
probability distribution for Zn can be determined as a
function of ε, P11, and P10, one can in turn estimate these
parameters via selection of the values of ε, P11, and P10
that make the observed Zn as likely as possible. This is
the standard statistical technique of maximum likeli-
hood.25

The probability that any single chosen well contains
compound k is 1/N, and the probability that this well
will be deemed active given that compound k is active
is P11. Therefore, given that compound k is active, the
probability that any single chosen well contains com-
pound k and is deemed active is P11/N. Since each well
is essentially independent from any other well, the
probability distribution for the number of times com-
pound k is decoded given it is active will follow a
binomial distribution with the number of trials being
equal to the number of wells screened and the prob-
ability of success being P11/N, i.e.,

Note from eq 1 the probability that a compound is not
decoded at all given it is active is given by

Arguing as in the derivation of eq 1, we find the
probability that a compound will be decoded n times
given it is inactive is given by the formula

Also, from eq 3 the probability that a compound is
decoded given it is not active is given by

Then through an application of Bayes’ theorem,26 we
combine eqs 1 and 3 to derive the probability distribu-

tion for the number of times a compound is expected to
be decoded:

Finally, we derive the probability distribution for the
number of compounds that will be decoded a given
number of times:

where pn is given in eq 5. A screening observation, which
we denote by Θ, consists of the number of compounds
decoded one time, the number decoded two times, etc.,
i.e., an observed value for Zn for n ) 1, 2, 3, .... Thus,
the closed form probability for an observation based on
the parameters M, N, ε, P11, and P10 is given by

where on is the observed number of compounds that are
decoded exactly n times. The exact dependency of P(Θ)
on M, N, ε, P11, and P10 can be determined by tracing
back through eqs 6 and 5. The reader should note that
for large n, on ) 0 and P(Zn ) 0) ) 1. Thus, even though
the product in eq 7 is written as an infinite product, it
is in reality a finite product.

To this point we have derived an expression for the
probability of an observation given the value of the
parameters M, N, ε, P11, and P10. The parameters M
and N are known, whereas the parameters ε, P11, and
P10 are unknown. Ultimately, we wish to estimate the
unknown parameters ε, P11, and P10 from the observed
data. The technique we use to perform this estimation
is maximum likelihood, which chooses the values of the

Table 1. Notation and Definitions

symbol definition dependencies

ε fraction of the sublibrary that is active unknown

P11 probability a well is decoded when the compound is active unknown

P10 probability a well is decoded when the compound is not active unknown

N number of compounds in the sublibrary known

M number of wells screened from the sublibrary known

R number of equivalents of the sublibrary screened ){M}/{N}
k reference to a single compound

n refers to the number of times a compound was decoded

Ck state of compound k; active ) 1, inactive ) 0

Yk probability distribution for the number of times compound k is decoded ε, P11, P10, M, N

pn P(Yk ) n) ε, P11, P10, M, N

Zn probability distribution for the number of compounds decoded n times ε, P11, P10, M, N

P(Yk ) n|Ck ) 1) ) (Mn )(P11

N )n(1 -
P11

N )M-n

(1)

compound false negative rate ) P(Yk ) 0|Ck ) 1) )

(1 -
P11

N )M

(2)

P(Yk ) n|Ck ) 0) ) (Mn )(P10

N )n(1 -
P10

N )M-n

(3)

compound false positive rate ) P(Yk * 0|Ck ) 0) )

1 - (1 -
P10

N )M

(4)

pn

≡ P(Yk ) n) ) P(Yk ) n ∩ Ck ) 1) + P(Yk ) n ∩ Ck )
0)

) P(Yk ) n|Ck ) 1) P(Ck ) 1) + P(Yk ) n|Ck ) 0) P
(Ck ) 0)

) (Mn )[ε(P11

N )n(1 -
P11

N )M-n

+ (1 - ε)(P10

N )n(1 -

P10

N )M-n] (5)

P(Zn ) r) ) (Nr )pn
r(1 - pn)N-r (6)

P(Θ) ) ∏
i)1

∞

P(Zn ) on) (7)
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unknown parameters to maximize the probability of the
observation. Thus, we choose the values of ε, P11, and
P10 to maximize P(Θ) as it is given by eqs 5, 6, and 7.
This can be accomplished by a standard gradient based
minimization algorithm such as conjugate gradient
minimization.25

At this point we have derived a means to estimate
the free parameters ε, P11, and P10, and we would like
to derive an estimate for the probability a compound is
active given the number of times it was decoded during
the screen. This can be achieved from eq 1, eq 5, and
two applications of Bayes’ theorem:

Thus, from the maximum likelihood estimates of ε, P11,
and P10 and eq 8, we can estimate the probability that
any compound in the sublibrary is active on the basis
of the number of times the compound was decoded.
Because the estimated values for ε, P11, and P10 depend
on the entire sublibrary screening observation, the
probability that a compound is active depends not only
on the number of times it was decoded but also
implicitly on the entire observation.

In the following sections we refer to three interpreta-
tions of the high-throughput screening data: the ran-
dom model, the ideal model, and the realistic model. The
expected results with all three of these models are
determined from eqs 5 and 6 with the differences
between the models arising from the differences in the
values of the three free parameters ε, P11, and P10. The
random model is one in which we assume that wells are
selected at random and decoded rather than being
guided by the biological assay. In this model, ε ) 0, P11
) 0, and P10 is chosen so that the expected number of
decodes is equal to the observed number of decodes. If
the observed data are consistent with the expected
results from this model, then we conclude that the data
are likely not to be true activity and discard the data
from further use in this data mining study. The ideal
model is one in which we assume the assay classifies
inactive compounds as inactive and active compounds
as active with no errors. In this model P11 ) 1, P10 ) 0,
and ε is a free parameter chosen using maximum
likelihood. The realistic model is essentially that de-
scribed above in which all three parameters are treated
as unknown and are estimated from the screening
observation.

2.2. Example of the Statistical Analysis. The
purpose of the preceding section was to develop a
rigorous and quantitative means through which we can
first assign a significance to the extent of replication
found within a set of decodes from a screen of a
sublibrary. Should the replication not be sufficiently

significant, no further analysis is performed and the
decodes are not used further in this study. If the
replication is sufficiently significant, then the analysis
in the preceding section allows for estimates of the hit
rate within the sublibrary and even of probabilities of
individual compounds being active depending on the
number of times they were decoded. In this section, we
show qualitatively how this analysis procedure is ap-
plied to screening data from a single active sublibrary.
In this particular case, 3 equivalents of a sublibrary
with 2268 distinct members were screened, i.e., a total
of 6804 wells, each with a single compound from the
sublibrary, were screened.

The second column of Table 2 gives an example of an
observation from a screen of a single sublibrary. In this
case, 143 wells were deemed active, 45 compounds were
decoded one time, 12 compounds were decoded two
times, 13 compounds were decoded three times, 3
compounds were decoded four times, 2 compounds were
decoded five times, 1 compound was decoded six times,
and 1 compound was decoded seven times. Notice that
the number of active wells,143, is (45 × 1) + (12 × 2) +
(13 × 3) + (3 × 4) + (2 × 5) + (1 × 6) + (1 × 7).

Upon receiving the data from an apparent active
sublibrary, such as the one described in the preceding
paragraph and Table 2, the first question to ask is
whether the given observation is consistent with a
random selection of compounds from the sublibrary
rather than the selection being guided by the biological
assay. If the data are consistent with random compound
selection, then the hits are unlikely to represent true
activity. To address this question, the probability that
the observation would have been made had the com-
pounds been chosen at random is calculated. For a
highly active sublibrary this number is extremely small
(<10-10). For this reason we typically deal with the

Table 2. Example ECLiPS Screening Observation and the
Expected Observations with Different Models for the Dataa

degree of
replication observed random model ideal model

realistic
model

1 45 134.3(11.2) 12.1(3.5) 44.9(6.6)
2 12 4.2(2.1) 18.1(4.2) 13.0(3.6)
3 13 0.1(0.3) 18.1(4.2) 9.7(3.1)
4 3 13.6(3.7) 5.5(2.3)
5 2 8.1(2.8) 2.5(1.6)
6 1 4.1(2.0) 0.9(1.0)
7 1 1.7(1.3) 0.3(0.6)
8 0 0.7(0.8) 0.1(0.3)
9 0 0.2(0.5) 0.0(0.1)

a The “observed” column indicates the number of compounds
that were decoded a single time, two times, etc. In this case the
sublibrary contains 2268 members and was screen at 3 equiva-
lents, meaning 6804 compounds were screened in individual wells.
Of these, 143 wells were deemed active by the biological assay
with 45 compounds appearing in a single active well, 12 com-
pounds in two active wells, etc. Notice that 143 ) (45 × 1) + (12
× 2) + (13 × 3) + (3 × 4) + (2 × 5) + (1 × 6) + (1 × 7). The ran-
dom, ideal, and realistic models are described at the end of section
2.1. The numbers in these columns are the expected number of
compounds decoded one times, two times, etc. with the particular
model. The numbers in parentheses in the final three columns
are the standard deviations. It might seem surprising that there
is any uncertainty in the case of an ideal model. This uncertainty
arises because of the uncertainty in the number of times each
compound is screened as shown in Figure 1 rather than the
uncertainty in the assay. As is evident, the realistic model agrees
with the observation much better than the ideal model, which
agrees with the data significantly better than the random model.

P(Ck ) 1|Yk ) n)
) P(Ck ) 1 ∩ Yk ) n)/P(Yk ) n)

) P(Yk ) n|Ck ) 1)P(Ck ) 1)/P(Yk ) n)

)
ε(Mn )(P11

N )n(1 -
P11

N )M-n

(Mn )[ε(P11

N )n(1 -
P11

N )M-n

+ (1-ε)(P10

N )n(1-
P10

N )M-n]
(8)
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statistical significance of a screening observation that
we define as minus the logarithm (base 10) of the
probability that the observation would have been made
had the compounds been chosen at random.

Returning to the example screening data, the third
column of Table 2 shows the expected distribution had
the 143 compounds been chosen at random from the
sublibrary rather than having been selected via the
biological assay. In this case we would expect ap-
proximately 134 compounds to be decoded a single time
and only a handful of compounds to be decoded twice.
Clearly, the discrepancy between this observation and
the expected results with random compound selection
is so large that there is essentially no chance that these
compounds were chosen solely by random means. In
fact, for this observation, the significance is 81, which
means that the probability of making this observation
through random selection is 10-81, which is equivalent
to flipping a fair coin and getting heads 269 consecutive
times. Clearly, the degree of replication observed in this
particular screen could not have happened through
random compound selection.

The second step in the analysis process is to compare
the data to an ideal screen. An ideal screen is one in
which the assay deems a well active when the compound
in the well is active, and it deems a well inactive when
the compound in the well is inactive. Unlike the case of
the random compound selection there is an unknown
parameter: the fraction of the sublibrary that is active
(the parameter ε in the previous section and Table 1).
Given any value for the active fraction, the probability
of making the given observation can be computed (see
the previous section for details). The technique of
maximum likelihood25 is then employed to select the
value of the active fraction that best explains the
observation. The method of maximum likelihood simply
says to choose the value of the parameter that maxi-
mizes the probability of having made the particular
observation. For the example shown in Table 2 the
active fraction that maximizes the likelihood of the
observation with the ideal model is 3.6%. Even with this
optimal value for the active fraction, the probability of
making the given observation from an ideal screen is
10-21. While this is significantly better than the prob-
ability 10-81, when a random process was assumed, it
demonstrates that this screen is not perfect. The fourth
column of Table 2 shows the expected observation if this
were an ideal screen with the optimal value for the
active fraction. The differences between the expected
distribution and the observed distribution are obvious
and sufficient to conclude that this is not an ideal
screen.

To interpret the data from an ECLiPS screening
experiment, we employ a model that we refer to as the
realistic model, intermediate between the random pro-
cess and the ideal screen. In the realistic model there
are three free parameters: the active fraction (ε), the
well false positive rate (P10), and the well false negative
rate (1 - P11). Here, the well false positive and well false
negative rates refer to the probability that the assay
incorrectly classifies a well. For any choice of these three
parameters, the probability of making an observation
can be computed. Thus, maximum likelihood can again
be used to select the optimal values for the active

fraction, the false positive rate, and the false negative
rate. For the particular screen shown in Table 2, the
estimated active fraction is 2.1%, the estimated well
false positive rate is 0.5%, and the estimated well false
negative rate is 24.5%. The expected distribution with
these three parameters is shown in the fifth column of
Table 2. With these three parameters the model now
agrees very well with the observation. The probability
of making the observation given this particular model
is now 10-6, a vast improvement from either the random
or ideal models.

As a side note, one might feel that 1 in a million is in
fact very poor odds despite it being a big improvement
over previous models. The number is the probability
that the exact observation would have been made with
this particular model. One would expect that if the
experiment were performed many times, the standard
deviations of the observation would be comparable to
those in Table 2 for the realistic model. If this is the
case, there could realistically be 100 000 to 1 000 000
reasonable distinct outcomes of the experiment. Thus,
for this particular observation the probability 10-6 is
nearly as large a probability as one would expect.

The final step in the statistical analysis is to estimate
the probability that a compound will be active upon
resynthesis. This probability will be dependent on the
number of times the compound was decoded and the
three parameters (active fraction, false positive rate, and
false negative rate) determined in the prior step. This
can be accomplished from the probability distributions
determined in the prior step and a straightforward
application of Bayes’ theorem.26 For the example shown
in Table 2, the probability a compound that was decoded
exactly one time will be active is 0.25. This probability
reflects the fact that the compounds decoded a single
time contain the majority of the false positives as well
as the less potent actives. For this screen any compound
that was decoded multiple times, however, is essentially
guaranteed to be active.

2.3. Data Used for the Data Mining. The data from
approximately 100 high-throughput screens were ana-
lyzed by the above procedure. In these 100 screens ap-
proximately 200 000 000 total compounds were screened.
Only the decoded compounds from highly significant
screens were treated as biologically active compounds
in the analysis. The data from all sublibraries for which
the significance exceeded 20 were analyzed according
to the process outlined in sections 2.1 and 2.2. The
actual choice of 20 is somewhat arbitrary, but this left
a significant number of active sublibraries and is high
enough to guarantee the elimination of most false
positives. The decodes from these sublibraries comprise
the set of biologically active compounds. The biologically
active set comprises 16% GPCR ligands, 17% kinase
inhibitors, 27% non-kinase enzyme inhibitors, and 40%
from other target families (Table 3).

3. Results

In this section, we consider the effects of the standard
physical properties calculated with Cerius227 and stan-
dard functional groups on hit rates. The general ap-
proach will be to compare the fraction of the biologically
active set of compounds within a physical property
range or having a given substructure to the fraction of
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the entire collection within the physical property range
or having the given substructure. Typically, we consider
the ratio of the first of these fractions to the second of
these fractions. If this ratio is greater than 1, we
conclude that being within the particular property range
or having the particular substructure contributes posi-
tively to the chances of finding biological activity. If this
ratio is less than 1, then being within the particular
property range or having the particular substructure
contributes negatively to the chances of finding biologi-
cal activity. We refer to these ratios as relative hit rates
because they are equivalent to the ratio of the hit rate
for those compounds within the physical property range
or having the particular substructure to the hit rate for
the entire collection.

As a first example, we consider the influence of the
hydrogen bond acceptor count on hit rates in general.
Figure 2a shows the histograms for both the number of
hydrogen bond acceptors of our entire collection weighted
by the number of times each compound has been
screened and the actives we have found over the course
of screening the targets described in Table 3 weighted
by their probability of being active. As is apparent from
Figure 2a, the majority of the active compounds are
found in the subset of compounds with five to eight
hydrogen bond acceptors. The bin that contains the
largest portion of the actives is the bin corresponding

to seven hydrogen bond acceptors. Part of the reason
the majority of the active compounds are found in these
bins is that the majority of the compounds in our
collection are found in these bins. More so than the
height of any individual bar we are interested in the
ratio of the height of the bar for the active compounds
to the height of the bar for the entire collection. We refer
to this ratio as the relative hit rate because it is
equivalent to the hit rate for compounds within the
given bin divided by the hit rate for the entire collection.
The bin with the largest difference between the fraction
of the actives and the fraction of the overall collection
is that corresponding to eight hydrogen bond acceptors.
In fact, compounds with eight hydrogen bond acceptors
have nearly twice the likelihood of showing activity in
a typical biological screen than the average compound
(see Figure 2b).

The relative hit rates were calculated, in the same
manner as for the hydrogen bond acceptors above, for
the standard physical properties including the number
of hydrogen bond donors, log P, molecular weight, and
the number of rotatable bonds. The hit rate varies little
with the number of hydrogen bond donors (Figure 3a)
except for the case when the molecule has five hydrogen
bond donors. This result is consistent with the finding
of Gillet and co-workers8 in which they found that the
biologically active compounds contained more com-
pounds with a large number of hydrogen bond donors
than the nonbiologically active set. It is not clear why
the molecules having exactly five hydrogen bond donors
are significantly more likely to be active than the rest
of the collection, and it is entirely possible that this
effect is in part due to the increased solubility of the
compounds with a large number of hydrogen bond
donors. The increase in the likelihood of finding biologi-
cal activity in the set of compounds with five hydrogen
bond donors is likely not enough to overcome the
concern that these compounds would have less than
desirable absorption characteristics.4

For log P (AlogP9828,29), the hit rates fall off dramati-
cally for values below 1 and above 6 (see Figure 3b).

Figure 2. Effects of the number of hydrogen bond acceptors on the likelihood of finding biological activity. (a) Histograms for the
number of hydrogen bond acceptors in either the active molecules or the collection. The solid bars show the distribution for the
number of hydrogen bond acceptors in our entire collection with the compounds weighted by the number of times their respective
library has been screened. The hashed bars show the distribution of the number of hydrogen bond acceptors in the actives found
over the course of screening the targets described in Table 3. (b) Relative hit rate for the given number of hydrogen bond acceptors.
The height of each bar is the ratio of the height of the hashed bar to that of the solid bar in part a. We refer to these ratios as
relative hit rates because they are equivalent to the ratio of the hit rate for those compounds having a fixed number of hydrogen
bond acceptors to the hit rate for the entire collection. Note that the maximum number of actives are found in the bin corresponding
to seven hydrogen bond acceptors, whereas the maximum hit rate is achieved in the compounds with eight hydrogen bond acceptors.

Table 3. Description of the Targets from Which the Data Used
in This Paper Camea

target class
fraction of
the actives

number of
different sublibraries

GPCR 0.16 21
kinase 0.17 16
enzyme 0.27 14
miscellaneous 0.40 30
a The “target class” column refers to the target class of the

screens. The enzyme class refers to all enzymes other than kinases.
The “fraction of the actives” column refers to the fractions of the
set of active compounds that were found during a screen with a
target of the particular class. The “number of different sublibrar-
ies” indicates the number of distinct sublibraries from which the
set of active compounds were found separated by target class.
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The lower hit rates for compounds with AlogP98 < 1.0
can be rationalized as the desolvation penalty being too
great to achieve a strong net binding interaction. The
lower hit rates for compounds with AlogP98 > 6 are
likely the result of lack of solubility more so than the
lack of the potential for significant protein-ligand
interactions. The range of log P between 1 and 6 is
consistent with the characteristics of good oral absorp-
tion and solubility4 and provides further reason to
restrict the log P of screening compounds.

For molecular weight, one sees a steady increase in
hit rates from 350 to 600 (see Figure 3c). This is
consistent with the observation that more potent com-
pounds tend to be of higher molecular weight.30 There
is a small increase in hit rates in going from above 350
Da to below 350 Da, and a small decrease in the hit
rates in going from below 600 Da to above 600 Da. The
magnitude of the change at either end of the distribution
is not sufficient to be statistically significant.

The physical property with the most impact on the
hit rates is the number of rotatable bonds. Here, we use
the implementation of the rotatable bond count in
Cerius227 in which a bond is counted as rotatable if it
is an acyclic, nonterminal single bond with hydrogens
being excluded except on polar atoms. The count of
rotatable bonds used includes partially rigid bonds such
as amides and certain bonds that most authors do not
count such as a bond to a 0H or a bond to a nitrile group.
Thus, the count is an overestimate, but because it is
consistent between the active compounds and the
overall collection, we felt it unnecessary to correct it.

As is apparent from Figure 3d, there is an intermediate
number of rotatable bonds at which the hit rate is
maximal. For our collection the optimal number of
rotatable bonds is 6 where the relative hit rate is 2.
Either decreasing or increasing from this number of
rotatable bonds results in significant decreases in hit
rates.

The number of rotatable bonds of a molecule is
correlated with its molecular weight, with larger com-
pounds typically having more rotatable bonds. As a
result of this correlation, the exact value for the optimal
number of rotatable bonds is likely dependent on the
molecular weight profile of the compound collection
being studied. As is apparent from Figure 3, molecular
weight tends to contribute positively to hit rates whereas
hit rate tends to decrease with larger numbers of
rotatable bonds. Thus, rotatable bonds and molecular
weight are competing factors in the hit rates, and the
importance of each is likely partially hidden by the
effects of the other.

To deconvolute the effects of rotatable bonds and
molecular weight, Figure 4 shows the mean number of
rotatable bonds within a small molecular weight range
(50 Da) for both the entire collection and the active
compounds. It is evident from Figure 4 that the biologi-
cal assays have preferentially selected for compounds
that are less flexible. In fact, regardless of the molecular
weight the mean number of rotatable bonds for the
active compounds is consistently between 1 and 2
rotatable bonds less than that for the overall collection.

Figure 3. Effects of the standard physical properties on hit rates. Each figure shows the relative hit rate, whose calculation is
described in Figure 2, for the particular physical property. (a) Relative hit rates versus the number of hydrogen bond donors. (b)
Relative hit rates versus log P. The particular log P model used was AlogP98.28,29 (c) Relative hit rates versus molecular weight.
(d) Relative hit rate versus the number of rotatable bonds.
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As a final example of the potential for high-through-
put screening data to address the relationship between
the likelihood of a small molecule being biologically
active and its structural properties, we show the effects
of common polar functional groups on hit rates. Table
4 lists several common polar functional groups and their
relative hit rates. The trend is that functional groups
that are capable of making strong intermolecular in-
teractions generally show larger relative hit rates,
whereas those considered to be capable only of weaker
hydrogen-bonding interactions show smaller relative hit
rates. For example, cyano (0.13), ketone (0.23), and
thioether (0.48) all have relative hit rates below one-
half whereas carbamate (2.74), tertiary anilines (2.21),
urea (1.80), carboxylic acid (1.79), and primary amine
(1.54) all have relative hit rates above 1.5. The one
group that does not fit this pattern is the tertiary

aniline, which has a relative hit rate above 2 but is not
capable of hydrogen bonding in any capacity. The only
effects this functional group can have is through elec-
tronic effects on the nearby substituents, particularly
the aromatic ring to which it is bonded. In comparison
the secondary aniline, which has the capacity to act as
a hydrogen bond donor, has a relative hit rate slightly
below 1.0.

Since the physiological role of many proteins is to
recognize either a peptide or protein, one might expect
that the amide would on average increase the likelihood
of a compound showing biological activity. Our data
suggest just the opposite. Compounds containing a
single amide have a relative hit rate of 0.75, whereas
the compounds containing no amide have a relative hit
rate of 1.6.

4. Conclusions

While the false positives can make it difficult to derive
meaningful knowledge from high-throughput screening
data, the process for screening ECLiPS libraries is
amenable to a rigorous statistical interpretation. The
statistical interpretation stems from both the redun-
dancy in the experiment and the blind nature of the
experiment. Most importantly the statistical interpreta-
tion allows for a quantitative means to select screens
of sublibraries that are of the utmost quality. This
filtering allows for significant reduction in the number
of false positives. Second, the statistical interpretation
allows for the assignment of a consistent probability of
activity to every compound from an active sublibrary.
Once this assignment is complete for all of the high-
quality screens, unbiased hit rates can be calculated.
These unbiased hit rates allow for an examination of
the relevance for any property or substructure on the
general likelihood of a compound showing biological
activity.

The statistical data interpretation termed the realistic
model estimates an active fraction and false positive and
false negative rates for a set of decodes from a single
sublibrary. Clearly the assumption that a compound is
either active or inactive is not entirely accurate. Some
compounds are weakly active, while others are potent.
The compounds whose potency is just above or just
below the cutoff are much more likely to be classified
as false positives or false negatives, respectively. Thus,
the assumption that the false positive and false negative
rates are independent of the compound is not true. In
general, this type of false positive and false negative is
not, however, as detrimental to the data as a false
positive that occurs because of compound interference,
equipment failure, etc. In fact, the net result of weakly
potent compounds being sometimes classified as inactive
and sometimes classified as active is that the potent
compounds have on average a greater impact on the
data mining results.

The second shortcoming of the statistical models
presented here is their lack of general applicability.
Because most pharmaceutical and biotechnology com-
panies screen each compound in their collection a single
time, the statistical analysis developed for the analysis
of ECLiPS screening results and described here is not
directly applicable for most high-throughput screening
programs. There are, however, other forms of redun-

Figure 4. Interplay between molecular weight and rotatable
bonds on hit rates. The upper curve shows the mean number
of rotatable bonds of compounds in our overall collection within
a given molecular weight range ((25 Da). The lower curve is
the mean number of rotatable bonds of the active compounds
within the given molecular weight range. The error bars on
the lower curve are the 95% confidence intervals for the mean,
not the standard deviation.

Table 4. Effects of Different Functional Groups on Hit Rates

substructure relative hit rate 95% confidence interval

cyano 0.13 0.39
ketone 0.23 0.23
thioether 0.48 0.25
amide 0.75 0.04
sulfonamide 0.83 0.22
secondary aniline 0.87 0.12
tertiary amine 0.92 0.09
ether 0.94 0.06
secondary amine 1.00 0.16
phenol 1.14 0.87
alcohol 1.22 0.16
primary amine 1.54 0.58
no amide 1.60 0.20
carboxylic acid 1.79 0.13
urea 1.80 0.16
tertiary aniline 2.21 0.13
carbamate 2.74 0.37

a The substructures should for the most part should be self-
explanatory. The “no amide” substructure refers to those com-
pounds having 0 amide groups. For all substructures other than
“no amide”, the results are for those compounds having exactly
one instance of the given substructure. The relative hit rate is
defined as the fraction of the active compounds containing the
substructure divided by the fraction of the overall collection
containing the functional group. The 95% confidence interval is
that for the relative hit rate.

Data Mining Journal of Medicinal Chemistry, 2004, Vol. 47, No. 25 6381



dancy that would allow for a similar analysis. Meir and
co-workers31,32 have developed two different approaches
to benefit from implicit redundancy in their compound
collection even when each compound is screened a single
time with multiple compounds per well. In the first of
these approaches,31 they used structural similarity as
a form of redundancy. In particular, by prioritizing those
compounds for which the most similar hits were found,
they showed that they could retain most of the true
positives and eliminate many of the false positives. The
difficulty in developing a rigorous statistical model using
structural similarity as a form of redundancy is that
not all highly similar compounds will exhibit the same
biological activity. In a study done at Abbott only 30%
of compounds with a similarity greater than 85% to a
known active had the same biological activity.33 The
second approach used by Meir and co-workers32 is to
represent each compound as a bit string with each bit
signifying the presence or absence of a substructure.
Each substructure occurs in multiple compounds, and
thus, there is redundancy in substructure screening.
With the assumption that the impact of each substruc-
ture on the likelihood of a compound being active in a
screen is independent from the impact of every other
substructure, they build a quantitative model from the
data arising from a single screen to predict the likeli-
hood that a compound is active in the particular screen.
Again, they showed that by using this approach, they
were able to maintain the majority of the true positives
while eliminating many of the false positives. The
advantage of the later approach is that the developed
models could be used to prioritize further analogue
synthesis, and by development of many models over
many screens, trends might be observed in the prefer-
ence for or against certain substructures.

Most druglikeness models are built from databases
such as CMC,34 MDDR,35 or WDI.9 Because these
databases comprise almost exclusively of molecules that
are biologically active against a protein target, it is
possible that to some extent these rules and models also
contain information on the features relevant to the
likelihood of compounds exhibiting biological activity.
The best example in which the relative hit rates we find
from our historical high-throughput screens compare
favorably to the standard “druglike” criteria is with
log P. From Figure 3b, it is evident that the optimal
range to obtain biological activity for log P is between
1 and 6, which is in reasonable agreement with the rule
of five for log P, which says the optimal range for
solubility and oral absorption is between 0 and 5.4

The physical property with the most interesting effect
on hit rates is the number of rotatable bonds. One could
argue that a more flexible compound is more likely to
be able to adopt a conformation compatible with a
protein binding site, thereby making it more likely to
be biologically active. On the other hand, one could
argue that a more flexible compound is less likely to be
biologically active because it has to overcome a large
entropic cost in order to bind. The data presented here
suggest that the more rigid compounds are more likely
to show biological activity than their more flexible
counterparts. In particular, if two collections with
identical molecular weight profiles are screened against
an identical set of targets, then the more rigid of the

collections will have a higher hit rate. This result differs
from the result with rotatable bonds from the study of
Gillet and co-workers8 in which they find rotatable
bonds to be one of the least significant descriptors and
that the biologically active compounds (WDI) have more
compounds with many rotatable bonds than the non-
biologically active compounds (SPRESI). On the other
hand, our finding is similar to that of Veber and
co-workers6 even though they were specifically consider-
ing factors that influence bioavailability rather than
biological activity.

As a function of the properties studied here, relative
hit rates achieve a maximal value of approximately 2.
While improvements in hit rates by a factor of 2 may
seem to be insignificant, a few factors should be
considered. First, because these are general physical
properties, it is not clear that there should be any
relationship between these properties and the likelihood
of a compound being biologically active, and perhaps a
factor of 2 is greater than should be expected. It is likely
that descriptors with more physical relevance to protein-
ligand interactions would show significantly greater
impact on the likelihood of a compound being biologi-
cally active. Second, any noise in the data will on
average cause any result to regress toward the mean,
thereby causing any enrichment or derichment in activ-
ity to be understated. Because the data used here is
from high-throughput screens, there is likely to be a fair
amount of noise in the data, suggesting that the true
relative hits rates are in fact greater than 2. Third, the
set of targets used to produce the data covers a broad
spectrum of proteins. If the data were restricted to a
smaller family of proteins, it seems reasonable that
more significant variations in hit rates would be ob-
served. Fourth, as we saw with molecular weight and
rotatable bonds, the effects of differing physical proper-
ties on the likelihood of being biologically active are
often competing. By uncovering the delicate nonlinear
effects of multiple descriptors on biological activity, we
may find areas of chemical space that are greater than
2-fold enriched in biologically active molecules. Finally,
improving the hit rates of a combinatorial library by
merely 25% by fine-tuning the physical properties is
well worth the effort to do so.
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