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A 4D-QSAR analysis was carried out for a set of 37 hydrazides whose mimimum inhibitory
concentrations against M. tuberculosis var. bovis were evaluated. These ligands are thought
to act like isoniazid in mycolic acid biosynthesis. Results indicate that nonpolar groups in the
acyl moiety of ligands markedly decrease biological activity. Molecular modifications of the
ligand NAD moiety, including nonpolar groups and hydrogen bond donor and acceptor groups,
seemingly improve ligand interactions with amino acid residues of the InhA active site.

Introduction

Tuberculosis (TB) is a chronic infectious disease
caused by a mycobacteria of the “tuberculosis com-
plex”, including Mycobacterium bovis, Mycobacterium
africanum, and mainly Mycobacterium tuberculosis.1,2

According to World Health Organization, the global and
regional incidence per year is nearly 2 million TB cases
in sub-Saharan Africa, nearly 3 million TB cases in
Southeast Asia, over a quarter of a million TB cases in
Eastern Europe, and nearly 161 800 new TB cases
annually in Brazil.3,4 From 2002 to 2020, nearly one
billion more people will be newly infected, about 150
million people will get sick, and approximately 36
million will die from TB if control is not strengthened.4

The pandemic of AIDS has had a major impact on the
worldwide TB problem. One-third of the increase in the
incidence of TB in the past 5 years can be attributed to
coinfection with HIV. Another factor contributing to the
rise in TB and responsible for the increased death rate
is the emergence of new strains of M. tuberculosis
resistant to some or all current anti-TB drugs, so-called
multidrug-resistant TB (MDR-TB).4

Considering drug resistance, the serious side effects
of some current anti-TB drugs, and the lack of efficacy
of current treatment in immunodepressed patients, it
is still necessary to search for new antimycobacterial
agents.2 The identification of novel targets needs the
identification of biochemical pathways specific to myco-
bacteria and related organisms. Many unique metabolic
processes occur during the biosynthesis of mycobacterial
cell wall components.5 One of these attractive targets
for the rational design of new antituberculosis agents
is the mycolic acids, the major components of the cell
wall of M. tuberculosis.6

Mycolic acids are high molecular weight R-alkyl,
â-hydroxy fatty acids covalently linked to arabino-

galactan.6-8 Differences in mycolic acid structure may
affect the fluidity and permeability of an asymmetric
lipid bilayer that would explain the different sensitivity
levels of various mycobacterial species to lipophilic
inhibitors.9

Enzymes that form the biosynthetic apparatus for
fatty acid production, the fatty acid synthase (FAS), are
considered ideal targets for designing new antibacterial
agents. The difference between the molecular organiza-
tion of FAS found in most bacteria and mammals8,10,11

is the reason for this assumption. Enoyl-acp reductase
is a key regulatory step in fatty acid elongation and
catalyzes the NADH-dependent stereospecific reduction
of R,â-unsaturated fatty acids bound to the acyl carrier
protein.12-14

The crystal structure of the M. tuberculosis enoyl-acp
reductase, named InhA, in complex with cofactor NADH
and the inhibitor isoniazid (INH) was isolated by
Rozwarski and co-workers (1998) (PDB entry code 1zid).
They showed that the drug mechanism of action in M.
tuberculosis involves a covalent attachment of the
activated form of the drug (isonicotinic acyl anion or
radical) to the carbon at position 4 of the nicotinamide
ring of NADH bound within the active site of InhA,
resulting in the formation of an acylpyridine/NAD
adduct.15 The crystal structure of the complex between
isonicotinic acyl/NAD and InhA provides a basis for the
design of agents that inhibit InhA without needing a
KatG drug activation.6,15

With the purpose of contributing to the rational
design of tuberculostatic leads, a mechanism-based
study through a computer-assisted molecular design
(CAMD) methodology was performed with analogues of
INH, a drug that acts on mycolic acids biosynthesis. In
this paper we report the receptor-independent four-
dimensional quantitative structure-activity relation-
ship (RI 4D-QSAR) analysis of a set of 37 hydrazides,
which were evaluated with the same biological assay
and probably would act like the lead INH. Although the
geometry of the biomacromolecule target is available,
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the RI formalism was applied in this study because of
uncertainty in the binding mode of the ligands. 4D-
QSAR analysis16 has been used to develop 3D pharma-
cophore models because of its capability of exploring
large degrees of both conformational and alignment free-
doms in the search for the active conformation and bind-
ing mode, respectively, of each compound investigated.

The hypothesized active conformations resulting from
4D-QSAR analysis can be used as structure design
templates, which include their deployment as the mo-
lecular geometries of each ligand in a structure-based
ligand-receptor binding research. This is the theme of

our future study where the training set (Table 1) and
the three-dimensional structure of enoyl-acp reductase
from M. tuberculosis, InhA15 (PDB entry code 1zid), will
be used to generate a receptor-dependent three-dimen-
sional quantitative structure-activity relationship (RD
3D-QSAR) model applying the free energy force field
(FEFF) 3D-QSAR ligand-receptor binding formalism,
as proposed by Tokarski and Hopfinger.17,18

Methods
Biological Data. A series of 37 hydrazides, including

the drug isoniazid (isonicotinic acid hydrazide, INH1),

Table 1. Structures and Biological Activities of the 37 Hydrazides Seriesa

a Activity was measured as the minimum inhibitory concentration (MIC) against strains of M. tuberculosis var. bovis at 310 K and
given as pMIC (see refs 19-22). The test set comprises the compounds Idv90, Idv128, Idv124, Idv131, Idv132, Idv136, and INHd51
(underlined letters). The others 30 compounds constitute the training set (bold letters). INHd ) aromatic, heteroaromatic, and ring-
substituted hydrazides, isoniazid derivatives; Idv ) heterocyclic acid hydrazides and derivatives.

3756 Journal of Medicinal Chemistry, 2004, Vol. 47, No. 15 Pasqualoto et al.



were selected from refs 19-22. Biological activities were
evaluated as the minimum inhibitory concentration,
MIC (µg/mL), against strains of M. tuberculosis var.
bovis at 310 K.19-22 The minimum inhibitory concentra-
tions of these compounds were converted to molar units
and then expressed in negative logarithmic units, pMIC
(-log MIC). The pMIC values are given in Table 1 and
comprise the set of dependent variables in the 4D-QSAR
analysis. The range in activity for the analogues in
Table 1 is about 5 (0.22-4.70) pMIC units. The training
set contains 30 hydrazides (Table 1) and comprises 10
active compounds (INH1, INHd2, INHd31, INHd43,
INHd20, INHd14, INHd46, INHd37, INHd15, INHd23),
10 compounds with medium activity (INHd29, INHd16,
INHd18, INHd44, INHd25, INHd30, Idv130, INHd22,
INHd27, INHd34), and 10 inactive compounds (INHd42,
INHd47, Idv107, INHd45, Idv126, INHd19, Idv125,
INHd41, INHd49, INHd48). Additionally, seven com-
pounds were selected as an external validation set. That
is, these seven analogues represent a test set of com-
pounds not included in developing the 3D-QSAR
models. The test set comprises three active compounds
(Idv90, Idv128, Idv124), two compounds with medium
activity (Idv131, Idv132), and two inactive compounds
(Idv136, INHd51). These additional seven compounds,
and their respective pMIC values, are also listed in
Table 1.

4D-QSAR Analysis. The current methodology for-
mulation of 4D-QSAR analysis consists of 10 operational
steps, which are given in Table 2.16 The implementation
of this formalism for the analogues listed in Table 1 is
described below.

It was presumed that all compounds investigated in
this study would act like the lead drug isoniazid.15 After
the hydrazide group is lost, the activated form (acyl-
pyridine anion or radical) would be covalently attached
to the C4 of the nicotinamide ring of the cofactor NAD,
resulting in the formation of an acylpyridine/NAD
adduct, which is a strongly bound inhibitor.

Step 1. The three-dimensional structures of each of
the 37 analogues (Table 1) in their neutral forms were
constructed using the HyperChem 6.0 software.23 The
crystallized structure of the isonicotinic acyl/NAD ad-
duct in the active site of the enoyl-acp reductase from
M. tuberculosis, InhA (PDB entry code 1zid, 2.7 Å
resolution), was used as a geometry reference in the
building up of all ligands. Each structure was energy-

minimized using the HyperChem 6.0 MM+ force field
without any restriction. The Molsim 3.0 program24 was
also used for the optimization of each structure inves-
tigated. Partial atomic charges were computed using the
AM125 semiempirical method, also implemented in the
HyperChem program.

The structures modeled as described above were used
as the initial structures in each molecular dynamics
simulation, MDS,26 used to construct the conformational
ensemble profile, CEP, of each ligand.

Step 2. Seven types of atomic groups were used to
define the interaction pharmacophore elements, IPEs,
in this analysis. The atoms of each ligand of the training
set are partitioned into seven classes: polar atoms of
positive charge (p+), polar atoms of negative charge (p-),
nonpolar atoms (np), hydrogen bond acceptor (hba),
hydrogen bond donor (hbd), atoms in aromatic system
(ar), and no differentiation of all-atom occupancy (a or
any).

Step 3. The minimized structures of each of the
compounds bound to the cofactor (NAD) (ligands) were
used as the initial structures in each MDS employed to
construct the conformational ensemble profile (CEP) of
each ligand. The Molsim 3.0 program24 was used to
perform the MDS and to generate the trajectories for,
in turn, deriving the CEP. The MDS protocol employed
100 000 steps for each ligand, the step size was 0.001
ps (1 fs), and the simulation temperature was 310 K,
the same used in the biological assay.19-21,27 An output
trajectory file was saved every 20 simulation steps to
generate a CEP consisting of 5000 conformations. 4D-
QSAR analysis does not use a single conformation in
constructing a 4D-QSAR model, but rather the intrinsic
conformational flexibility of each compound is taken into
account through its CEP.

Step 4. The alignments are selected to explore each
major “part” of a molecule, as well as the possible com-
binations of the major parts of a molecule. The current
4D-QSAR algorithm considers only the unrestricted
three-ordered atom match alignment rule.

In this study, seven different three-ordered-atom
alignments were selected to cover the entire bonding
topology of the common chemical structure of the
training set. The atom numbers, and the corresponding
letter sequences, for each alignment are listed in Table
3 using compound INH1 bound to the cofactor NAD
(ligand INH1) as example.

Table 2. Ten Operational Steps in Performing an RI 4D-QSAR Analysis

step description of the step operation

1 Generate the reference grid cell lattice and initial 3D models for all compounds in the training set.

2 Select the trial set of interaction pharmacophore elements, IPEs.

3 Perform a conformational ensemble sampling of each compound to generate its conformational ensemble profile, CEP.

4 Select a trial alignment.

5 Place each conformation of each compound in the reference grid cell lattice according to the alignment, and record the
grid cell occupancy descriptor, GCOD, for each IPE and choose an occupancy measure for the CEP.

6 Perform a partial least-squares (PLS) data reduction of the entire set of GCODs against the biological activity measures.

7 Use the most highly weighted PLS GCODs and any other user-selected descriptors for the initial basis set in a genetic
algorithm (GA) 4D-QSAR model optimization.

8 Return to step 4 and repeat steps 4-7 unless all trial alignments have been included in the analysis.

9 Select the optimum 4D-QSAR model with respect to alignment and any of the methodology parameters.

10 Select the low-energy conformer state, from the CEP set, for each compound that predicts the maximum activity using
the optimum 4D-QSAR model as the “active” conformation.
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Step 5. Each conformation from the CEP, consisting
of the 5000 conformations generated by the MDS
sampling for each ligand, was placed in a reference grid
cell space according to the trial alignment under con-
sideration. In this study, the selected size of the cubic
grid cell was 1 Å and the size of the overall grid cell
lattice was chosen to enclose each ligand of the training
set. The atom occupancy of each grid cell is a descriptor
in 4D-QSAR analysis, and as described in step 2, these
grid cell occupancy descriptors (GCODs) were computed
for each of seven IPE atom types.

No reference standard ligand16 was used to compute
the GCODs. Thus, the normalized absolute occupancy
of each grid cell by each IPE atom type over the CEP
for a given alignment forms a unique set of QSAR
descriptors (GCODs). The GCODs were computed and
used as the basis set of trial 4D-QSAR descriptors in
the 4D-QSAR analysis.

Step 6. A 4D-QSAR analysis generates an enormous
number of trial QSAR descriptors, GCODs, because of
the large number of grid cells and the seven IPEs.
Partial least squares (PLS) regression analysis28 is used
to perform a data reduction fit between the observed
dependent variable (the experimental biological activi-
ties, pMIC; Table 1) and the corresponding GCOD
values for each of the trial (seven) alignments. In this
study, a variance-filtering constraint was applied to the
entire set of GCODs prior to the PLS analysis. GCODs
having a variance (self-variance) over the set of ana-
logues less than 2.0 (prechosen fraction) were elimi-
nated. The automated reduction data by the PLS
analysis provides the selection of the descriptors having
the highest individual weightings to the observed
biological activity measures.

Step 7. The 200 most highly weighted PLS GCODs
(generated in step 6) were used to form the trial basis
set for the genetic algorithm (GA) analysis.29 In this
study, the genetic function approximation (GFA)30 was
employed in 4D-QSAR model building and optimization.
The GFA optimizations were initiated using 200 ran-
domly generated 4D-QSAR models. Mutation prob-
ability over the crossover optimization cycle was set at

10%. The smoothing factor alters the balance between
the number of independent variables, GCODs, in the
models and the reduction in least-squares error and
controls the overfitting. Smoothing factor values of
1-2.5 were tested in order to determine the optimal
number of descriptors in the 4D-QSAR models31-33

based on Friedman’s lack-of-fit, LOF,34 which is a
penalized least-squares measure. There is no way to
know in advance how many GCODs should be part of a
QSAR model; it depends on the ligand-receptor system.
Generally, larger and/or more flexible ligands have a
greater number of GCODs. However, the “rules” of
statistics impose a limit of four to five observations
(compounds) per descriptor.

The diagnostic measures used to analyze the resultant
4D-QSAR models generated by the GFA include de-
scriptor usage as a function of crossover operation,
linear cross-correlation among descriptors and/or de-
pendent variables (biological activity measures), number
of significant models, and indices of model significance
including the correlation coefficient, r2, leave-one-out
cross-validation correlation coefficient, q2, and LOF.30,33

In this study, the ligands of the training set whose
differences in experimental (Exp_BA) and predicted
(Pred_BA) activities exceeded 2.0 standard deviations,
SD, from the mean of a model were considered as
outliers.

Other descriptors not derived from the 4D-QSAR
analysis, like log P (the water/octanol partition coef-
ficient), molar refractivity (MR) etc., can be added to
the trial basis set at the start of this step.35 Considering
that lipophilicity is a major determinant of pharmaco-
kinetic and pharmacodynamic properties of drug mol-
ecules,36 the log P values were calculated (ClogP) for all
ligands of the training set and were included in the GA
analysis. The Ghose, Pritchett, and Crippen method
(1998)37 was used to obtain the ClogP values (Hyper-
Chem 6.0).

Step 8. Steps 4-7 were repeated until all (seven) trial
alignments were included in the 4D-QSAR analysis.

Step 9. The inspection and evaluation of the entire
population of 4D-QSAR models are made in this step.
The purpose is to identify the “best” 4D-QSAR models
with respect to alignment. In this study, the top 10
models for each of the seven alignments were selected
by the 4D-QSAR program,35 and their statistical mea-
sures were evaluated.

Each alignment considered will lead to a particular
best 4D-QSAR model for that specific alignment. The
alignment corresponding to the 4D-QSAR model with
the overall highest r2 and q2 measures for all alignments
tested is selected as the best alignment. For the best
alignment, a cross-correlation matrix of the residuals
in error (observed less predicted activities) between
pairs of the top 10 4D-QSAR models, based on their q2,
is built.16,35 This is done to determine if the top 10 4D-
QSAR models are providing common, or distinct, struc-
ture-activity information. In other words, it is pos-
sible to identify the set of unique best 4D-QSAR models.
Pairs of models with highly correlated residuals of fit
(R ≈ 1) are judged to be nearly the same model, while
pairs of models with poorly correlated residuals (R <
0.5) are distinct from one another. Also, the linear cross-
correlation matrix of the GCODs for the best 4D-QSAR

Table 3. Set of Trial Alignments Used in Constructing the
4D-QSAR Modelsa

alignment
1st atom

(atom number)
2nd atom

(atom number)
3rd atom

(atom number)

1 a (46) b (45) c (42)
2 b (45) d (38) e (36)
3 a (46) c (42) f (35)
4 b (45) f (35) g (23)
5 a (46) g (23) h (12)
6 i (13) j (15) k (16)
7 b (45) g (23) l (17)

a The compound INH1 bound to NAD (ligand INH1) is used as
an example.
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model for the best alignment is built to determine if
these significant GCODs are correlated to one another.

External Validation. The seven compounds of the
test set were not included in the building of the 4D-
QSAR models, but they were used to validate the best
QSAR model constructed from the training set and to
evaluate its prediction capacity.35 The predicted activity
value (pMIC) of each ligand in the test set was calcu-
lated using the equation of the best model or alignment
by substitution of the GCODs values found for the
Cartesian coordinates indices of the reference grid cell
space, GCi(x,y,z), which represents each GCOD of each
ligand in the test set and its respective position in the
grid space.

Step 10. The final step of the 4D-QSAR formalism is
to hypothesize the “active” conformation of each ligand
in the training set. This is achieved by first identifying
all conformer states sampled for each ligand, one at a
time, which are within ∆E of the global minimum
energy conformation of the CEP. The ∆E was set at 5
kcal/mol. The resulting low-energy conformations are
individually evaluated using the correlation equation
of the best 4D-QSAR model. The single conformation
within ∆E that predicts the highest “activity” is selected
as the active conformation of the ligand. The postulated
active conformations can be used as structure design
templates in other CAMD approaches.35

The selected RI 4D-QSAR model should sterically fit
and provide complementary ligand-receptor interaction
sites. As already reported, the crystal structure of the
complex containing the inhibitor (INH), the cofactor
(NAD), and the enzyme (enoyl-acp reductase, InhA) is
available (1zid),15 and it was used to explore the
structural information within the selected RI 4D-QSAR
model. It was done by docking the descriptors, GCODs,
of the best model and the postulated active conforma-
tions of each ligand of the training set into the inhibitor
binding site, considering the best alignment as a start-
ing point. That is, the validation of an RI 4D-QSAR
model was performed using the binding site geom-
etry.16,35,38 In this study, comparisons were made of the
distances of the relevant interactions between the amino
acid residues of the active site and atoms of the
inhibitor, INH, to the distances between the same amino
acid residues and the GCODs plus the postulated active
conformations to identify all possible complementary
sets of interactions.

Results

Of the seven trial alignments reported in Table 3,
alignment 4 provides the best 4D-QSAR models as
defined by the highest cross-validated correlation coef-
ficients. Moreover, alignment 4 provides 4D-QSAR
models having the smallest values of the least-squares
error, LSE, and LOF measures. The number of GCODs,
statistical measures including the q2 and r2 values, and
the number of outliers of the top 10 models are pre-
sented in Table 4 (Supporting Information) for each
selected alignment when using a smoothing factor of 2.5
in the GFA optimization.

Table 5 (Supporting Information) shows the top 10
4D-QSAR models built from alignment 4. High values
of both q2 and r2 for all models can be observed.
However, models 2-5 and 8-10 have at least one outlier

and consequently were discarded from further analysis.
Models 6 and 7 have no outliers, but their q2 and r2

values are lower and LSE values are higher than those
of model 1.

To determine if the top 10 4D-QSAR models from
alignment 4 are providing common, or distinct, struc-
ture-activity information, the correlation coefficients
of the residuals of fit between pairs of models were
computed and are reported in Table 6 (Supporting
Information). The idea of determining the residual-pair
correlations is that equivalent models will have near-
identical residuals while distinct models should have
noncorrelated residuals.16,30,35 Table 6 indicates that all
of the top 10 4D-QSAR models have residuals of fit that
are highly correlated to one another. Thus, there is a
single unique 4D-QSAR model that is selected as the
model with highest q2 value (model 1).

The best 4D-QSAR model (model 1) is defined by

It is noteworthy that this model is composed of only two
classes of IPEs: np and “any” atoms. Moreover, the
GCOD (GC1) responsible for predicted decreases in
biological activity corresponds to occupancy by a non-
polar IPE-type (np).

A linear cross-correlation matrix of the GCODs for
model 1 (eq 1) from alignment 4 was built and is
reported in Table 7 (Supporting Information). This is
done to verify if the independent variables, GCODs,
contained in the selected 4D-QSAR model are correlated
to one another.17,35,39 Table 7 shows that none of the
GCODs of eq 1 are highly correlated to one another,
since all pair correlations of GCODs are less than 0.5
(the absolute value). In other words, each of the GCODs
provides independent information to the optimal 4D-
QSAR model.

To ascertain the predictive power of model 1 based
on screening a test set of compounds (Table 1), the pMIC
value of each of the test set ligands (compound/NAD)
was calculated using eq 1, as described in External
Validation. In Table 8 (Supporting Information) the test
set GCOD indices found for model 1 are presented. As
already mentioned, GCi(x,y,z) represents each descrip-
tor, GCOD, of model 1 (GCi ) GC1, GC2, GC3, GC4,
GC5, and GC6), where x, y, and z are the Cartesian
coordinates of the reference grid cell space. The test set
predictions are given in Table 9 (Supporting Informa-
tion). Four of the seven ligands of the test set have
residuals whose absolute values (Exp_BA - Pred_BA
) residuals) are less than or equal to 1.66, which is the
SD value. This finding indicates that model 1 has a
capacity of prediction of about 57%, which is a moderate
predictive power.

As reported by Golbraikh and Tropsha (2002),40 a high
value of q2 appears to be a necessary but not sufficient
condition for the model to have a high predictive power.
The external validation is consequently a better way to
establish a reliable QSAR model. A reliable model
should be also characterized by a high correlation
coefficient R (R2) between the predicted and observed

pMIC ) -11.94 GC1(np) + 11.37 GC2(any) +
23.07 GC3(any) + 1.57 GC4(any) +
6.43 GC5(any) + 30.76 GC6(np) - 0.23 (1)

N ) 30; r2 ) 0.88; q2 ) 0.80; LSE ) 0.16
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activities of compounds from a test set. In this study,
the correlation coefficient between the predicted and
observed activities of ligands from test set was 0.15.

To explore the possibility that the test set is not
representative of the training set, ligands from these
two sets were put together to form a single new training
set. A 4D-QSAR analysis35 was carried out for alignment
4 (the best alignment) for this new “training_test” set.
Table 10 (Supporting Information) contains the statisti-
cal measures, the number of GCODs, and the number
of outliers of the top 10 models from alignment 4 to the
“training_test” set. The q2 and r2 values decreased
relative to eq 1, and the best model in Table 10, model
1, has a high q2 value but one outlier. The outlier is the
ligand Idv90 that is part of the original test set.

The correlation coefficients of the residuals in error
between pairs of models were computed and are re-
ported in Table 11 (Supporting Information). Table 11
indicates that all of the top 10 4D-QSAR models
resulting from the “training_test” set have residuals of
fit that are highly correlated to one another. Thus, there
is a single unique 4D-QSAR model, which is model 1
(highest q2 value). After the outlier of model 1 (Idv90)
was eliminated, 4D-QSAR models were rebuilt using the
resulting training set. The q2 and r2 values of the top
10 models increased, and the number of outliers varied
from zero to three. The model that has the highest q2

value is model 1, as reported in Table 12 (Supporting
Information). On the basis of the linear cross-correlation
matrix of the residuals of fit, all models are highly

correlated to one another (see Table 13 in Supporting
Information), which means all the models provide
common structure-activity information. Considering all
the data generated from the original and new training
sets, the hypothesis that the test set was not repre-
sentative of the original training set was discarded.

The test set predictions only marginally support the
binding hypothesis used. Our future structure-based
design study may help us understand what modifica-
tions need to be made to the hypothesis we have used.

The “active” conformation of each ligand in the
training set was hypothesized using model 1 (eq 1) from
alignment 4 by first identifying all conformer states
sampled for each ligand within ∆E equal to 5 kcal/mol
of the global minimum energy conformation of the CEP.
The GCODs of each resulting set of low-energy confor-
mations were employed to predict the activities for each
ligand using eq 1, and the conformer with the highest
predicted activity was selected as the “active” conforma-
tion of each ligand.

The predicted active conformations for two ligands are
shown, in a ball-and-stick style, in Figure 1. The two
ligands have been singled out from the training set
based on their activities, ligand INH1/NAD being the
most active and ligand INHd49/NAD being the least
active analogue. These conformer states were developed
using a grid cell resolution of 1 Å, which is the diameter
of the spheres used to represent the GCODs of the 4D-
QSAR equation. In Figure 1, the GCODs that increase
the biological activity are shown as light-yellow spheres

Figure 1. Stereoviews of the predicted active conformations for two ligands: INH1/NAD (active) (A) and INHd49/NAD (inactive)
(B), using model 1/alignment 4. The nitrogen atoms are shown in blue, hydrogens are shown in white, oxygens are shown in red,
phosphorus atoms are shown in orange, and carbon atoms are shown in gray. The GC1 and GC6 descriptors correspond to IPE
type atom ) np. The GC2, GC3, GC4, and GC5 descriptors have IPE type atom ) any.
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(GC2, GC3, GC4, GC5, and GC6), and the GCOD that
decreases the biological activity is shown as a dark-
green sphere (GC1). The yellow color intensity of the
GCODs (spheres) is related to the regression coefficients
in eq 1. The larger the absolute value of the regression
coefficient, the more intense is the yellow color of its
corresponding sphere, GCOD (see Figure 1).

To determine if model 1 from alignment 4 sterically
fits in the active site and provides complementary
ligand-receptor interaction sites to all compounds of the
training set, the predicted active conformation of each
ligand and its respective GCODs were docked into the
active site of the crystallized structure of enoyl-acp
reductase from M. tuberculosis, InhA (1zid),15 using the
binding alignment 4. In Figures 2, 3, and 4 this docking
procedure can be visualized for three ligands of the
training set: INH1/NAD (high activity), INHd18/NAD
(medium activity), and INHd49/NAD (inactive), respec-
tively. The distances between the amino acid residues
of the active site (Met155, Phe149, Ala191, Ile194,
Pro193, Thr196, Leu197, Thr17, Ser20, Ile95, Lys165,
Met161, Tyr158, Met103, Met199) and the GCODs plus
the predicted active conformations for the same three
ligands of the training set were measured and compared
to the corresponding distances in the crystallized com-
plex (1zid).15 All possible complementary sets of ligand-
receptor interactions, based on the selected model/
alignment (model 1/alignment 4) of RI 4 D-QSAR
analysis, can be identified from this process.

Discussion

Biological activity (pMIC) is predicted to increase with
ligand atom occupancy of grid cells of GC2, GC3, GC4,
GC5, and GC6 by the appropriate IPE types. The
opposite is true for occupancy of GC1 (see eq 1). On the
basis of the docking of ligand INH1/NAD (active) into
the active site (Figure 2), the GC4 descriptor is located
on the nitrogen atom of the pyridine ring (0.6 Å). The
amino acid residues that could interact with GC4 are
Met155 and Phe149. The IPE atom type of GC4 is any,
which means all occupancy by any type of atom. This

nonspecificity in atom type for GC4 might be explained
through the location of GC4 in the active site. GC4 can
establish a hydrogen bond with a water molecule held
by the side chain of Met155 (1zid) or have hydrophobic
interactions with other amino acid residues of the active
site. The inhibitor of the crystallized complex (1zid) has
the pyridine ring of the isonicotinic acyl group sur-
rounded by hydrophobic residues, including Phe149,
Gly192, Pro193, Leu218, Tyr158, and Trp222. Further-
more, the side chain of Phe149 is located adjacent to
the pyridine ring of the isonicotinic acyl group, allowing
its participation in an aromatic ring stacking interac-
tion.15 The distance between the two aromatic rings is
the same for both the inhibitor of the crystallized
complex (1zid) and the predicted active conformation of
the active ligand (INH1/NAD), as determined from the
4D-QSAR analysis and docked into the active site based
on alignment 4, also from the 4D-QSAR analysis.

The only descriptor responsible for a predicted de-
crease in pMIC is GC1, and it involves occupancy by
nonpolar atom types (IPE). The distance between the
GC1 descriptor and the pyridine ring is 1.6 Å, while GC1
is 2.3 Å from the side chain of Phe149. Phe is a nonpolar
residue; thus, occupancy of GC1 by nonpolar ligand
atoms is detrimental to biological activity. Ligand
substituents that occupy GC1 could prevent rotation
[movement] of the side chain of Phe149. Thus, the
aromatic ring-stacking interaction between the Phe149
residue and the pyridine ring of the inhibitor might not
be allowed. Moreover, rotation of the side chain of
Phe149 away from the nicotinamide ring creates space
for the isonicotinic acyl group. GC1 is also surrounded
by the hydrophobic residues Phe149, Gly192, Pro193,
Leu218, Tyr158, and Trp222 of the active site.

The descriptors GC2, GC3, and GC5 are predicted to
increase pMIC in the following order: GC3 > GC2 >
GC5, as specified by their regression coefficients in eq
1. GC2 is located near the amide nitrogen of the
nicotinamide ring of the NAD portion (2.8 Å). The amino
acid residues that could be participating in a ligand-
receptor interaction identified by GC2 are Pro193 and
Ile194. Thus, GC2 can reflect both hydrogen bond

Figure 2. Stereoview of the predicted active conformation of ligand INH1/NAD (active) and its respective descriptors (GCODs,
GC1-GC6) docked in the active site of InhA.
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acceptor and donor interactions. GC2 is located in the
region of the active site surrounded by hydrophobic
residues, suggesting it could also be identifying hydro-
phobic interactions. This variety of possible interaction
types involving GC2 could be the reason for its IPE type
of any. The GC3 descriptor is positioned about half-way
between the two phosphate groups of the NAD struc-
ture. The distance between GC3 and the oxygen atom
between the two phosphate groups is 2.6 Å. The amino
acid residues that probably interact with ligand atoms
captured by this descriptor are Thr196 (1.9 Å), Leu197
(3.7 Å), Thr17 (5.1 Å), and Ser20 (4.9 Å). In the
crystallized complex (1zid),15 there is a water molecule
involved in the interactions between the residues Thr17,
Leu197, and the second phosphate group of the NAD
portion of inhibitor. The IPE type of GC3 is any. This
IPE might be explained by the participation of ligand
atoms of GC3 as hydrogen bond acceptors and/or donors
with amino acid residues (Thr196, Leu197, Thr17, and
Ser20) of the active site. The GC5 descriptor is located

close to the hydrogen atom of the 2′-hydroxyl oxygen of
the nicotinamide ribose ring of the NAD portion (1.1 Å).
In the crystallized complex (1zid), this hydroxyl group
interacts with the amino acid residues Lys165 and Ile95.
There is also a water molecule interacting with Lys165
and Ile95 residues.15 Thus, the GC5 descriptor presents
any as its IPE atom type because ligand atoms occupy-
ing it participate in interactions with the Lys165 and
Ile95 residues as hydrogen bond acceptors and/or do-
nors. In addition, GC5 could reflect hydrophobic inter-
actions of the ligand with the Met161 residue of the
active site.

The GC6 descriptor can be responsible for the largest
increase in pMIC (regression coefficient ) 30.76). It is
located near the hydroxyl group of the second ribose ring
of the NAD portion (1.5 Å). The IPE type of GC6 is
nonpolar. In the crystallized complex (1zid), the second
ribose ring is near the amino acid residues Gly14 and
Ala22, and the isonicotinic acyl/NAD inhibitor is re-
ported as an extended structure. The predicted active

Figure 3. Stereoview of the predicted active conformation of ligand INHd18/NAD (medium activity) and its respective descriptors
(GCODs, GC1-GC6) docked in the active site of InhA.

Figure 4. Stereoview of the predicted active conformation of ligand INHd49/NAD (inactive) and its respective descriptors (GCODs,
GC1-GC6) docked in the active site of InhA.
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conformation of the ligand INH1/NAD (Figure 2) result-
ing from model 1/alignment 4 is a bent (“U” shape)
conformation, and it could be participating in interac-
tions involving other amino acid residues of the active
site including Tyr158 and Met103. Furthermore, it is
important to mention that the predicted active confor-
mations resulting from this RI 4D-QSAR analysis were
presented, in general, as more bent structures compared
with that if the cocrystallized inhibitor (1zid). The CEP
of each ligand generated by the MDS procedure was
carried out considering just the ligand, neglecting any
interactions with amino acid residues of the active site.
Moreover, the preferred conformations of a flexible
isolated molecule, compared to the molecule interacting
with other molecules, tend to be conformations in which
the molecule collapses (folds) onto itself. This could
explain why the bent conformations are obtained for the
4D-QSAR active conformation of each ligand of training
set.

The predicted active conformation of ligand INHd18/
NAD (medium activity) docked into the active site is
shown in Figure 3. By use of the ligand INH1/NAD (the
most active) as the reference, the GC1(np) and GC2(any)
descriptors are not located in the region of the active
site and surrounded by the hydrophobic residues
(Phe149, Gly192, Pro193, Leu218, Tyr158, and Trp222),
as previously seen. In additional, GC3(any) changes its
position. It is located more distant from the amino acid
residues Thr196 (6.5 Å) and Leu197 (7.7 Å). The change
in positions of the GC1(np), GC2(any), and GC3(any)
descriptors could be related to the decrease in bio-
logical activity of the ligand INHd18/NAD when com-
pared to the most active ligand of the training set
(INH1/NAD).

The predicted active conformation of ligand INHd49/
NAD (inactive) (Figure 4) also undergoes changes in the
locations of the GC1(np), GC2(any), and GC3(any)
descriptors in the active site compared to the ligand
INH1/NAD. Moreover, additional interactions involving
ligand atoms of the GC2(any) and GC6(np) descriptors
with Met199 of the active site are observed. Considering
the regression coefficients of GC2 (11.37) and GC6
(30.76) in eq 1, it is clear that their interactions with
Met199 would be detrimental to pMIC potency.

Model 1 of alignment 4 fits the active site well for 7
of the 10 active compounds of training set. The three
ligands that did not fit into the active site using the 4D-
QSAR model are INHd46/NAD, INHd20/NAD, and
INHd23/NAD. The interactions expected to involve the
GCODs of the predicted active conformations and the
amino acid residues of the active site (1zid) do not occur
like those observed for the ligand INH1/NAD. Thus, the
4D-QSAR model selected in this analysis does not
provide pharmacophore sites, GCODs, that elucidate the
biological activities of compounds INHd46, INHd20, and
INHd23.

It is worthy of note that this is a receptor-independent
4D-QSAR analysis of a training set whose biological
activities were considered to be the inhibition of the M.
tuberculosis enoyl-acp reductase (1zid). We are now in
the process of expanding this investigation by doing a
receptor-dependent 3D-QSAR analysis, using the free
energy force field 3D-QSAR method,17,18 using the same
target enzyme, InhA, and inhibitor training set and the

respective best ligand alignment as found and employed
in this study.
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