SHORT COMMUNICATIONS

Terminal Alkynes in Reactions with 2,2,2-Tribromobenzo[d]-1,3,2-dioxaphosphol

A.V. Nemtarev, E.N. Varaksina, V.F. Mironov, and A.I. Konovalov

Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088 Russia

Received July 18, 2005

DOI: 10.1134/S1070428002120278

Reactions of 2,2,2-trihalobenzo[d]-1,3,2-dioxaphosphols derivatives with arylacetylenes and propargyl chloride that we have formerly investigated [1, 2] is a convenient prepartion method for benzo[e]-1,2-oxaphosphorinines, phosphorus-containing analogs of widely occurring natural heterocycles (coumarins and α -chromenes [3, 4].

In this study we for the first time investigated the reaction of 2,2,2-tribromobenzo[d]-1,3,2-dioxaphosphol (**I**) [5] with unsubstituted alkylacetylene, 1-hexyne. In contrast to reaction with propargyl chloride 1-hexyne with phosphol **I** at 10–20°C afforded only two phosphorus-containing substances that in the ^{31}P NMR spectrum gave rise to characteristic doublet signals of benzophosphorinines at δ 8–10 ppm ($^2J_{\rm PCH}$ 25–27 Hz).

By hydrolysis bromophosphorinines **II** and **III** were converted into the corresponding acids **IV** and **V**. In the ¹H NMR spectra of compounds **IV** and **V** in the region

of aromatic protons resonances the observed pattern corresponds to 1,2,4- and 1,2-substituted benzene rings. The introduction of a bromine atom into a phenylene fragment in the *para*-position to the endocyclic oxygen (compound **IV**) is confirmed by the multiplicity of H⁷ (d.d.d, ${}^3J_{\rm H^8CCH^7}$ 8.7, ${}^4J_{\rm H^5CCCH^7}$ 2.3, ${}^4J_{\rm POCCCH^7}$ 2.0 Hz) and H⁵ (d, ${}^4J_{\rm H^5CCCH^7}$ 2.3 Hz) signals. The structure of hydroxyphosphorinine **IV** was also proved by the data of ${}^{13}C-\{{}^{1}H\}$ and ${}^{13}C$ NMR spectra. In the ${}^{13}C-\{{}^{1}H\}$ NMR spectrum three carbon atoms (C⁸, C^{8a}, C^{4a}) of the phenylene fragment among the six are coupled with phosphorus with constants similar to those in the spectrum 6-bromo-2-hydroxy-2-oxo-4-phenylbenzo[e]-1,2-oxaphosphorinine [1]. The signal from the atom C⁶ linked to bromine appeared in a stronger field (123.85 ppm).

Thus the reaction of phosphol I with hexyne as a representative of terminal acetylenes provided a possibility to prepare in high yield new derivatives of 4-alkylbenzo-

[e]phosphorinines and significantly extended the opportunities of the method first described in [1] by an example of reaction between trihalobenzophosphols with arylacetylenes.

Reaction of 2,2,2-tribromobenzo[d]-1,3,2-di**oxaphosphol (I) with hexyne.** To a solution of 31.1 g (0.082 mol) of freshly prepared phosphol I [5] in 30 ml of dichloromethane was added at stirring in an argon atmosphere a solution of 18.8 ml (0.164 mol) of 1-hexyne in 15 ml of dichloromethane. The ³¹P NMR spectrum of the reaction mixture was as follows (36.48 MHz, CH_2Cl_2), δ , ppm: 9.4 d (${}^2J_{PCH}$ 26.5 Hz), compound III; 8.6 d (${}^{2}J_{PCH}$ 25.1 Hz), compound II. A week later the reaction mixture was dried in a vacuum to obtain thick glassy substance that was dissolved in 30 ml of hexane. On storage of the mixture for 3–4 days a crystalline precipitate separated (compound III) that was filtered off and hydrolyzed in ethyl ether (30 ml) containing 0.5 ml of HCl. The organic layer was separated and evaporated to a half of volume in a vacuum. The precipitate separated therewith was filtered off and dried in a vacuum to obtain 2.61 g (10%) of 4-butyl-2hydroxy-2-oxobenzo[e]-1,2-oxaphosphorinine (V), mp 115°C. IR spectrum, ν , cm⁻¹: 413, 448, 482, 501, 523, 572, 591, 629, 654, 669, 722, 749, 765, 781, 876, 946, 1004, 1042, 1124, 1163, 1197, 1301, 1378, 1421, 1447, 1462, 1486, 1559, 1600, 1673, 2359, 2724, 2854, 2925. ¹H NMR spectrum (400 MHz, CDCl₃), δ , ppm (J, Hz): 0.92 t (3H, $C^{12}H_3$, ${}^3J_{H^{11}CCH^{12}}$ 7.3), 1.38 t. q (2H, $C^{11}H_2$, ${}^3J_{HCCH}$ 7.2, $^{3}J_{\text{HCCH}}$ 7.2), 1.53 t.t (2H, $C^{10}H_{2}$, $^{3}J_{\text{HCCH}}$ 7.9, $^{3}J_{\text{HCCH}}$ 7.9), 2.66 m (2H, C^9H_2 , ${}^3J_{HCCH}$ 7.4), 6.12 br.d (1H, H^3 , ²J_{PCH} 17.7), 7.16 d.d (1H, H⁸, ³J_H⁷CCH⁸ 8.1, ⁴J_H⁶CCCH⁸ 1.2), 7.20 d.d.d (1H, H⁶, ${}^{3}J_{H^{7}CCH^{6}}$ 7.6, ${}^{3}J_{H^{5}CCH^{6}}$ 7.6, ${}^{4}J_{\mathrm{H}^{8}\mathrm{CCCH}^{6}}$ 1.1), 7.40 d.d.d.d (1H, H⁷, ${}^{3}J_{\mathrm{H}^{8}\mathrm{CCH}^{7}}$ 8.0, ${}^{3}J_{\text{H}^{6}\text{CCH}^{7}}$ 8.0, ${}^{4}J_{\text{H}^{5}\text{CCCH}^{7}}$ 1.5, ${}^{5}J_{\text{POCCCH}^{7}}$ 1.5), 7.62 d.d (1H, H⁵, ${}^{3}J_{\text{H}^{6}\text{CCH}^{7}}$ 7.9, ${}^{4}J_{\text{H}^{7}\text{CCCH}^{5}}$ 1.4). ¹³C NMR spectrum (100.6 MHz, CDCl₃), δ , ppm (*J*, Hz) (in parentheses is indicated the appearance of the signal in the ¹³C-{¹H} NMR spectrum): 113.01 d.d.t(d) (C^3 , ${}^1J_{PC^3}$ 172.8, ${}^{1}J_{HC^{3}}$ 161.2, ${}^{3}J_{HC^{9}CC^{3}}$ 5.6–6.0), 153.26 m(s) (C⁴), $122.30 \,\mathrm{m}(\mathrm{d}) \,(\mathrm{C}^{4a}, {}^{3}J_{\mathrm{PCCC}^{4a}} \,16.9), \,126.79 \,\mathrm{d.d(s)} \,(\mathrm{C}^{5}, {}^{1}J_{\mathrm{HC}^{5}})$ 159.5, ${}^{2}J_{HC^{7}CC^{5}}$ 8.5), 123.85 d.d(s) (C⁶, ${}^{1}J_{HC^{6}}$ 163.8, ${}^{3}J_{HC^{8}CC^{6}}$ 8.2), 131.12 d.d(s) (C⁷, ${}^{1}J_{HC^{7}}$ 163.0, ${}^{3}J_{HC^{5}CC^{7}}$ 9.2), 119.68 d.d.d.d(d) (C^8 , ${}^1J_{HC}$ 162.1, ${}^3J_{POCC^8}$ 7.3, ${}^{3}J_{\text{HCCC}^{8}}$ 7.9, ${}^{2}J_{\text{HCC}^{8}}$ 1.3–1.8), 152.10 m(d) (C^{8a}, ${}^{2}J_{\text{POC}^{8a}}$ 7.5), 34.59 t.d.m(d) (C^9 , ${}^3J_{PCCC^9}$ 18.0, ${}^1J_{HC^9}$ 123.8), 30.81 t.m(s) (C^{10} , ${}^{1}J_{HC^{10}}$ 123.0), 22.66 t(s) (C^{11} , ${}^{1}J_{HC^{11}}$ 121.7), 13.82 q.t.t(s) (C^{12} , ${}^{1}J_{HC}{}^{12}$ 124.7, ${}^{3}J_{HC}{}^{10}C_{C}{}^{12}$ 4.0, $^{2}J_{HC^{11}C^{12}}$ 4.0). ^{31}P NMR spectrum (36.48 MHz, DMSO), δ, ppm: 5.9 d (${}^2J_{PCH}$ 17.1 Hz). Found, %: C 60.70;

H 6.21; P 12.95. $C_{12}H_{15}O_3P$. Calculated, %: C 60.50; H 6.30; P 13.03.

The hexane filtrate after separation of part of bromophosphorinine III was hydrolyzed with water. The precipitate separated therewith was filtered off and dried to obtain 1.82 g (7%) of 6-bromo-4-butyl-2-hydroxy-2-oxobenzo[e]-1,2-oxaphosphorinine (IV), mp 131°C. IR spectrum, cm⁻¹: 443, 502, 545, 587, 626, 656, 731, 778, 821, 872, 880, 904, 945, 1014, 1083, 1135, 1181, 1235, 1270, 1311, 1351, 1377, 1419, 1466, 1552, 1600, 1896, 1959, 2261, 2359, 2725, 3046. ¹H NMR spectrum (400 MHz, CDCl₃), δ , ppm (*J*, Hz): 0.98 t (3H, C¹²H₃, ${}^{3}J_{H^{II}CCH^{I2}}$ 7.3), 1.45 t.q (2H, $C^{II}H_{2}$, ${}^{3}J_{HCCH}$ 7.2, ${}^{3}J_{HCCH}$ 7.2), 1.62 t.t (2H, $C^{10}H_2$, ${}^3J_{HCCH}$ 7.0, ${}^3J_{HCCH}$ 7.0), 2.63 t $(2H, C^9H_2, {}^3J_{HCCH}, 7.7), 6.11 \text{ br.d } (1H, H^3, {}^2J_{PCH}, 16.6),$ 7.09 d (1H, H⁸, ${}^{3}J_{H^{7}CCH^{8}}$ 8.7), 7.47 d.d.d (1H, H⁷, ${}^{3}J_{\mathrm{H}^{8}\mathrm{CCH}^{7}}$ 8.7, ${}^{4}J_{\mathrm{H}^{5}\mathrm{CCCH}^{7}}$ 2.3, ${}^{4}J_{\mathrm{POCCCH}^{7}}$ 2.0), 7.63 d (1H, H^5 , ${}^4J_{H^7CCCH^5}$ 2.3). ${}^{31}P$ NMR spectrum (36.48 MHz, DMSO), δ , ppm: 5.8 d (${}^2J_{PCH}$ 17.1 Hz). Mass spectrum, m/z (peaks of molecular ions are given which contain the most abundant isotopes): 316 $[M]^+$, 274 $[M - C_3H_6]^+$, 256, 237, 212, 209, 196, 178, 144, 131, 115, 102, 77, 63, 43, 41, 27. Found, %: C 45.56; H 4.41; Br 24.85; P 9.84. C₁₂H₁₄BrO₃P. Calculated, %: C 45.28; H 4.72; Br 25.16; P 9.75.

IR spectra were recorded on Bruker Vector-22 instrument from mulls in mineral oil.

NMR spectra were registered on a spectrometer MSL-400 with respect to internal reference HMDS (1 H), external reference H₃PO₄ (31 P), or the solvent signal (13 C).

The study was carried out under the financial support of the Russian Foundation for Basic Research (grant no. 03-03-32542).

REFERENCES

- Mironov, V.F., Konovalov, A.I., Litvinov, I.A., Gubaidullin, A.T., Petrov, R.R., Shtyrlina, A.A., Zyablikova, T.A., Musin, R.Z., Azancheev, N.M., and Il'yasov, A.V., Zh. Obshch. Khim., 1998, vol. 68, p. 1482.
- 2. Mironov, V.F., Shtyrlina, A.A., Azancheev, N.M., and Konovalov, A.I., *Zh. Obshch. Khim.*, 2000, vol. 70, p. 160.
- Flavin, M.T., Rizzo, J.D., and Khilevich, A., J. Med. Chem., 1996, vol. 39, p. 1303.
- 4. Trudy Botanicheskogo Instituta im. V.L.Komarova, Akad. Nauk SSSR, Ser. V, Pigulevskii, G.V., Ed., Moscow: Nauka, 1965, no. 12, 198 p.
- Gross, H. and Karsch, U., *J. Prakt. Chem.*, 1965, vol. 65, p. 315.