SHORT COMMUNICATIONS

Simulation of the Potential Energy Surface of 2-Methyl-1,3-dioxane

A. E. Kuramshina, S. A. Bochkor, and V. V. Kuznetsov

Ufa State Petroleum Technical University, ul. Kosmonavtov 1, Ufa, 450062 Bashkortostan, Russia e-mail: kuzmaggy@mail.ru

Received February 4, 2005

DOI: 10.1134/S1070428006040221

Interest in 1,3-dioxanes originates from specificity of their structure [1] and stimulates studies on the potential energy surfaces (PES) of their molecules by computer simulation. It was shown previously [2–5] that the PES of unsubstituted 1,3-dioxane, as well as of 4,4-dimethyl-1,3-dioxane, includes global (*chair* conformer) and local minima [1,4-twist (1,4-T) and 2,5-twist (2,5-T)] and maxima corresponding to half-chair, sofa, and unsymmetrical boat conformations. The present communications reports the results of our study on conformational transformations of 2-methyl-1,3-dioxane (I) in the gas phase on the Hartree–Fock level using semiempirical (AM1, PM3) and nonempirical (STO-3G, 6-31G**) approximations. The calculations were performed using HyperChem software [6].

It is known that the global minimum on the PES of 1,3-dioxanes is occupied by the *chair* conformer with predominantly equatorial orientation of the alkyl substituent (**I**-*eq*) (unlike conformer **I**-*ax* with the axial alkyl group). The ¹H NMR data unambiguously indicate that molecules **I** at room temperature exist mainly as conformers **I**-*eq* possessing a fairly high free conformational energy [7].

We have revealed the general pattern of conformational transformations and the characters of intermediate minima and transition states (TS) typical of 2-meth-yl-1,3-dioxane molecules (see table, Schemes 1, 2).

The results showed the existence of two pathways of conformational isomerization I-eq \rightleftharpoons I-ax, which are analogous to those observed for unsubstituted 1,3-dioxane and 4,4-dimethyl-1,3-dioxane [2–5] (PM3 calculations revealed only one pathway involving 2.5-T conformer). Conformers 1.4-T and 2.5-T are interconvertible through the TS-3 maximum (or TS-2 according to the STO-3G calculations). The global maximum on the PES is occupied by sofa conformer (AM1, PM3: TS-1; 6-31G**: TS-2; STO-3G: TS-3). However, both pathways turned out to be almost equally probable. The results of 6-31G** calculations satisfactorily reproduce the experimental difference in the energy between conformers I-eq and I-ax (ΔG° is 4.07 ± 0.46 kcal/mol in favor of I-eq [7]). On the other hand, the experimental value of ΔG^{\neq} for conformational isomerization of compound I is unknown; the ΔE^{\neq} value 10.6 kcal/mol (TS-2, 6-31G**) approaches the experimental barrier to inversion in unsubstituted 1,3-dioxane (9.0–10.1 kcal/mol [7]). It should also be noted that the global minimum calculated in the AM1 and PM3 approximation (conformer I-ax) does not correspond to the experimental data, presumably

Me

I-eq I-ax

Scheme 2.

Energy parameters of the I-eq \rightarrow I-ax inversion in 2-methyl-1,3-dioxane

TS-1

Method	Minima, ΔE , kcal/mol				Maxima, ΔE^{\neq} , kcal/mol		
	I-eq	I-ax	1,4- <i>T</i>	2,5- <i>T</i>	TS-1	TS-2	TS-3
AM1	0.3	0	2.6	2.5	3.8	2.7	2.8
PM3	1.6	0	_	3.4	3.4	5.0	_
STO-3G	0	3.7	4.7	4.7	8.6	5.0	12.5
6-31G**	0	4.8	5.5	5.2	9.3	10.6	5.8

TS-2

because of imperfect parameterization utilized in these procedure.

Thus, our data indicate greater conformational rigidity of 2-methyl-1,3-dioxane molecules as com-

pared to unsubstituted 1,3-dioxane and 4,4-dimethylsubstituted analog [2–5], which is determined by spatial interactions between the axial methyl group on C^2 and hydrocarbon fragment of the ring.

TS-3

REFERENCES

- 1. Rakhmankulov, D.L., Karakhanov, R.A., Zlotskii, S.S., Kantor, E.A., Imashev, U.B., and Syrkin, A.M., *Itogi Nauki Tekh. Tekhnol. Org. Veshch.*, 1979, no. 5, p. 6.
- 2. Kuramshina, A.E., Bochkor, S.A., and Kuznetsov, V.V., *IV Vserossiiskaya nauchnaya internet-konferentsiya* "Komp'yuternoe i matematicheskoe modelirovanie v estestvennykh i tekhnicheskikh naukakh" (IVth All-Russia Scientific Internet Conf. "Computer and Mathematical Simulation in Natural and Technical Sciences"), Tambov, 2002, no. 18, p. 54.
- 3. Kuramshina, A.E., Bochkor, S.A., and Kuznetsov, V.V., *Bashkir. Khim. Zh.*, 2004, no. 11, p. 81.

- 4. Mazitova, E.G., Kuramshina, A.E., and Kuznetsov, V.V., *Russ. J. Org. Chem.*, 2004, vol. 40, p. 588.
- 5. Sarvarova, G.S., Kuramshina, A.E., Bochkor, S.A., and Kuznetsov, V.V., *Integratsiya nauki i vysshego obrazovaniya v oblasti organicheskoi i bioorganicheskoi khimii i mekhaniki mnogofaznykh sistem. Materialy II Vserossiiskoi nauchnoi internet-konferentsii* (Integration of Science and Higher Education in the Fields of Organic and Bioorganic Chemistry and Mechanics of Multiphase Systems. Proc. IInd All-Russia Scientific Internet Conf.), Ufa: Reaktiv, 2003, p. 137.
- 6. HyperChem 5.02. Trial version. www.hyper.com.
- 7. *Internal Rotation in Molecules*, Orville-Thomas, W.J., Ed., London: Wiley, 1974.