cis- and trans-Decahydro-1,6-naphthyridines. Stereoselective Synthesis and Stereochemistry

T. V. Esipova, A. A. Borisenko, and G. V. Grishina

Faculty of Chemistry, Moscow State University, Vorob'evy gory 1, Moscow, 119992 Russia e-mail: grishina@org.chem.msu.su

Received October 4, 2004

Abstract—New 1,6-disubstituted *trans*-decahydro-1,6-naphthyridines were synthesized by stereoselective nucleophilic addition of hydride and cyanide ions to 1,2,3,4,5,6,7,8-octahydro-1,6-naphthyridines, and their predominant conformations were determined. Some *trans*-decahydro-1,6-naphthyridine derivatives were found to exhibit anti-HIV activity.

DOI: 10.1134/S1070428006060194

Piperidine ring is an important pharmacophoric fragment which constitutes a structural unit of many natural and synthetic biologically active compounds and medicines. The decahydro-1,6-naphthyridine system including two fused piperidine rings was almost unknown previously. This system may be regarded is a biomimetic of piperidine, matrine, and neurotoxin alkaloids [1]; therefore, it attracts interest as a synthon for the preparation of biologically active substances. In this connection, search for convenient methods of synthesis of *cis*- and *trans*-decahydro-1,6-naphthyridines and study of their stereochemistry and biological ac-

tivity seem to be quite promising. In the present communication we report on the stereoselective synthesis of *trans*-decahydro-1,6-naphthyridines, including optically active derivatives, by nucleophilic addition of hydride and cyanide ions to cyclic enamines, iminium salts derived from 1,2,3,4,5,6,7,8-octahydro-1,6-naphthyridines **I–IV** which were prepared previously [2, 3]. Nucleophilic addition of hydride (NaBH₄/EtOH, boiling formic acid [4]) and cyanide ions (KCN/MeOH) to 2,3,4,4a,5,6,7,8-octahydro-1,6-naphthyridine-1,6-dium bis(trifluoroacetates) **V–VIII** occurred in a stereoselective fashion to give the corresponding decahydro-

Scheme 1.

I, V, IX, XIII, R = Ph, $R' = PhCH_2$; II, VI, X, XIV, R = Ph, R' = Me; III, VII, XI, XV, R = 4-MeC₆H₄, $R' = PhCH_2$; IV, VIII, XII, XVI, R = 4-MeOC₆H₄, $R' = PhCH_2$.

Parameter	НСООН, 101°С								NaBH ₄ , 20°C, ethanol		NaBH ₄ , –60°C, ethanol			KCN, methanol			
	IX		X		XI		XII		IXb	XIIb	IXb	XIb	XIIb	XIII	XIV	XV	XVI
	a	b	a	b	a	b	a	b	IAD	AIID	IAD	AID	AIID	AIII	AIV	AV	AVI
Yield, %	8	45	5	36	7	42	_	42	50	20	46	52	30	58	37	75	55
Diastereoselectivity, %		78		78		83		81	94	90	97	98	95	100	100	100	100

Table 1. Product yields and diastereoselectivity (%) in the addition of nucleophiles to iminium salts V–VIII

Table 2. Intensities of fragment ions in the mass spectra of compounds X-XII

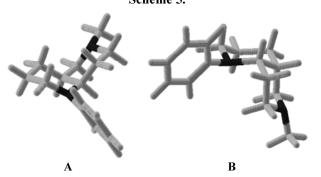
Compound no.	Fragment ion intensity $I_{\rm rel}$, %										
	$[M-91]^+$ (F ₁)	$[M-119]^{+}(F_2)$	$[M-120]^+$ (F ₃)	$[M-134]^{+}(F_4)$	$[M-146]^{+}(F_5)$						
IXa/IXb	100/39.2	25.6/9.6	68.8/33.6	19.2/41.6	6.4/10.4						
XIa/XIb	100/12.1	21.2/ —	65.7/1.5	28.3/19.2	2.0/2.0						
XIIa/XIIb	100/60.3	24.1/1.3	65.8/14.1	26.6/39.7	2.5/14.1						
	$[M-15]^+$ (F ₁)	$[M-43]^+$ (F ₂)	$[M-44]^+$ (F ₃)	$[M-58]^+$ (F ₄)	$[M-70]^{+}(F_5)$						
Xa/Xb	7.8/1.5	79.4/8.8	77.5/11.8	60.8/30.4	4.9/7.8						

1,6-naphthyridines **IX**–**XII** (yield ~50%) and **XIII**–**XVI** (37–75%) (Scheme 1. Table 1). According to the GC–MS data, compounds **IX**–**XII** were formed as mixtures of two stereoisomers **IXa**–**XIIa** and **IXb**–**XIIb**, the latter strongly prevailing (up to 90–94%). Both isomers were characterized by similar fragmentation patterns but different intensities of fragment ion peaks. In the mass spectra of minor isomers **IXa**, **XIa**, and **XIIa**, the most abundant ions were F_1 ([M - 91]⁺, elimination of CH₂=NCH₂Ph), and F_3 (elimination of CH₂=NHCH₂Ph), while ions F_5 {[M - 146]⁺, elimination of CH₂=N⁺(CH₂Ph)CH=CH₂} were the most intense in the spectra of isomers **b** (Table 2).

The stereoselectivity of the hydride reduction with NaBH₄ increased to 98% when the reaction was carried out at -60°C. The reduction of octahydro-1,6-naphthyridines **I–IV** with formic acid gave diastereoisomer mixtures in which the fraction of isomers **IXb–XIIb** was greater by 78–83%. Pure stereoisomers **IXa–XIIa** and **IXb–XIIb** were isolated by column chromatography on silica gel, and their composition was proved by elemental analysis.

The addition of cyanide ion to bis(trifluoroacetates) **V–VIII** in methanol at room temperature resulted in formation of 9-cyanodecahydro-1,6-naphthyridines **XIII–XVI** (yield 37–75%) as a single stereoisomer, as followed from the GC–MS data; i.e., the reaction was strictly stereoselective. The structure of nitriles **XIII**

and **XIV** was proved by the high-resolution mass spectra (electrospray ionization). In the mass spectra of **XIII–XVI** only $[M-27]^+$ and $[M-26]^+$ ions (corresponding to loss of HCN and CN) were observed. The IR spectra of nitriles **XIII–XVI** contained an absorption band at about 2230 cm⁻¹, which belongs to stretching vibrations of the cyano group, and the C \equiv N carbon signal appeared in the ¹³C NMR spectra at δ_C 107.50 ppm.

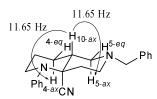

The steric structure of compounds **IXa–XIIa** and **IXb–XIIb** was determined by analysis of their ¹³C and ¹H NMR spectra using spin–echo sequence (APT), nuclear Overhauser effect (NOE), and a series of double resonance experiments. To determine the mode of ring junction it was necessary to estimate the coupling constant between protons at the bridgehead carbon atoms (C⁹ and C¹⁰), i.e., ${}^3J_{9,10}$. For this purpose, all signals observed in the spectrum were assigned on the basis of the double resonance data. The ${}^3J_{9,10}$ value for major isomer **IXb** is 8.80 Hz, which corresponds to *trans*-diaxial orientation of the 9-H and 10-H protons, i.e., isomer **IXb** has the structure of *trans*-6-benzyl-1-phenyldecahydro-1,6-naphthyridine (Scheme 2).

Scheme 3.

An additional proof for the *trans* configuration of **IXb** was obtained by measuring the nuclear Overhauser effects. Successive irradiation at frequencies corresponding to resonance of 7-H_{ax} , 8-H_{ax} , and 4-H_{ax} gave responses (increase in the signal intensity) on (1) 9-H_{ax} (5.4%) and 7-H_{eq} (17.0%); (2) 10-H_{ax} (5.0%) and 8-H_{eq} (13.9%); and (3) 9-H_{ax} (4.0%), 2-H_{ax} (6.6%), and 4-H_{eq} (30.3%) (Scheme 3).

In keeping with the above stated, the second isomer (IXa) should be cis-6-benzyl-1-phenyldecahydro-1,6-naphthyridine. In fact, the vicinal coupling constant ${}^{3}J_{9,10}$ equal to 4.64 Hz indicates axial—equatorial orientation of protons at the bridgehead C^{9} and C^{10} carbon atoms, i.e., cis configuration of isomer IXa. However, isomer IXa could also give rise to conformational equilibrium $A \rightleftharpoons B$. Therefore, the next problem was to determine the predominant conformer of cis-6-benzyl-1-phenyldecahydro-1,6-naphthyridine in the equilibrium $A \rightleftharpoons B$ (Scheme 4).

The ¹H NMR spectrum of *cis* isomer **IXa** at room temperature reflects an averaged conformational pattern and is fairly difficult to interpret. Therefore, both conformers A and B of IXa were simulated in terms of the HF/6-31G** method using PCMODEL 7 program; the minimal energies of conformers A and B were thus estimated at 0 and 1.99 kcal/mol, respectively (Scheme 5). These data suggest that conformer A should predominate in the equilibrium mixture. Using a series of double resonance experiments we succeeded in estimating the coupling constants ${}^{3}J_{9.8-ax}$ and ${}^{3}J_{10.5-ax}$ at 11.41 and 2.96 Hz, respectively. These values are also consistent with structure A. The value of ${}^{3}J_{9,10}$, calculated by the HF/6-31G** method for conformer (4.25 Hz), almost coincides with the experimental value (4.64 Hz).


В

The chemical shifts of the bridgehead carbon atoms C^9 and C^{10} in *cis*- and *trans*-decahydro-1,6-naphthyridines were determined using APT sequence. In the ¹³C NMR spectra of *cis* isomers **IXa** and **XIa**, the signals from C^{10} (δ_C 36.55, 36.58 ppm) and C^9 (δ_C 56.78, 57.30 ppm) appear in a stronger field relative to the corresponding signals of *trans* isomers **IXb** and **XIb** (δ_C 41.5, 41.32 and 64.50, 65.50 ppm for C^{10} and C^9 , respectively). These values are in a good agreement with the chemical shifts of the bridgehead carbon atoms in the series of *cis*- and *trans*-decahydroquino-lin-4-ols [4].

Likewise, the *trans* configuration of nitrile **XIII** follows from the vicinal coupling constant ${}^{3}J_{10-ax,5-ax}$,

which is equal to 11.65 Hz (Scheme 6); this value is typical of *trans*-diaxial orientation of the 10-H_{ax} and 5-H_{ax} protons. A similar coupling constant, 11.65 Hz, was found for the 10-H_{ax} and 4-H_{ax} protons, indicating their *trans*-diaxial orientation. Thus analysis of the ${}^{3}J_{10\text{-}ax,5\text{-}ax}$ ${}^{3}J_{10\text{-}ax,4\text{-}ax}$ values shows that the proton on C¹⁰ occupies the axial position, i.e., molecule **XIII** has *trans* configuration. The axial orientation of 10-H in molecules **XIV–XVI** was determined in a similar way.

Scheme 6.

To conclude, we have developed a stereoselective method for the synthesis of *trans*-decahydro-1,6-naphthyridines and their 9-cyano derivatives, isolated a series of pure *cis*- and *trans*-decahydro-1,6-naphthyridines, and determined their steric structure and predominant conformations. It should be noted that some *trans*-decahydro-1,6-naphthyridine derivatives were found to exhibit a moderate anti-HIV activity.

EXPERIMENTAL

The IR spectra were recorded on a UR-20 spectrometer. The ¹H and ¹³C NMR spectra were measured on Bruker WM-400 (400 MHz) and Varian VXR-400 (100.58 MHz) spectrometers, respectively, using TMS as internal reference. Gas chromatographic–mass spectrometric analysis was performed on HP 5989x-G, Jasco-980 (LC), and Fisons Instruments VG Platform 7031 (electron impact, 70 eV, positive ion detection). The high-resolution mass spectra (electrospray ionization) were run on a Bruker FT-ICR MS instrument. Thin-layer chromatography was performed using Silufol UV-254 plates (Czechia). Silica gel (60–40 μm) and aluminum oxide 90 (Merck) were used for column chromatography.

Reduction of 6-benzyl-1-phenyl-1,2,3,4,5,6,7,8-octahydro-1,6-naphthyridine-1,6-diium bis(tri-fluoroacetate) (V) with sodium tetrahydridoborate. a. Sodium tetrahydridoborate, 0.185 g (0.004 mol), was added in portions under stirring to a solution of 0.535 g (0.001 mol) of compound V in 10 ml of ethanol, cooled to -78°C. The mixture was stirred for 1 h at -60°C, excess reducing agent was decomposed with water, the solvent was evaporated, the residue

was adjusted to pH 11-12 by adding sodium hydroxide and extracted with diethyl ether (5×5 ml), and the extract was dried over Na₂SO₄. The cis-trans ratio of the crude product was 1:57. A 300-mg portion of the product was applied to a column charged with silica gel in petroleum ether, and the column was eluted with petroleum ether-ethyl acetate (8:1 to 3:1) to isolate 0.14 g (46%) of trans-6-benzyl-1-phenyldecahydro-1,6-naphthyridine (IXb) as light yellow crystals, $R_{\rm f}$ 0.50 (hexane-acetone, 2:1), mp 57.4-57.9°C. ¹H NMR spectrum (CDCl₃), δ, ppm: 1.07 d.m (1H, $4-H_{ax}$, ${}^{2}J_{4-ax,4-eq} = {}^{3}J_{4-ax,3-ax} = 12.61$, ${}^{3}J_{4-ax,3-eq} =$ 4.16 Hz), 1.40 d.d.d.d (1H, 8-H_{ax}, ${}^{2}J_{8-ax,8-eq} = 12.84$, ${}^{3}J_{8-ax,7-ax} = {}^{3}J_{8-ax,9-ax} = 11.18$, ${}^{3}J_{8-ax,7-eq} = 3.81$ Hz), 1.54 d.m (1H, 8-H_{eq}, ${}^{2}J_{8-ax,8-eq} = 12.84$, ${}^{3}J_{8-eq,7-ax} = 2.61$, ${}^{3}J_{8-eq,9-ax} = 3.69 \text{ Hz}), 1.61 \text{ d.m} (1\text{H}, 4-\text{H}_{eq}, {}^{2}J_{4-ax,4-eq} = 12.61, {}^{3}J_{4-eq,3-ax} = 4.04 \text{ Hz}), 1.68 \text{ d.m} (1\text{H}, 3-\text{H}_{eq}, {}^{2}J_{3-eq,3-ax} = 11.89, {}^{3}J_{3-eq,4-ax} = 4.16, {}^{3}J_{3-eq,2-ax} = 3.09 \text{ Hz}),$ 1.70–1.77 m (2H, 10- H_{ax} , 5- H_{ax}), 1.79 d.m (1H, 3- H_{ax} , $^{2}J_{3-ax,3-eq} = 11.89$, $^{3}J_{3-ax,2-ax} = 12.8$, $^{3}J_{3-ax,4-ax} = 12.61$, $^{3}J_{3-ax,4-eq} = 4.04$ Hz), 1.95 d.d.d (1H, 7-H_{ax}, $^{2}J_{7-ax,7-eq} = 11.90$, $^{3}J_{7-ax,8-eq} = 11.18$, $^{3}J_{7-ax,8-eq} = 2.61$ Hz), 2.70 d.d.d (1H, 9-H_{ax}, ${}^{3}J_{9-ax,8-ax}$ = 11.18, ${}^{3}J_{9-ax,10-ax}$ = 8.80, ${}^{3}J_{9-ax,8-eq}$ = 3.69 Hz), 2.90 d.d.d (1H, 2-H_{ax}, ${}^{2}J_{2-ax,2-eq}$ = 11.65, ${}^{3}J_{2-ax,3-ax}$ = 11.89, ${}^{3}J_{2-ax,3-eq}$ = 3.09 Hz), 2.77 d.d (1H, 5-H_{eq}, ${}^{2}J_{5-eq,5-ax}$ = 11.42, ${}^{3}J_{5-eq,10-ax}$ = 1.90 Hz), 2.81 d.m (1H, 7-H_{eq}, ${}^{2}J_{7-eq,7-ax}$ = 11.90 Hz), 3.11 d.m (1H, 2-H_{eq}, ${}^{2}J_{2-eq,2-ax} = 11.65 \text{ Hz}$), 3.43 q (2H, CH₂C₆H₅, AB system), 7.00–7.20 m (10H, H_{arom}). 13 C NMR spectrum (CDCl₃), $\delta_{\rm C}$, ppm: 26.5 (C³); 29.0 (C⁴); 31.0 (\mathbb{C}^{8}); 41.5 (\mathbb{C}^{10}); 53.5 (\mathbb{C}^{2}); 57.5 (\mathbb{C}^{7}); 59.0 (\mathbb{C}^{5}); 63.0 (CH₂Ph); 64.5 (C⁹); 124.5, 126.0, 127.0, 128.5, 129.0, 129.5, 139.0, 152.5 (C_{arom}). Mass spectrum (ES): found m/z 307.21688 $[M + H]^+$; calculated 307.21688. GC-MS data: R_t 20.389 min; m/z (I_{rel} , %): $306 (8.8) [M]^+, 215 (100) [M-91]^+, 187 (25.6) [M [119]^+$, 186 (68.8) $[M-120]^+$, 172 (19.2) $[M-134]^+$, $160 (6.4) [M-146]^+$, 158 (8.8) [M-148]. Found, %: C 51.95; H 4.23; N 14.71. C₃₃H₃₂N₈O₁₄ (dipicrate). Calculated, %: C 51.83; H 4.22; N 14.65

b. Following a similar procedure, the reaction was carried out at room temperature. The *cis-trans* isomer ratio was 1:33. The *trans* isomer was isolated by column chromatography on silica gel using petroleum ether-ethyl acetate (8:1 to 3:1) as eluent. Yield of **IXb** 0.15 g (50%).

Reduction of 6-benzyl-1-(p-tolyl)-1,2,3,4,5,6,7,8-octahydro-1,6-naphthyridine-1,6-diium bis(tri-fluoroacetate) (VII) with sodium tetrahydrido-borate. The reaction was carried out at -60°C. The cis-trans isomer ratio was 1:88.5. trans-6-Benzyl-1-

926 ESIPOVA et al.

(p-tolyl)decahydro-1,6-naphthyridine (XIb) was isolated by column chromatography on silica gel using petroleum ether-ethyl acetate (8:1 to 4:1) as eluent. Yield 52%, light yellow crystals, R_f 0.54 (hexaneacetone, 2:1), mp 83.1–83.5°C. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.07 d.m (1H, 4-H_{ax}, ${}^{2}J_{4-ax,4-eq} =$ ${}^{3}J_{4-ax,3-ax} = 12.60, {}^{3}J_{4-ax,3-eq} = 4.10 \text{ Hz}), 1.39 \text{ d.d.d.d}$ (1H, 8-H_{ax}, ${}^{2}J_{8-ax,8-eq} = 12.60,* {}^{3}J_{8-ax,7-ax} = {}^{3}J_{8-ax,9-ax} =$ 11.14, ${}^{3}J_{8-ax,7-eq} = 4.10 \text{ Hz}$), 1.51 d.m (1H, 8-H_{eq}, ${}^{2}J_{8-eq,8-ax} = 12.90,* {}^{3}J_{8-eq,7-ax} = 2.93, {}^{3}J_{8-eq,9-ax} = 3.52 \text{ Hz}), 1.61 \text{ d.m (1H, 4-H}_{eq}, {}^{2}J_{4-eq,4-ax} = 12.60 \text{ Hz}),$ 1.65–1.85 m (5H, 3-H_{eq}, 5-H_{ax}, 10-H_{ax}, 3-H_{ax}), 1.95 d.d.d (1H, ${}^{2}J_{7-ax,7-eq} = 11.72$, ${}^{3}J_{7-ax,8-ax} = 11.14$, ${}^{3}J_{7-ax,8-eq} = 2.64$ Hz), 2.23 d.d.d (1H, 9-H_{ax}, ${}^{3}J_{9-ax,8-ax} = 11.14$, 1.14, ${}^{3}J_{9-ax,10-ax} = 8.79$, ${}^{3}J_{9-ax,8-eq} = 3.81$ Hz), 2.29 s (3H, CH₃), 2.70 d.d.d (1H, 2-H_{ax}, ${}^{2}J_{2-ax,2-eq} = {}^{3}J_{2-ax,3-ax} = 11.72$, ${}^{3}I_{7-ax,3-ax} = 11.72$, 3 11.73, ${}^{3}J_{2-ax, 3-eq} = 2.93 \text{ Hz}$), 2.77 d.d (1H, 5-H_{eq}, ${}^{2}J_{5-eq, 5-ax} = 10.54$, ${}^{3}J_{5-eq, 10-ax} = 2.06 \text{ Hz}$), 2.81 d.m (1H, 7- H_{eq} , ${}^{2}J_{7-eq,7-ax} = 11.72 \text{ Hz}$), 3.08 d.m (1H, 2- H_{eq} , $^{2}J_{2-eq,2-ax} = 11.73 \text{ Hz}$), 3.43 q (2H, C**H**₂C₆H₅, AB system), 6.81 d (2H, C_6H_4 , J = 8.79 Hz), 7.03 d (2H, C_6H_4 , J = 8.21 Hz), 7.20–7.35 m (5H, $CH_2C_6H_5$). ¹³C NMR spectrum (CDCl₃), δ_C , ppm: 20.94 (CH₃); 26.25 (C^3) ; 29.19 (C^4) ; 31.14 (C^8) ; 41.32 (C^{10}) ; 53.40 (C^2) ; 57.73 (C^7); 59.09 (C^5); 63.22 (CH_2Ph); 65.21 (C^9); 126.14, 127.54, 128.81, 129.72, 130.03, 134.74, 139.29, 150.34 (C_{arom}). GC-MS data: R_t 22.223 min; m/z ($I_{\rm rel}$, %): 320 (50.6) [M]⁺, 229 (100) [M – 91]⁺, 201 $(21.2) [M-119]^+, 200 (65.7) [M-120]^+, 186 (28.3)$ $[M-134]^+$, 174 (2.0) $[M-146]^+$. Found, %: C 52.64; H 4.45; N 14.59. C₃₄H₃₄N₈O₁₄ (dipicrate). Calculated, %: C 52.44; H 4.40; N 14.39.

Reduction of 6-benzyl-1-(4-methoxyphenyl)-1,2,3,4,5,6,7,8-octahydro-1,6-naphthyridine-1,6-diium bis(trifluoroacetate) (VIII) with sodium tetrahydridoborate. a. At -60°C. The cis-trans isomer ratio was 1:36. trans-6-Benzyl-1-(4-methoxyphenyl)-decahydro-1,6-naphthyridine (XIIb) was isolated by column chromatography on silica gel using petroleum ether—ethyl acetate (8:1 to 4:1) as eluent. Yield 30%, light yellow crystals.

b. At 20°C. cis–trans Ratio 1:18.4. *trans* Isomer **XIIb** was isolated by column chromatography on silica gel using petroleum ether–ethyl acetate (8:1 to 4:1) as eluent. Yield 20%, $R_{\rm f}$ 0.52 (hexane–acetone, 2:1), mp 63.5–64.5°C. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.06 d.m (1H, 4-H_{ax}, J = 12.60, 4.40 Hz), 1.31–1.46 m (2H, 8-H_{ax}, 8-H_{eq}), 1.61 d.m (1H, 4-H_{eq}), 1.65–1.81 m (4H, 3-H_{eq}, 10-H_{ax}, 5-H_{ax}, 3-H_{ax}), 1.91 d.d.d (1H,

7- H_{ax} , J = 11.72, 11.72, 3.22 Hz), 2.19 d.d.d (1H, 9- H_{ax} , J = 10.55, 9.08, 4.10 Hz), 2.71 d.d.d (1H, 2- H_{ax}) J = 11.72, 11.72, 2.93 Hz), 2.73 d.d (1H, 5-H_{eq}, J =10.55, 2.93 Hz), 2.81 d.m (1H, 7-H_{eq}, J = 11.43 Hz), 3.04 d.m (1H, 2-H_{eq}, J = 11.43 Hz), 3.47 q (2H, $CH_2C_6H_5$, AB system), 3.76 s (3H, OCH₃), 6.82 d (2H, C_6H_4 , J = 9.08 Hz), 7.07 d (2H, C_6H_4 , J = 8.79 Hz), 7.29 m (5H, $CH_2C_6H_5$). ¹³C NMR spectrum (CDCl₃), δ_{C} , ppm: 26.58 (C³); 29.53 (C⁴); 31.50 (C⁸); 41.71 (C^{10}) ; 53.72 (C^{2}) ; 55.94 (OCH_{3}) ; 58.00 (C^{7}) ; 59.38 (C^5) ; 63.54 (CH₂Ph); 66.05 (C^9); 114.83, 127.63, 127.88, 129.14, 130.06, 139.61, 146.17, 157.85 (C_{arom}). GC-MS data: R_t 33.611 min; m/z (I_{rel} , %): 336 (70.9) $[M]^+$, 245 (100) $[M-91]^+$, 217 (24.1) $[M-119]^+$, 216 $(65.8) [M-120]^+, 202 (26.6) [M-134]^+, 190 (2.5)$ $[M-146]^+$. Found, %: C 51.37; H 4.50; N 14.14. $C_{34}H_{34}N_8O_{15}$ (dipicrate). Calculated, %: C 51.39; H 4.31; N 14.10.

Reduction of 6-benzyl-1-(p-tolyl)-1,2,3,4,5,6,7,8octahydro-1,6-naphthyridine-1,6-diium bis(trifluoroacetate) (III) with formic acid. A mixture of 0.550 g (0.0017 mol) of compound III and 5 ml of 99.7% formic acid was heated for 8 h at 101°C (under reflux). The mixture was evaporated, the residue was treated with 3 ml of a saturated solution of NaCl, adjusted to pH 11–12 by adding potassium carbonate, and extracted with diethyl ether (7×5 ml), and the extracts were combined and dried over Na₂SO₄. The cis-trans isomer ratio in the product was 1:11; a 0.550-g portion of the crude product was applied to a column charged with silica gel in petroleum ether, and the column was eluted with petroleum ether-ethyl acetate (8:1 to 4:1) to isolate 0.230 g (42%) of trans-6benzyl-1-(4-methylphenyl)decahydro-1,6-naphthyridine (XIb) and 0.04 g (7.2%) of cis-6-benzyl-1-(4methylphenyl)decahydro-1,6-naphthyridine (XIa).

Compound **XIa**. Light yellow crystals, $R_{\rm f}$ 0.63 (hexane–acetone, 2:1), mp 81.7–82.6°C. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.26 m (1H, 8-H_{ax}), 1.47 d.m (1H, 8-H_{eq}, J = 12.89, 3.52 Hz), 1.63 d.m (1H, 3-H_{ax}, J = 12.90, 4.25 Hz), 1.82 d.m (1H, 3-H_{eq}, $^2J_{3\text{-eq},3\text{-ax}}$ = 12.89, J = 3.22 Hz), 1.89–2.00 m (3H, 10-H, 4-H_{ax}, 4-H_{eq}), 2.07 d.d.d (1H, 7-H_{ax}, J = 12.75, 12.75, 3.51 Hz), 2.16 d.d (1H, 5-H_{ax}, $^2J_{5\text{-ax},5\text{-eq}}$ = 11.43, $^3J_{5\text{-ax},10}$ = 3.23 Hz), 2.24 s (3H, CH₃), 2.74 d.d (1H, 5-H_{eq}, $^2J_{5\text{-eq},5\text{-ax}}$ = 11.43, $^3J_{5\text{-eq},10}$ = 2.05 Hz), 2.82 m (1H, 7-H_{eq}), 2.88 d.d.d (1H, 2-H_{ax}, J = 12.16, 12.16, $^3J_{2\text{-ax},3\text{-eq}}$ = 2.93 Hz), 3.32 m (1H, 2-H_{eq}), 3.43 q (2H, CH₂Ph, AB system), 3.75 d.d.d (1H, 9-H, $^3J_{9,8\text{-ax}}$ = 10.55, $^3J_{9,10}$ = 4.40, J = 4.40 Hz), 7.00–7.20 m (9H, H_{arom}). ¹³C NMR spectrum (CDCl₃), δ _C, ppm: 20.40

^{*} As in Russian original.—Publisher.

(CH₃); 20.46 (C³); 24.22 (C⁴); 25.77 (C⁸); 36.58 (C¹⁰); 42.63 (C²); 53.82 (C⁷); 57.30 (C⁹); 59.22 (C⁵); 63.22 (CH₂Ph); 117.15, 127.48, 128.43, 128.82, 129.37, 130.30, 139.12, 149.30 (C_{arom}). GC–MS data: R_t 23.680 min; m/z (I_{rel} , %): 320 (38.4) [M]⁺, 229 (12.1) [M – 91]⁺, 200 (1.5) [M – 120]⁺, 186 (19.2) [M – 134]⁺, 174 (2.0) [M – 146]⁺. Found, %: C 52.57; H 4.28; N 14.39. C₃₄H₃₄N₈O₁₄ (dipicrate). Calculated, %: C 52.44; H 4.40; N 14.39;

Reduction of 6-benzyl-1-phenyl-1,2,3,4,5,6,7,8-octahydro-1,6-naphthyridine (I) with formic acid. The *cis-trans* isomer ratio was 1:8. The stereo-isomers were separated by column chromatography on silica gel using petroleum ether—ethyl acetate (8:1 to 3:1) as eluent. We isolated 45% of *trans*-6-benzyl-1-phenyldecahydro-1,6-naphthyridine (IXb) and 8% of *cis*-6-benzyl-1-phenyldecahydro-1,6-naphthyridine (IXa).

Compound IXa. Light yellow crystals, $R_{\rm f}$ 0.66 (hexane-acetone, 2:1), mp 93.9-94.9°C. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.34 m (1H, 8-H_{ax}), 1.48 d.m (1H, 8-H_{eq}, ${}^{2}J_{8-eq,8-ax} = 13.10$, J = 3.81 Hz), 1.63 d.m (1H, 3-H_{ax}, ${}^{2}J_{3-ax,3-eq} = 13.10$, ${}^{3}J_{3-ax,2-ax} = 10.98$, ${}^{3}J_{3-ax,2-eq} = 4.65$, ${}^{3}J_{3-ax,4-eq} = 4.01$ Hz), 1.84 d.m (1H, 3-H_{eq}, ${}^{2}J_{3-eq,3-ax} = 13.10$, J = 3.38 Hz), 1.91– 1.99 m (3H, 10-H, 4-H_{ax}, 4-H_{eq}), 2.10 d.m (1H, 7-H_{ax}, $^{2}J_{7-ax,7-eq} = 13.10, \,^{3}J_{7-ax,8-ax} = 12.68, \,^{3}J_{7-ax,8-eq} = 3.81 \text{ Hz}),$ 2.18 d.d (1H, 5-H_{ax}, $^{2}J_{5-ax,5-eq} = 11.41, \,^{3}J_{5-ax,10-eq} = 2.96 \text{ Hz}), 2.75 d.d (1H, 5-H_{eq}, <math>^{2}J_{5-eq,5-ax} = 11.41, \,^{2}J_{5-eq,5-ax} = 11.41,$ $^{3}J_{5-eq,10} = 2.32$ Hz), 2.85 d.d.d (1H, 7-H_{eq}, $^{2}J_{7-eq,7-ax} = 13.10$, J = 2.54, 2.54 Hz), 2.89 d.d.d (1H, 2-H_{ax}, $^{2}J_{2-ax,2-eq} = 11.83$, $^{3}J_{2-ax,3-ax} = 10.98$, $^{3}J_{2-ax,3-eq} = 2.96$ Hz), 3.32 d.m (1H, 2-H_{eq}, $^{2}J_{2-eq,2-ax} = 11.83$, $^{3}J_{2-eq,3-ax} =$ 4.65 Hz), 3.44 q (2H, CH₂Ph, AB system), 3.83 d.m $(1H, 9-H, {}^{3}J_{9.8-ax} = 11.41, {}^{3}J_{9.10} = 4.64 \text{ Hz}), 7.00-$ 7.20 m (10H, H_{arom}). ¹³C NMR spectrum (CDCl₃), δ_C , ppm: $20.59 (C^3)$; $24.12 (C^4)$; $25.79 (C^8)$; $36.55 (C^{10})$; 41.99 (C^2); 53.85 (C^7); 56.78 (C^9); 59.26 (C^5); 63.18 (CH₂Ph); 116.56, 118.85, 127.47, 128.82, 129.35, 129.77, 139.88, 151.42 (C_{arom}). Mass spectrum (ES): found m/z 307.21780 $[M + H]^+$; calculated 307.21688. GC-MS data: R_t 21.607 min; m/z (I_{rel} , %): 306 (19.2) $[M]^+$, 215 (39.2) $[M-91]^+$, 187 (9.6) $[M-119]^+$, 186 $(33.6) [M-120]^+, 172 (41.6) [M-134]^+, 160 (10.4)$ $[M-146]^+$, 158 (12.8) $[M-148]^+$.

Reduction of 6-methyl-1-phenyl-1,2,3,4,5,6,7,8-octahydro-1,6-naphthyridine (II) with formic acid. The *cis-trans* isomer ratio was 1:8. The stereoisomers were separated by column chromatography on aluminum oxide using petroleum ether-ethyl acetate (6:1 to

pure ethyl acetate) as eluent. Yield of trans-6-methyl-1-phenyldecahydro-1,6-naphthyridine (Xb) 36%, yellow oily substance, R_f 0.22 (benzene–acetone, 1:1). ¹H NMR spectrum (CDCl₃), δ, ppm: 1.10 d.m (1H, $4-H_{ax}$, J = 12.40, 4.34 Hz), 1.25 m (1H), 1.30 d.m (1H, 8-H_{ax}, J = 12.45, 3.72 Hz), 1.55 m (1H), 1.65–1.85 m (3H), 1.90 d.d.d (1H, 7-H_{ax}, J = 10.95, 10.95), 2.05 s (3H, NCH₃), 2.2–2.3 m (3H), 2.7–2.8 m (2H), 3.15 m (1H), 4.15 g (1H). ¹³C NMR spectrum (CDCl₃), $\delta_{\rm C}$, ppm: 26.0 (C^3); 29.0 (C^4); 31.0 (C^8); 41.0 (C^{10}); 45.0 (NCH_3) ; 55.0 (C^2) ; 57.0 (C^7) ; 61.0 (C^5) ; 64.0 (C^9) ; 124.0, 125.0, 129.0, 151.0 (C_{arom}). Mass spectrum (ES): found m/z 231.18556 $[M + H]^{+}$; calculated 231.18558. GC-MS data: R_t 7.653 min; m/z (I_{rel} , %): 230 (100) $[M]^+$, 215 (7.8) $[M-15]^+$, 187 (79.4) $[M-15]^+$ $(43)^+$, $(186)(77.5)[M-44]^+$, $(172)(60.8)[M-58]^+$, (160) $(4.9) [M-70]^{+}$.

cis-6-Methyl-1-phenyldecahydro-1,6-naphthyridine (Xa). Yield 5.3%, yellow oily substance, R_f 0.37 (benzene–acetone, 1:1). Mass spectrum (ES): found m/z 231.18565 $[M + H]^+$; calculated 231.18558. GC–MS data: R_t 8.343 min; m/z (I_{rel} , %): 230 (86.3) $[M]^+$, 215 (1.5) $[M - 15]^+$, 187 (8.8) $[M - 43]^+$, 186 (11.8) $[M - 44]^+$, 172 (30.4) $[M - 58]^+$, 160 (7.8) $[M - 70]^+$.

Reduction of 6-benzyl-1-(4-methoxyphenyl)-1,2,3,4,5,6,7,8-octahydro-1,6-naphthyridine (IV) with formic acid. The *cis-trans* isomer ratio was 1:9.6. The stereoisomers were separated by column chromatography on silica gel using petroleum etherethyl acetate (8:1 to 4:1) as eluent. Yield of *trans*-6-benzyl-1-(4-methoxyphenyl)decahydro-1,6-naphthyridine 42%.

cis-6-Benzyl-1-(4-methoxyphenyl)decahydro-1,6-naphthyridine (XIIa). R_f 0.52 (hexane–acetone, 2:1). GC–MS data: R_t 35.606 min; m/z (I_{rel} , %): 336 (91) $[M]^+$, 245 (60.3) $[M-91]^+$, 217 (1.3) $[M-119]^+$, 216 (14.1) $[M-120]^+$, 202 (39.7) $[M-134]^+$, 190 (14.1) $[M-146]^+$.

6-Benzyl-1-phenyldecahydro-1,6-naphthyridine-9-carbonitrile (XIII). A solution of potassium cyanide in 10 ml of methanol was added to a solution of 2.04 g (0.0038 mol) of compound **V** in 10 ml of methanol. The mixture was stirred for 1 h and evaporated, the residue was treated with 3 ml of water, adjusted to pH 10–12, and extracted with diethyl ether (5×5 ml), and the extracts were combined and dried over Na₂SO₄. After removal of the solvent, 1.2 g of the crude product was applied to a column charged with silica gel in petroleum ether, and the column was eluted with petroleum ether—ethyl acetate (25:1 to 10:1). Yield

928 ESIPOVA et al.

0.730 g (58%), yellowish oily substance. IR spectrum (film): $v(C \equiv N) 2230 \text{ cm}^{-1}$. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.43–1.61 m (3H), 1.66–1.82 m (3H), 2.0 d.d.d.d (1H, 10-H_{ax}, J = 11.65, 11.65, 3.47, 3.47 Hz), 2.05 d.d (1H, 5-H_{ax}, J = 11.65, 11.65 Hz), 2.25 m (1H), 2.7 d.d (1H, 5- H_{eq} , J = 11.65, 1.73 Hz), 2.9 m (1H), 3.4 m (1H), 3.5 m (CH₂Ph), 7.17-7.35 m (10H, H_{arom}). ¹³C NMR spectrum (CDCl₃), δ_C , ppm: 25.45 (C³); 25.84 (C⁴); 35.62 (C⁸); 44.53 (C¹⁰); 50.69 (C^2) ; 51.75 (C^7) ; 55.97 (C^5) ; 62.81 (CH_2Ph) ; 64.86 (C⁹); 107.50 (CN); 119.10, 127.18, 127.83, 128.99, 129.56, 129.68, 138.94, 148.57 (C_{arom}). Mass spectrum (ES): found m/z 332.21220 $[M + H]^+$; calculated 332.21212. Mass spectrum, m/z (I_{rel} , %): 331 50.7) $[M]^+$, 304 (25.7) $[M-27]^+$ (F₁), 303 (57.1) $[M-28]^+$, 275 (5.7) $[F_1 - 29]^+$, 227 (5.0) $[F_1 - 77]^+$, 213 (39.3) $[F_1 - 91]^+$, 185 (16.8) $[F_1 - 119]^+$.

trans-6-Methyl-1-phenyldecahydro-1,6-naphthyridine-9-carbonitrile (XIV). Yield of chromatographically pure product 37%, yellowish oily substance. IR spectrum (film): v(C≡N) 2230 cm⁻¹. ¹H NMR spectrum (CDCl₃), δ, ppm: 1.20–1.30 m (1H), 1.45– 1.70 m (2H), 1.75 m (2H), 2.00 d.d.d.d (1H, $10-H_{ax}$) J = 11.65, 11.65, 3.46, 3.46 Hz), 2.10 d.d (1H, 5-H_{ax}) J = 11.65, 11.65, 2.20-2.45 m (2H), 2.30 s (3H, NCH_3), 2.70 d.d (1H, 5-H_{eq}, J = 11.65, 1.71 Hz), 2.80 m (1H), 3.00 m (1H), 3.40 m (1H). ¹³C NMR spectrum (CDCl₃), $\delta_{\rm C}$, ppm: 24.0 (C³); 25.0 (C⁴); 35.5 (C^8) ; 44.0 (C^{10}) ; 46 (NCH_3) ; 51.5 (C^2) ; 52.5 (C^7) ; 57.5 (C⁵); 64.0 (C⁹); 118.5 (CN); 126.0, 127.0, 128.0, 129.0 (C_{arom}). Mass spectrum (ES): found m/z 256.18101 $[M + H]^{+}$; calculated 256.18082. Mass spectrum, m/z $(I_{\text{rel}}, \%)$: 255 (16.4) $[M]^+$, 228 (14.3) $[M-27]^+$ (F₁), 227 (37.1) $[M-28]^+$, 213 (5.0) $[F_1-15]^+$, 199 (12.1) $[F_1 - 29]^+$, 184 (8.6) $[F_1 - 44]^+$, 151 (4.6) $[F_1 - 77]^+$.

trans-6-Benzyl-1-(p-tolyl)decahydro-1,6-naph-thyridin-9-carbonitrile (XV). Yield of chromatographically pure product 75%, yellowish crystals, mp 68.0–68.9°C. IR spectrum (film): $v(C\equiv N)$ 2225 cm⁻¹. ¹H NMR spectrum (CDCl₃), δ, ppm: 1.45–1.60 m (3H), 1.70–1.83 m (3H), 1.98 d.d.d.d (1H, 10-H_{ax}, J=11.72, 11.72, 3.52, 3.52 Hz), 2.09 d.d (1H, 5-H_{ax}, J=11.72, 11.72 Hz), 2.25 m (1H), 3.21s (3H, CH₃), 2.70 d.d (1H, 5-H_{eq}, J=11.72, 1.76 Hz), 2.88 m (1H), 2.97 m (1H), 3.38 m (1H), 3.49 m (CH₂Ph), 7.10 d (2H, C₆H₄, J=8.21 Hz), 7.19 d (2H, C₆H₄, J=7.91 Hz), 7.23–7.35 m (5H, C₆H₅). ¹³C NMR spectrum (CDCl₃), δ_C, ppm: 21.02 (CH₃); 25.48 (C³); 25.85 (C⁴);

35.68 (C⁸); 44.54 (C¹⁰); 50.74 (C²); 51.78 (C⁷); 56.00 (C⁵); 62.83 (CH₂Ph); 64.96 (C⁹); 119.18 (CN); 127.54, 127.79, 128.98, 129.65, 130.15, 136.87, 139.02, 145.95 (C_{arom}). GC–MS data: R_t 12.475 min; m/z (I_{rel} , %): 318 (36.9) [M – 27]⁺ (F₁), 317 (100) [M – 28]⁺, 289 (3.1) [F₁ – 29]⁺, 241 (0.1) [F₁ – 77]⁺, 227 (19.5) [F₁ – 91]⁺, 199 (10.3) [F₁ – 119]⁺.

trans-6-Benzyl-1-(4-methoxyphenyl)decahydro-1,6-naphthyridine-9-carbonitrile (XVI). Yield of chromatographically pure product 55%. IR spectrum (film): $v(C \equiv N)$ 2225 cm⁻¹. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.45–1.60 m (3H), 1.70–1.80 m (3H), 1.98 d.d.d.d (1H, 10-H_{ax}, J = 11.72, 11.72, 3.51, 3.51 Hz), 2.09 d.d (1H, 5- H_{ax} , J = 11.72, 11.72 Hz), 2.29 m (1H), 2.70 d.d (1H, 5- H_{eq} , J = 11.72, 1.76 Hz), 2.83 m (1H), 2.97 m (1H), 3.36 m (1H), 3.49 m (CH_2Ph) , 3.77 s (3H, OCH₃), 6.80–7.35 m (11H, H_{arom}). ¹³C NMR spectrum (CDCl₃), δ_C , ppm: 25.50 (C^3) ; 25.84 (C^4) ; 35.69 (C^8) ; 44.53 (C^{10}) ; 50.76 (C^2) ; 51.85 (C⁷); 55.64 (OCH₃); 56.02 (C⁵); 62.84 (CH₂Ph); 65.21 (C⁹); 119.29 (CN); 114.56, 127.80, 128.98, 129.66, 129.92, 139.05, 141.41, 158.84 (C_{arom}). GC-MS data: R_t 16.951 min; m/z (I_{rel} , %): 334 (45.5) [M- $[27]^+$ (F₁), 333 (100) $[M-28]^+$, 305 (2.5) $[F_1-29]^+$, 257 (0.03) $[F_1 - 77]^+$, 243 (25.1) $[F_1 - 91]^+$, 215 (7.8) $[F_1 - 119]^{+}$.

The authors thank I.V. Trushkov for his inestimable help in performing quantum-chemical calculations. This study was performed under financial support by the Russian Foundation for Basic Research (project no. 05-03-32658a).

REFERENCES

- 1. Sadykov, A.S., Aslanov, Kh.A., and Kushmuradov, Yu.K., *Alkaloidy khinolizidinovogo ryada. Khimiya. Stereo-khimiya. Biogenez* (Alkaloids of the Quinolizidine Series. Chemistry, Stereochemistry, and Biogenesis), Moscow: Nauka, 1975, pp. 125, 261.
- Gaidarova, E.L., Borisenko, A.A., Chumakov, T.I., Mel'nikov, A.V., Orlov, I.S., and Grishina, G.V., *Tetrahedron Lett.*, 1998, vol. 39, no. 42, p. 7767.
- 3. Esipova, T.V., Borisenko, A.A., Terent'ev, P.B., Hertzshuh, R., and Grishina, G.V., *Russ. J. Org. Chem.*, 2006, vol. 42, p. 742.
- 4. Borioni, A., Del Giudice, M.-R., Mustazza, C., and Gatta, F., *J. Heterocycl. Chem.*, 2000, vol. 37, p. 799.
- 5. Lindstrom, P., Tierney, J., Wathey, B., and Westman, J., *Tetrahedron*, 2001, vol. 57, p. 9225.