Ionic Liquids on the Basis of 2,3,4,6,7,8,9,10-Octahydropyrimido-[1,2-a]azepine (1,8-Diazabicyclo[5.4.0]undec-7-ene) ## L. L. Tolstikova and B. A. Shainyan Favorskii Irkutsk Institute of Chemistry, Siberian Division, Russian Academy of Sciences, ul. Favorskogo 1, Irkutsk, 664033 Russia e-mail: bagrat@irioch.irk.ru Received June 15, 2005 **Abstract**—New ionic liquids containing alkyl and polyfluoroalkyl substituents and various anions were synthesized from 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepinium ion (1,8-diazabicyclo[5.4.0]undec-7-en-8-ium). Their NMR spectra and miscibility with water and organic solvents were studied. **DOI:** 10.1134/S1070428006070256 Ionic liquids are liquid or low-melting (with a melting point of lower than 100°C) organic salts which constitute a new class of solvents characterized by broad ranges of hydrophilicity, coordinating and dissolving capacity, and thermal stability [1]. The scope of application of first-generation ionic liquids, which include mainly quaternary ammonium salts and imidazolium or pyridinium chloroaluminates [2, 3], is limited owing to their high acidity and sensitivity to moisture. Second-generation ionic liquids are neutral substances, and they contain water-tolerant anions; due to their almost zero volatility and the possibility to be regenerated and used repeatedly, many processes performed in such solvents (including catalytic reactions) may be regarded as "green" [4]. An attractive property of ionic liquids is that the cation-anion couples may be varied over a wide range, thus controlling their miscibility with water and organic solvents of different polarity [5]. At present, the most widely used ionic liquids are those based on 1,3-dialkylimidazolium and pyridinium salts with various anions. In the present article we describe the synthesis of a series of ionic liquids like **I** containing different substituents on the nitrogen atom from 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine (1,8-diazabicyclo- R = Me, Et, Bu, PhCH₂, H(CF₂)_nCH₂; X = Cl, Br, OTs, OTf. [5.4.0]undec-7-ene, DBU). As anions we used chloride, bromide, *p*-toluenesulfonate, and trifluoromethanesulfonate. We found only one recent publication [6] on the synthesis of two salts on the basis of DBU (8-methyl- and 8-ethyl-1,8-diazabicyclo[5.4.0]-undec-7-en-8-ium trifluoromethanesulfonates) and their use as reaction medium [6, 7]; therefore, salts I may be regarded as a new class of ionic liquids. The initial nitrogenous base (DBU) is readily available from caprolactam, and its synthetic and commercial accessibility is quite comparable with that of 1-alkylimidazoles which are initial compounds for the synthesis of most known ionic liquids. Salts I are characterized by a large size, low symmetry of the cationic moiety, and charge delocalization over the N-C=N triad; as a result, they have low melting points [8]. In addition, by varying combinations of hydrophobic substituents R and hydrophilic anion X, their solubility in water and organic solvents can be changed over a wide range. On the whole, the presence of saturated hydrocarbon bridges (CH₂)₃ and (CH₂)₅ should make salts I more hydrophobic than their imidazolium analogs; therefore, the choice of ionic liquids for particular processes could be extended considerably. Another difference between salts I and imidazolebased ionic liquids is that the former cannot lose HX with formation of carbenes; this shoul enhance their chemical and thermal stability as compared to imidazolium salts which are well known to produce carbene species [9] (Scheme 1). Carbenes generated by proton abstraction from C² of the imidazole ring are capable of forming com- plexes with metals [10]. Moreover, imidazolium salts themselves could give rise to hydride complexes via metal insertion into the C^2 -H bond [11]. Therefore, the use of imidazolium salts in metal-complex catalysis is limited. Scheme 1. $$R - N \xrightarrow{+} N - R'$$ $X^{-} \xrightarrow{A} -HX$ $R - N \xrightarrow{\cdot \cdot \cdot} N - R'$ $X^{-} \xrightarrow{A} -HX$ $X^{-} \xrightarrow{A} -HX$ Insofar as ionic liquids are nonvolatile, they cannot be purified by distillation (which is a traditional method for solvent purification); impurities present therein can be removed only by washing with appropriate solvent and/or by heating under reduced pressure (for volatile impurities). Taking the above into account, high purity of the initial reactants is desirable for the synthesis of ionic liquids, and anion exchange reactions are widely used [1]. 1-Alkyl-2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]-azepin-1-ium halides **III**, **V**, and **VIII** were smoothly formed in quantitative yield by treatment of DBU with the corresponding alkyl halides using excess alkylating agent as solvent. *p*-Toluenesulfonate **VI** was obtained by anion exchange in **V** by the action of sodium *p*-toluenesulfonate, and *p*-toluenesulfonate **X**, by reaction of 2,2,3,3-tetrafluoropropyl *p*-toluenesulfonate # Scheme 2. RX RX III, V, VI, VIII, X CF_3SO_3R CF_3SO_3 CF_3SO_3 II, R = Me, X = OTf; III, R = Et, X = Br; IV, R = Et, X = OTf; V, R = Bu, X = Cl; VI, R = Bu, X = OTs; VIII, R = Bu, X = OTf; VIII, $R = PhCH_2$, X = Cl; IX, $R = PhCH_2$, X = OTf; X, $R = H(CF_2)_2CH_2$, R = OTf. with DBU. Trifluoromethanesulfonates II, IV, VII, IX, and XI were synthesized in two ways, by anion exchange between the corresponding halide and lithium trifluoromethanesulfonate and by alkylation of initial base Ia with trifluoromethanesulfonic acid esters (Scheme 2). Alkyl perfluoroalkanesulfonates are very strong alkylating agents capable of reacting at both carbon and nitrogen, oxygen, or sulfur atom [12]. In fact, the reaction of Ia with methyl trifluoromethanesulfonate gave ionic liquid II in quantitative yield. On the other hand, such reactions are very sensitive to stereoelectronic effects of the polyfluoroalkyl group [13]; therefore, the alkylation of Ia with telomeric polyfluorinated alkyl trifluoromethanesulfonates of the general formula CF₃SO₃CH₂(CF₂)_nH sharply slows down as the length of the fluoroalkyl chain increases. Thus the yield of compound XI (n = 2) is 75%, while in the reaction with octafluoropentyl trifluoromethanesulfonate (n = 4) the conversion does not exceed 35% (according to the ¹⁹F NMR data), and dodecafluoroheptyl trifluoromethanesulfonate (n = 6) fails to react with compound Ia even on prolonged heating in boiling chloroform or without a solvent. The reaction is more facile when the reaction center is separated from the polyfluoroalkyl chain by a methylene group: 1-alkylimidazoles react with polyfluoroiodoalkanes of the general formula R_FCH₂CH₂I (adducts of perfluoroiodoalkanes and ethylene) to give the corresponding imidazolium iodides in good yields [14, 15]. Steric factor is also important in the alkylation process; for example, no reaction occurs with 2-chloropropane under the conditions ensuring smooth formation of the corresponding ionic liquids from primary alkyl halides (such as ethyl bromide and n-butyl chloride). By contrast, the basicity of the substrate is less significant. Pyridine is much less basic than DBU (p $K_{\rm BH}$ + 5.2 and 12, respectively), but it does react with CF₃SO₃CH₂(CF₂) $_n$ H (Scheme 3), though the yields of the N-alkylation products sharply decrease as the poly- $extbf{XII}$, R = Bu, X = Cl; $extbf{XIII}$, R = Bu, X = Br; $extbf{XIV}$, R = Bu, X = OTf; $extbf{XV}$, R = PhCH₂, X = Cl; $extbf{XVI}$, R = PhCH₂, X = OTf; $extbf{XVIII}$, R = H(CF₂)₂CH₂, X = OTf; $extbf{XVIII}$, R = H(CF₂)₄CH₂, X = OTf. fluorinated chain becomes longer: **XVII**: yield 73% (n = 2); **XVIII**, 37% (n = 4); 20% (n = 6) (according to the ¹⁹F NMR data). As noted in [12], the synthesis of trifluoromethanesulfonic acid esters from trifluoromethanesulfonyl halides and sodium salts H(CF₂)_nCH₂ONa derived from polyfluoroalkanols may be accompanied by side formation of the corresponding ethers; therefore, the yields of the target products are often poor (Scheme 4). Taking these data into account, we synthesized esters CF₃SO₃R_F from trifluoromethanesulfonic anhydride and polyfluorinated alcohols in the presence of pyridine according to the procedure described in [5]. Scheme 4. $$CF_3SO_2X + R_FCH_2O^- \xrightarrow{-X^-} CF_3SO_2OCH_2R_F$$ $$\xrightarrow{R_FCH_2O^-} (R_FCH_2)_2O + CF_3SO_3^-$$ $$X = F, CI.$$ The structure of the products was proved by the 1 H, 13 C, and 19 F NMR spectra. Unlike initial esters $CF_3SO_3R_F$, the 13 C NMR spectra of ionic liquids containing polyfluorinated substituents R_F displayed a triplet at $\delta_C \sim 50$ ppm from the CH_2CF_2 methylene group (the corresponding signal in the spectra of initial esters appeared at $\delta_C \sim 70$ ppm). In the 19 F NMR spectra of trifluoromethanesulfonates II, IV, VII, IX, and XI, the signal of the CF_3SO_3 group ($\delta_F \sim 78$ ppm) was located in a stronger field, as compared to esters $CF_3SO_3R_F$ ($\delta_F \sim 74$ ppm). It should be noted that the 1H NMR spectrum of compound II described in [6] is invalid (no singlet from the methyl group was given, and the overall number of protons did not correspond to the assumed structure). We assigned 1H and ^{13}C signals on the basis of the two-dimensional $^1H-^{13}C$ NMR spectrum. Table contains data on the solubility of 2,3,4,6,-7,8,9,10-octahydropyrimido[1,2-a]azepin-1-ium salts in water and various organic solvents. It is seen that the solubility of the obtained ionic liquids in organic solvents increases with rise in their polarity. Regardless of the substituent R and counterion X, compounds II-XI are soluble in acetonitrile, ethanol, acetone, and methylene chloride ($\varepsilon = 8.91-36.2$) and insoluble in hydrocarbons. The solubility in weakly polar media (such as ethyl acetate, chloroform, diethyl ether, benzene, and dioxane; $\varepsilon = 2.2-6.0$) depends on the solvent ability for specific solvation. All the examined ionic liquids are soluble in chloroform and insoluble in diethyl ether, despite almost similar polarities of these solvents. Obviously, the reason is that chloroform is capable of forming hydrogen bond with the anion, while no specific solvation occurs in diethyl ether. The solubility in benzene and dioxane depends upon both substituent R and counerion. Most ionic liquids are soluble in water; an exception is compound XI which contains a strongly hydrophobic CHF₂(CF₂)₂CH₂ group and trifluoromethanesulfonate ion. Solubility of some ionic liquids based on 1,8-diazabicyclo[5.4.0]undec-7-ene in water and organic solvents | Compound no. | R, X | H ₂ O | MeCN | EtOH | Acetone | CH ₂ Cl ₂ | AcOEt | CHCl ₃ | Et ₂ O | C ₆ H ₆ | Dioxane | Hexane ^a | |--------------|---|------------------|------|------|---------|---------------------------------|---------|-------------------|-------------------|-------------------------------|---------|---------------------| | II | Me, OTf | + | + | + | + | + | + | + | _ | _ | + | _ | | III | Et, Br | + | + | + | + | + | + | + | _ | _ | _ | _ | | IV | Et, OTf | + | + | + | + | + | $+^{b}$ | + | _ | _ | + | _ | | \mathbf{V} | Bu, Cl | + | + | + | + | + | + | + | _ | _ | _ | _ | | VI | Bu, OTs | + | + | + | + | + | + | + | _ | + | _ | _ | | VII | Bu, OTf | + | + | + | + | + | + | + | _ | _ | _ | _ | | VIII | PhCH ₂ , Cl | + | + | + | + | + | + | + | _ | _ | _ | _ | | IX | PhCH ₂ , OTf | + | + | + | + | + | + | + | _ | _ | + | _ | | X | H(CF ₂) ₂ CH ₂ ,
OTs | + | + | + | + | + | + | + | _ | + | + | _ | | XI | H(CF ₂) ₂ CH ₂ ,
OTf | _ | + | + | + | + | + | + | _ | _ | + | _ | ^a The same is valid for petroleum ether. ^b Poorly soluble. ## **EXPERIMENTAL** The ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on a Bruker DPX-400 spectrometer at 400, 100, and 376 MHz, respectively; CDCl₃ and CD₃CN were used as solvent, and HMDS, as internal reference; the ¹⁹F chemical shifts were referenced to trichlorofluoromethane. Methyl trifluoromethanesulfonate was prepared by the procedure described in [16]. Yield 97%, bp 97–99°C; published data [16]: bp 98–99°C, n_D^{20} = 1.3260; ¹H NMR spectrum (CCl₄): δ 4.22 ppm, s. ¹H NMR spectrum (CDCl₃): δ 4.22 ppm, s (3H, CH₃). ¹³C NMR spectrum (CDCl₃), δ_C, ppm: 61.55 (CH₃), 118.71 q (CF₃, ¹ J_{CF} = 319.6 Hz). ¹⁹F NMR spectrum (CDCl₃): δ_F –74.14 ppm. **2,2,3,3-Tetrafluoropropyl** *p*-toluenesulfonate was synthesized from sodium 2,2,3,3-tetrafluoropropan-1-olate and *p*-toluenesulfonyl chloride. Yield 97%, bp 108–113°C (0.05 mm; published data [17]: bp 124–126°C (2 mm). ¹H NMR spectrum (CDCl₃), δ , ppm: 2.44 s (3H, CH₃), 4.32 t (2H, CH₂, J = 12.1 Hz), 5.84 t.t (1H, CHF₂, J = 52.9, 4.2 Hz), 7.37 d (2H, 3-H, 5-H), 7.78 d (2H, 2-H, 6-H). ¹³C NMR spectrum (CDCl₃), δ _C, ppm: 21.55 (CH₃), 64.09 t (CH₂, J = 30.6 Hz), 108.70 t.t (CHF₂, J = 250.3, 35.3 Hz), 113.20 t.t (CF₂, J = 251.4, 28.1 Hz), 128.01 (C², C⁶), 130.13 (C³, C⁵), 131.58 (C⁴), 145.98 (C¹). ¹⁹F NMR spectrum (CDCl₃), δ _F, ppm: -124.11 s (2F, CF₂), -138.14 d (2F, CF₂H, J = 53.1 Hz). **2,2,3,3-Tetrafluoropropyl trifluoromethanesulfonate** was prepared by the procedure described in [5]. Yield 51%, bp 114–118°C, $n_D^{24} = 1.3206$; published data [18]: bp 122–125°C (737 mm), $n_D^{25} = 1.3203$. ¹H NMR spectrum (CD₃CN), δ , ppm: 4.74 t (2H, CH₂), 5.95 t.t (1H, CHF₂). ¹³C NMR spectrum (CD₃CN), δ_C , ppm: 68.22 t (CH₂, J = 29.9 Hz), 108.95 t.t (CHF₂, J = 251.1, 37.1 Hz), 112.49 t.t (CF₂, J = 251.8, 29.5 Hz), 118.46 q (CF₃, J = 319.5 Hz). ¹⁹F NMR spectrum (CD₃CN), δ_F , ppm: -74.48 s (3F, CF₃), -123.63 t (2F, CF₂, J = 11.9 Hz), -137.00 d (2F, CF₂H, J = 52.8 Hz). **2,2,3,3,4,4,5,5-Octafluoropentyl trifluorometh- anesulfonate** was prepared by the procedure described in [5]. Yield 36%, bp 146–148°C, $n_D^{24} = 1.3190$; published data [19]: bp 69–72°C (21 mm), $n_D^{25} = 1.3191$. ¹H NMR spectrum (CDCl₃), δ , ppm: 4.80 t (2H, CH₂, J = 12.5 Hz), 6.04 t.t (1H, CHF₂, J = 51.8, 5.0 Hz). ¹³C NMR spectrum (CDCl₃), δ_C , ppm: 68.10 t (CHF₂, J = 27.8 Hz), 107.56 t.t (CF₂H, J = 254.8, 31.6 Hz), 112.90 t.t (CF₂, J = 254.8, 31.6 Hz), 118.48 q (CF₃, J = 319.2 Hz); weak signals of the other CF₂ groups could not be identified. ¹⁹F NMR spectrum (CDCl₃), δ_F , ppm: -74.20 s (3F, CF₃), -120.12 m (2F, CH₂CF₂), -124.90 m (2F, CH₂CF₂CF₂), -129.50 m (2F, CF₂CF₂H), -137.25 d.m (2F, CHF₂, J = 51.9 Hz). **2,2,3,3,4,4,5,5,6,6,7,7-Dodecafluoroheptyl trifluoromethanesulfonate** was prepared by the procedure described in [5]. Yield 40%, bp 186–190°C, $n_{\rm D}^{24}$ = 1.3190; published data [19]: bp 75–78°C (9 mm), $n_{\rm D}^{25}$ = 1.3194. ¹H NMR spectrum (CDCl₃), δ , ppm: 4.80 t (2H, CH₂, J = 12.4 Hz), 6.03 t (1H, CHF₂, J = 51.9, 5.1 Hz). ¹³C NMR spectrum (CDCl₃), δ _C, ppm: 68.22 t (CH₂, J = 28.0 Hz), 107.70 t.t (CHF₂, J = 254.9, 31.7 Hz), 113.09 t.t (CH₂CF₂, J = 254.9, 31.7 Hz), 118.56 q (CF₃, J = 318.9 Hz); signals of the other CF₂ groups were not identified due to their weak intensity and overlap. ¹⁹F NMR spectrum (CDCl₃), δ _F, ppm: -74.95 s (CF₃), -120.48 s (CF₂), -122.55 s (CF₂), -137.97 d (CHF₂, J = 51.9 Hz). 1-Methyl-2,3,4,6,7,8,9,10-octahydropyrimido-[1,2-*a*]azepin-1-ium trifluoromethanesulfonate (II). Compound Ia, 0.304 g (2 mmol), was added to a solution of 0.33 g (2 mmol) of methyl trifluoromethanesulfonate in 1 ml of CDCl₃ or CH₂Cl₂, and the mixture was stirred for 40 min at room temperature and evaporated. Yield 0.58 g (100%), colorless liquid, n_D^{24} = 1.4681. ¹H NMR spectrum (CDCl₃), δ, ppm: 1.48 m (6H, 7-H, 8-H, 9-H), 1.84 m (2H, 3-H), 2.57 m (2H, 10-H), 3.00 s (3H, CH₃), 3.25 m (4H, 4-H, 6-H), 3.37 m (2H, 2-H). ¹³C NMR spectrum (CDCl₃), δ_C, ppm: 19.03 (C³), 21.27 (C⁸), 25.32 (C⁷), 27.76 (C¹⁰), 27.82 (C⁹), 40.29 (CH₃), 47.95 (C⁴), 48.05 (C⁶), 54.39 (C²), 120.06 q (CF₃, J = 320.9), 165.95 (C=N). ¹⁹F NMR spectrum (CDCl₃): δ_F –78.45 ppm. **1-Ethyl-2,3,4,6,7,8,9,10-octahydropyrimido-**[**1,2-a**]azepin-1-ium bromide (III) was synthesized by the procedure described in [2]. A mixture of 3.04 g (0.02 mol) of compound **Ia** and 6.53 g (0.06 mol) of ethyl bromide was heated for 20 min under reflux and evaporated. Yield 5.22 g (100%), mp 97°C. ¹H NMR spectrum (CDCl₃), δ, ppm: 1.18 t (3H, CH₃), 1.69 m (6H, 7-H, 8-H, 9-H), 2.07 m (2H, 3-H), 2.83 m (2H, 10-H), 3.53 t (2H, 4-H or 6-H, J = 5.3 Hz), 3.54 q (2H, C**H**₂CH₃), 3.58 t (2H, 6-H or 4-H, J = 6.1 Hz), 3.64 m (2H, 2-H). ¹³C NMR spectrum (CDCl₃), δ_C, ppm: 13.67 (CH₃), 20.03 (C³), 22.83 (C⁸), 25.86 (C⁷), 28.08 (C⁹), 28.32 (C¹⁰), 46.45 (C⁴), 49.00 (C⁶), 49.21 (CH₂CH₃), 55.24 (C²), 166.06 (C=N). Found, %: C 50.40; H 8.83; Br 31.73; N 11.05. C₁₁H₂₁BrN₂. Calculated, %: C 50.58; H 8.10; Br 30.59; N 10.72. 1-Ethyl-2,3,4,6,7,8,9,10-octahydropyrimido-[1,2-a]azepin-1-ium trifluoromethanesulfonate (IV). A solution of 2.76 g (0.018 mol) of lithium trifluoromethanesulfonate in 10 ml of water was added to a solution of 4.62 g (0.018 mol) of salt III in 15 ml of water. The mixture was stirred for 40 min at room temperature and evaporated, methylene chloride was added to the residue, the precipitate was filtered off, and the filtrate was evaporated. Yield 5.84 g (100%), yellowish liquid. ¹H NMR spectrum (CDCl₃), δ, ppm: 1.18 t (3H, CH₃), 1.70 m (6H, 7-H, 8-H, 9-H), 2.06 m (2H, 3-H), 2.80 m (2H, 10-H), 3.52 m (6H, CH₂CH₃, 4-H, 6-H), 3.62 m (2H, 2-H). ¹³C NMR spectrum $(CDCl_3)$, δ_C , ppm: 13.42 (CH_3) , 19.85 (C^3) , 22.75 (C^8) , 25.78 (C⁷), 27.99 (C⁹), 28.21 (C¹⁰), 46.22 (C⁴), 48.79 (C^6) , 48.96 (CH₂CH₃), 54.99 (C^2), 120.32 q (CF₃, J_{CF} = 319.9 Hz), 166.08 (C=N). ¹⁹F NMR spectrum (CDCl₃): δ_F -78.32 ppm. Found, %: C 44.01; H 6.69; F 16.28; N 8.74; S 9.71. C₁₂H₂₁F₃N₂O₃S. Calculated, %: C 43.63; H 6.41; F 17.25; N 8.48; S 9.71. 1-Butyl-2,3,4,6,7,8,9,10-octahydropyrimido-[1,2-a]azepin-1-ium chloride (V) was synthesized as described above for compound III; the reaction mixture was heated for 5 h at the boiling point. mp 42°C. ¹H NMR spectrum (CDCl₃), δ, ppm: 0.87 t (3H, CH₃, J = 7.3 Hz), 1.28 m (2H, CH₂CH₃), 1.54 m (2H, CH₂-CH₂CH₃), 1.70 m (6H, 7-H, 8-H, 9-H), 2.10 m (2H, 3-H), 2.89 m (2H, 10-H), 3.47 m (2H, CH₂CH₂CH₂CH₂-CH₃), 3.57 t (2H, 4-H or 6-H, J = 5.7 Hz), 3.64 t (2H, 6-H or 4-H, J = 6.0 Hz), 3.72 m (2H, 2-H). ¹³C NMR spectrum (CDCl₃), $\delta_{\rm C}$, ppm: 13.52 (CH₃), 19.64 (C³), 20.16 (CH₂CH₃), 23.08 (C⁸), 25.98 (C⁷), 28.17 (C⁹), 28.40 (C^8), 30.66 ($CH_2CH_2CH_3$), 47.31 (C^4), 49.32 (C^6) , 53.93 (CH₂CH₂CH₂CH₃), 55.33 (C^2), 166.36 (C=N). Found, %: C 63.46; H 10.70; Cl 14.76; N 11.80. C₁₃H₂₅ClN₂. Calculated, %: C 63.78; H 10.29; Cl 14.48; N 11.44. 1-Butyl-2,3,4,6,7,8,9,10-octahydropyrimido-[1,2-*a*]azepin-1-ium *p*-toluenesulfonate (VI) was synthesized from salt V and sodium *p*-toluenesulfonate; the reaction mixture was stirred for 4 h at 60°C. $n_D^{23.5} = 1.4355$. ¹H NMR spectrum (CDCl₃), δ, ppm: 0.74 t (3H, CH₃, J = 7.3 Hz), 1.13 m (2H, CH₂CH₃), 1.36 m (2H, CH₂CH₂CH₃), 1.52 m (6H, 7-H, 8-H, 9-H), 1.88 quint (2H, 3-H, J = 5.9 Hz), 2.14 s (3H, CH₃), 2.66 (2H, 10-H), 3.34 m (6H, 4-H, 6-H, CH₂-CH₂CH₂CH₃), 3.47 m (2H, 2-H), 6.93 d (2H, *m*-H, J = 7.9 Hz), 7.57 d (2H, *o*-H, J = 8.0 Hz). ¹³C NMR spec- trum (CDCl₃), δ_{C} , ppm: 13.22 (CH₃), 19.25 (C³), 19.64 (CH₃), 20.78 (CH₂CH₃), 22.48 (C⁸), 22.58 (C⁷), 25.53 (C⁹), 27.82 (C⁸), 30.20 (CH₂CH₂CH₃), 46.68 (C⁴), 48.66 (C⁶), 53.34 (CH₂CH₂CH₂CH₃), 54.67 (C²), 125.52 (C⁰), 127.89 (C^m), 138.21 (C^p), 144.20 (Cⁱ), 165.93 (C=N). 1-Butyl-2,3,4,6,7,8,9,10-octahydropyrimido-[1,2-a]azepin-1-ium trifluoromethanesulfonate (VII) was synthesized as described above for salt IV. $n_{\rm D}^{22.5} = 1.4455$. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.76 t (3H, CH₃, J = 7.3 Hz), 1.17 m (2H, CH₂CH₃), 1.42 m (2H, CH₂CH₂CH₃), 1.58 m (6H, 7-H, 8-H, 9-H), 1.94 quint (2H, 3-H, J = 5.7 Hz), 2.65 m (2H, 10-H), 3.30 m (2H, CH₂CH₂CH₂CH₃), 3.34 t (2H, 4-H or 6-H, J = 5.7 Hz), 3.39 t (2H, 6-H or 4-H, J =6.0 Hz), 3.48 m (2H, 2-H). ¹³C NMR spectrum $(CDCl_3)$, δ_C , ppm: 13.12 (CH_3) , 19.19 (C^3) , 19.49 (CH_2CH_3) , 22.48 (C^8) , 25.44 (C^7) , 27.74 (C^9) , 27.94 (C^{10}) , 30.08 (CH₂CH₂CH₃), 46.63 (C^4), 48.65 (C^6), 53.39 (CH₂CH₂CH₂CH₃), 54.69 (C²), 120.36 q (CF₃, $J_{\rm CF} = 320.8$ Hz), 165.93 (C=N). ¹⁹F NMR spectrum (CDCl₃): δ_F -78.36 ppm. Found, %: C 46.83; H 7.90; F 15.81; N 7.78; S 8.73. C₁₄H₂₅F₃N₂O₃S. Calculated, %: C 46.91; H 7.03; F 15.90; N 7.82; S 8.95. **1-Benzyl-2,3,4,6,7,8,9,10-octahydropyrimido-**[**1,2-***a*]**azepin-1-ium chloride (VIII)** was synthesized as described above for salt **III**; the reaction mixture was heated for 4 h at the boiling point. Compound **VIII** was isolated as light brown transparent syrupy material. ¹H NMR spectrum (CDCl₃), δ, ppm: 1.64 s (2H, 8-H), 1.78 s (4H, 7-H, 9-H), 2.21 m (2H, 3-H), 2.95 m (2H, 10-H), 3.71 t (2H, 4-H or 6-H, J = 5.6 Hz), 3.77 t (2H, 6-H or 4-H, J = 5.6 Hz), 3.82 br.s (2H, 2-H), 4.89 s (2H, PhC**H**₂), 7.21 d (2H, o-H), 7.36 m (3H, p-H, m-H). ¹³C NMR spectrum (CDCl₃), δ_C, ppm: 19.99 (C³), 22.34 (C⁸), 25.78 (C⁷), 28.03 (C⁹), 28.97 (C¹⁰), 47.61 (C⁴), 49.30 (C⁶), 55.44 (C²), 56.73 (CH₂Ph), 126.10 (C^o), 128.15 (Cⁱ), 129.06 (C^m), 133.97 (C^p), 167.14 (C=N). 1-Benzyl-2,3,4,6,7,8,9,10-octahydropyrimido-[1,2-*a*]azepin-1-ium trifluoromethanesulfonate (IX) was synthesized as described above for salt IV. Light brown syrupy material. 1 H NMR spectrum (CDCl₃), δ, ppm: 1.53 s (2H, 8-H), 1.68 s (4H, 7-H, 9-H), 2.09 m (2H, 3-H), 2.77 m (2H, 10-H), 3.51 t (2H, 4-H or 6-H, J = 5.6 Hz), 3.57 t (2H, 6-H or 4-H, J = 5.7 Hz), 3.64 m (2H, 2-H), 4.70 s (2H, PhCH₂), 7.14 d (2H, *o*-H), 7.26 t (1H, *p*-H), 7.33 t (2H, *m*-H). 13 C NMR spectrum (CDCl₃), δ_C, ppm: 19.77 (C³), 22.39 (C⁸), 25.69 (C⁷), 28.29 (C⁹), 28.77 (C¹⁰), 47.48 (C⁴), 49.13 (C⁶), 55.29 (C²), 56.51 (CH₂Ph), 120.16 q (CF₃, J = 319.1 Hz), 126.19 (C⁰), 128.18 (C¹), 129.17 (C^m), 134.34 (C^p), 167.22 (C=N). ¹⁹F NMR spectrum (CDCl₃): $\delta_F - 78.33$ ppm. 1-(2,2,3,3-Tetrafluoropropyl)-2,3,4,6,7,8,9,10octahydropyrimido[1,2-a]azepin-1-ium p-toluenesulfonate (X) was synthesized as described above for salt II from compound Ia and 2,2,3,3-tetrafluoropropyl p-toluenesulfonate; the reaction mixture was stirred for 45 min at 60°C. $n_{\rm D}^{20} = 1.5009$. ¹H NMR spectrum (CDCl₃), δ, ppm: 1.48 m (2H, 8-H), 1.55 m (4H, 7-H, 9-H), 1.71 quint (2H, 3-H), 2.36 s (3H, CH₃), 3.15 m (8H, 2-H, 4-H, 6-H, 10-H), 4.23 t.t (2H, CH_2CF_2 , J =12.2, 1.1 Hz), 5.77 t.t (1H, CHF₂, J = 52.9, 4.2 Hz), 7.28 d (2H, m-H, J = 8.3 Hz), 7.69 d (o-H, J = 8.3 Hz). ¹³C NMR spectrum (CDCl₃), $\delta_{\rm C}$, ppm: 21.42 (C³), 21.87 (CH₃), 25.52 (C⁸), 28.06 (C⁷), 29.40 (C⁹), 36.39 (C^{10}) , 43.11 (C^4) , 48.16 (C^6) , 52.80 (C^2) , 63.93 t (CH₂CF₂, J = 30.2 Hz), 108.53 t.t (CHF₂, J = 250.0, 35.3 Hz), 113.02 t.t (CH_2CF_2 , J = 251.5, 28.1 Hz), 127.81 (C^{o}), 129.96 (C^{m}), 131.39 (C^{p}), 145.78 (C^{i}), 161.93 (C=N). ¹⁹F NMR spectrum (CDCl₃), δ_F , ppm: -124.37 s (2F, CH₂CF₂), -138.29 d (2F, CHF₂, J =52.8 Hz). Found, %: C 51.81; H 5.75; S 7.89. C₁₉H₂₆F₄N₂O₃S. Calculated, %: C 52.04; H 5.98; S 7.31. 1-(2,2,3,3-Tetrafluoropropyl)-2,3,4,6,7,8,9,10octahydropyrimido[1,2-a]azepin-1-ium trifluoromethanesulfonate (XI) was synthesized as described above for salt II from compound Ia and 2,2,3,3-tetrafluoropropyl trifluoromethanesulfonate. Yield 75%, mp 79–80°C. ¹H NMR spectrum (CDCl₃), δ, ppm: 1.79 s (6H, 7-H, 8-H, 9-H), 2.19 m (2H, 3-H), 2.87 m (2H, 10-H), 3.63 t (2H, 2-H), 3.70 m (4H, 4-H, 6-H), 4.24 t (2H, CH_2CF_2 , J = 15.1 Hz), 6.09 t.t (1H, CHF_2 , J = 52.8, 3.6 Hz). ¹³C NMR spectrum (CDCl₃), $\delta_{\rm C}$, ppm: $19.67 (C^3)$, $22.31 (C^8)$, $22.41 (C^7)$, $25.30 (C^9)$, 28.30 (C¹⁰), 49.44 (C⁴), 49.57 (C⁶), 51.66 t (CH₂CF₂, J = 21.2 Hz), 56.04 (C²), 109.23 t.t (CHF₂, J = 250.1, 35.9 Hz), 115.09 t.t (CH_2CF_2 , J = 250.7, 28.6 Hz), 120.60 q (CF₃, J = 320.2 Hz), 169.43 (C=N). ¹⁹F NMR spectrum (CDCl₃), δ_F , ppm: -78.47 s (3F, CF₃), -120.31 s (2F, CH₂CF₂), -136.81 d (2F, CHF₂, J =52.8 Hz). Found, %: C 37.37; H 4.84; N 6.86; S 7.52. C₁₃H₁₉F₇N₂O₃S. Calculated, %: C 37.50; H 4.60; N 6.73; S 7.70. **1-Butylpyridinium chloride (XII)** was synthesized as described above for salt **III** from pyridine and 1-chlorobutane. Yield 20%, mp 103°C. ¹H NMR spec- trum (CDCl₃), δ , ppm: 0.92 t (3H, CH₃, J = 7.3 Hz), 1.38 m (2H, CH₂CH₃), 2.01 m (2H, CH₂CH₂CH₃), 5.03 t (2H, NCH₂, J = 7.3 Hz), 8.12 t (2H, 3-H, 5-H, J = 6.6 Hz), 8.47 t (1H, 4-H, J = 7.7 Hz), 9.72 d (2H, 2-H, 6-H, J = 5.9 Hz). ¹³C NMR spectrum (CDCl₃), δ _C, ppm: 13.45 (CH₃), 19.28 (CH₂CH₃), 33.89 (CH₂CH₂-CH₃), 61.64 (NCH₂), 128.34 (C³, C⁵), 144.80 (C⁴), 145.48 (C², C⁶). **1-Butylpyridinium bromide (XIII)** was synthesized as described above for salt **III** from pyridine and excess 1-boromobutane. Yield 94%, mp 99°C. ¹H NMR spectrum (CD₃CN), δ, ppm: 0.93 t (3H, CH₃, J = 7.3 Hz), 1.35 m (2H, CH₂CH₃), 4.72 m (2H, NCH₂), 8.08 t (2H, 3-H, 5-H, J = 6.2 Hz), 8.55 t (1H, 4-H, J = 7.5 Hz), 9.14 m (2H, 2-H, 6-H); the CH₂CH₂CH₃ signal was obscured by the signal from the residual protons in the solvent. ¹³C NMR spectrum (CD₃CN), δ_C, ppm: 13.60 (CH₃), 19.70 (CH₂CH₃), 33.86 (CH₂CH₂CH₃), 61.92 (NCH₂), 129.06 (C³, C⁵), 145.63 (C², C⁶), 146.39 (C⁴). **1-Butylpyridinium trifluoromethanesulfonate** (**XIV**) was synthesized as described above for salt **IV**. Light brown liquid, $n_D^{22} = 1.4606$. ¹H NMR spectrum (CDCl₃), δ, ppm: 0.94 t (3H, CH₃, J = 7.3 Hz), 1.36 m (2H, CH₂CH₃), 1.98 m (2H, CH₂CH₂CH₃), 4.68 t (2H, NCH₂, J = 7.5 Hz), 8.05 t (2H, 3-H, 5-H, J = 5.6 Hz), 8.47 t (1H, 4-H, J = 7.7 Hz), 8.98 d (2H, 2-H, 6-H, J = 5.5 Hz). ¹³C NMR spectrum (CDCl₃), δ_C, ppm: 12.74 (CH₃), 18.62 (CH₂CH₃), 32.84 (CH₂CH₂CH₃), 61.40 (NCH₂), 120.58 q (CF₃, J = 320.1 Hz), 128.08 (C³, C⁵), 144.12 (C², C⁶), 145.08 (C⁴). ¹⁹F NMR spectrum (CDCl₃): δ_F –79.13 ppm. Found, %: C 42.22; H 4.96; F 19.44; N 4.94; S 10.80. C₁₀H₁₄F₃NO₃S. Calculated, %: C 42.10; H 4.95; F 19.98; N 4.91; S 11.24. **1-Benzylpyridinium chloride** (**XV**) was synthesized as described above for salt **III** from pyridine and excess 1-chlorobutane. Yield 100%, mp 129°C. ¹H NMR spectrum (CD₃CN), δ, ppm: 6.15 s (2H, NCH₂), 7.40 m (3H, *m*-H, *p*-H), 7.67 m (2H, *o*-H), 8.04 t (2H, 3-H, 5-H, J = 6.8 Hz), 8.50 t (1H, 4-H, J = 7.8 Hz), 9.53 d (2H, 2-H, 6-H, J = 5.8 Hz). ¹³C NMR spectrum (CD₃CN), δ_C, ppm: 64.23 (CH₂), 129.27 (C^p), 130.17 (C^o), 130.23 (C^m), 130.45 (C³, C⁵), 135.04 (C^l), 146.02 (C², C⁶), 146.75 (C⁴). **1-Benzylpyridinium trifluoromethanesulfonate** (XVI) was synthesized as described above for salt IV. mp 61°C. ¹H NMR spectrum (CD₃CN), δ , ppm: 5.77 s (2H, NCH₂), 7.46 m (5H, C₆H₅), 8.04 t (2H, 3-H, 5-H, J = 7.0 Hz), 8.52 t.t (1H, 4-H, J = 1.0, 7.8 Hz), 8.86 d (2H, 2-H, 6-H, J = 5.6 Hz). ¹³C NMR spectrum (CD₃CN), $\delta_{\rm C}$, ppm: 65.24 (CH₂), 121.93 q (CF₃, J = 320.1 Hz), 129.51 (C^p), 130.11 (C^o), 130.38 (C^m), 130.75 (C³, C⁵), 134.03 (Cⁱ), 145.46 (C², C⁶), 147.08 (C⁴). ¹⁹F NMR spectrum (CD₃CN): $\delta_{\rm F}$ -79.045 ppm. 1-(2,2,3,3-Tetrafluoropropyl)pyridinium trifluoromethanesulfonate (XVII) was synthesized as described above for salt II from pyridine and 2,2,3,3-tetrafluoropropyl trifluoromethanesulfonate. Light brown liquid. 1 H NMR spectrum (CD₃CN), δ, ppm: 5.35 t (2H, CH₂CF₂, J = 15.0 Hz), 6.41 t.t (1H, CHF₂, J = 52.0, 4.0 Hz), 8.19 t (2H, 3-H, 5-H, J = 7.2 Hz), 8.72 t.t (1H, 4-H, J = 1.1, 7.8 Hz), 8.87 d (2H, 2-H, 6-H, J = 5.9 Hz). 13 C NMR spectrum (CD₃CN), δ_C, ppm: 59.36 t (CH₂CF₂, J = 21.7 Hz), 110.30 t.t (CHF₂, J = 249.2, 34.2 Hz), 114.69 t.t (CH₂CF₂, J = 252.9, 28.7 Hz), 121.97 q (CF₃, J = 320.1 Hz), 129.90 (C³, C⁵), 147.69 (C², C⁶), 149.30 (C⁴). 19 F NMR spectrum (CD₃CN), δ_F, ppm: -79.25 s (3F, CF₃), -122.23 s (2F, CH₂CF₂), -137.70 d.t (2F, CHF₂, J = 52.2, 3.1 Hz). 1-(2,2,3,3,4,4,5,5-Octafluoropentyl)pyridinium trifluoromethanesulfonate (XVIII) was synthesized as described above for salt II from pyridine and 2,2,3,3,4,4,5,5-octafluoropentyl trifluoromethanesulfonate. Light brown liquid. ¹H NMR spectrum (CD₃CN), δ , ppm: 5.58 t (2H, CH₂CF₂, J = 15.4 Hz), 6.55 t.t (1H, CHF₂, J = 51.0, 5.3 Hz), 8.22 t (2H, 3-H, 5-H, J =7.2 Hz), 8.75 t (1H, 4-H, J = 7.9 Hz), 8.97 d (2H, 2-H, 6-H, J = 6.0 Hz). ¹³C NMR spectrum (CD₃CN), $\delta_{\rm C}$, ppm: 59.23 t (CH₂CF₂, J = 20.5 Hz), 109.08 t.t (CHF₂, J = 253.5, 31.6 Hz), 119.48 q (CF₃, J = 319.6 Hz), 130.15 (C^3 , C^5), 148.09 (C^2 , C^6), 149.77 (C^4); signals from carbons atoms in the other CF₂ groups were not identified. ¹⁹F NMR spectrum (CD₃CN), δ_F , ppm: $-79.41 \text{ s } (3\text{F, CF}_3), -118.08 \text{ quint } (2\text{F, CH}_2\text{CF}_2, J =$ 13.6 Hz), -124.78 m (2F, CH₂CF₂C \mathbf{F}_2), -130.04 m (2F, CF_2CF_2H), -139.00 d.m (2F, CHF₂, J = 51.0 Hz). ## REFERENCES - 1. Wasserscheid, P. and Keim, W., *Angew. Chem., Int. Ed. Engl.*, 2000, vol. 39, p. 3772. - 2. Wilkes, J.S., Levisky, J.A., Wilson, R.A., and Hyssey, C.L., *Inorg. Chem.*, 1982, vol. 21, p. 1263. - 3. Green, L., Hemeon, I., and Singer, R.D., *Tetrahedron Lett.*, 2000, vol. 41, p. 1343. - 4. Hardacre, Ch., Holbrey, J.D., Katdare, S.P., and Seddon, R.R., *Green Chem.*, 2002, vol. 4, p. 143. - 5. Bonhote, P., Dias, A-P., Papageorgiou, N., Kalyanasundaram, K., and Gratzel, M., *Inorg. Chem.*, 1996, vol. 35, p. 1168. - 6. Kitazume, T., Zulfiqar, F., and Tanaka, G., *Green Chem.*, 2000, vol. 2, p. 133. - 7. Zulfiqar, F. and Kitazume, T., *Green Chem.*, 2000, vol. 2, p. 137. - 8. McFarlane, D.R., Sun, J., Golding, J., Meakin, P., and Forsyth, M., *Electrochim. Acta*, 2000, vol. 45, p. 1271. - 9. Arduengo, A.J., III, Acc. Chem. Res., 1999, vol. 32, p. 913. - 10. Xu, L., Chen, W., and Xiao, J., *Organometallics*, 2000, vol. 19, p. 1123. - 11. Clement, N.D., Cavell, K.J., Jones, K., and Elsevier, C.J., *Angew. Chem., Int. Ed.*, 2004, vol. 43, p. 1277. - 12. Stang, P.J., Hanack, M., and Subramanian, L.R., *Synthesis*, 1982, p. 85. - 13. McBee, E.T., Battershell, R.D., and Braendlin, H.P., *J. Am. Chem. Soc.*, 1962, vol. 84, p. 3157. - 14. Merrigan, T.L., Bates, E.D., Dorman, S.C., and Davis, J.H., Jr., *Chem. Commun.*, 2000, p. 2051. - 15. Singh, R.P., Manandhar, S., and Shreeve, J.M., *Tetrahedron Lett.*, 2002, vol. 43, p. 9497. - 16. Beard, C.D., Baum, K., and Grakauskas, V., *J. Org. Chem.*, 1973, vol. 38, p. 3673. - 17. Cohen, W.V., J. Org. Chem., 1961, vol. 26, p. 4021. - 18. Hansen, R.L., J. Org. Chem., 1965, vol. 30, p. 322. - 19. Hansen, R.L., Fr. Patent no. 1470669, 1967; *Chem. Abstr.*, 1967, vol. 67, p. 63788.