SHORT COMMUNICATIONS

New Mesogenic Monomer for Liquid-Crystalline Polymers Based on 3,4-Dihydroxybenzophenone

E.V. Dil'dina^a, M.N. Bol'shakov^b, I.P. Vasil'eva^a, N.V. Klimova^a, L.I. Rudaya^a, V.V. Shamanin^b, and S.S. Skorokhodov^b

^aSt. Petersburg State Technological Institute, St. Petersburg, 190013 Russia e-mail: rudi@mail.avmgroup.ru ^bInstitute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg

Received January 18, 2006

DOI: 10.1134/S1070428006080227

The acylation of 3,4-dihydroxybenzophenone (**I**) [1, 2] with 4-methoxycarbonyl-4'-biphenylcarbonyl chloride (**II**) in a water-organic medium under the conditions of the phase-transfer catalysis (CH₂Cl₂, 2% water solution of NaOH, phase-transfer catalysts[N(C₄H₉)₄]Br and [N(CH₃)₃C₁₆H₃₃)]Cl) yielded dibenzyl 4-benzoyl-1,2-phenylenebis-[4'-(oxycarbonyl)biphenyl-4-carboxylate] (**III**). The debenzylation of ester **III** effected by HBr, CH₃COOH, or CF₃COOH [3, 4] led to the formation of 4-benzoyl-1,2-phenylenebis[4'-(oxycarbonyl)biphenyl-4-carboxylic acid] (**IV**), a new V-shaped monomer with a photoactive and reactive carbonyl group.

Dibenzyl 4-benzoyl-1,2-phenylenebis-[4'-(oxy-carbonyl)biphenyl-4-carboxylate] (III). To a solution containing 1.83 g (8.5 mmol) of 3,4-dihydroxybenzophenone, 71 ml of 2.5% NaOH solution, 0.069 g of [N(C₄H₉)₄]Br and 0.0443 g of [N(CH₃)₃C₁₆H₃₃]Br was added 3 ml of CH₂Cl₂. The mixture was stirred for 10 min, then 6.58 g (17.94 mmol) of biphenylcarbonyl chloride **II** in 60 ml of anhydrous dichloromethane was added thereto. The mixture was stirred for 1 h at room temperature under an inert gas atmosohere. The organic layer was separated, washed with water, dried with CaCl₂, and then poured into 100 ml of petroleum ether.

The separated precipitate was filtered off and dried in a thermostat. Yield 3.83 g (50%), mp 57–58°C, R_f 0.67 (eluent ethyl acetate–toluene, 1:6). IR spectrum, cm⁻¹: 2921, 2951 (CH₂), 1744, 1718 (C=O of ester), 1660 (C=O of ketone). Found, %: C 74.03, 74.10; H 4.06, 4.00. C₅₅H₃₈O₉. Calculated, %: C 74.31; H 3.96.

4-Benzoyl-1,2-phenylenebis[**4'-(oxycarbonyl)-biphenyl-4-carboxylic acid**] (**IV**). To a solution of 3.83 g (4.54 mmol) of compound **III** in 55 ml (84.43 g, 0.741 mol) of trifluoroacetic acid was added at stirring 6.05 g of acetic acid containing 1.98 g (2.447 mmol) of HBr. The reaction mixture was left standing for 24 h, the separated precipitate was filtered off and washed with 2-propanol and acetone till the removal of the characteristic odor of benzyl bromide. The precipitate was dried in air, and then in a thermostat. Yield 2.23 g (60%), mp >320°C, R_f 0.66 (eluent toluene–ethyl acetate, 1:1). IR spectrum, cm⁻¹: 3064, 3003 (O–H), 1743 (C=O of ester), 1660 (C=O of ketone). ¹H NMR spectrum, δ, ppm: 7.0–8.3 (group of signals), 4.2 (COOH). Found, %: C 74.44,

74.40; H 4.10, 4.00. C₂₉H₂₆O₉. Calculated, %: C 74.31; H 3.96.

IR spectra were recorded on FTIR-8400S SHIMADZU instrument from samples pelletized with KBr. 1 H NMR spectra from solutions in DMSO- d_6 were registered on a spectrometer Bruker AC-200. The elemental analysis was carried out on an automatic Perkin-Elmer analyzer. The reaction progress was monitored by TLC on Silufol UV-254 plates.

The study was carried out under a financial support of the Russian Foundation for Basic Research (grant no. 04-03-32951).

REFERENCES

- 1. Dobner, O., Lieb. Ann., 1881, vol. 210, p. 246.
- 2. Rosenblatt, D.H., Epstein, J., and Levitch, M., *J. Am. Chem. Soc.*, 1953, vol. 75, p. 3277.
- 3. Hasslin, H-W., Droscher, M., and Wegner, G., *Makromol. Chem.*, 1980, vol. 181, p. 301.
- 4. Demina, E.V., Bol'shakov, M.N., Klimova, N.V., Rudaya, L.I., and Yurre, T.A., *Zh. Org. Khim.*, 2002, vol. 38, p. 1869.