SHORT COMMUNICATIONS ## Synthesis of 7,8-Dihydro Analogs by Reaction of 20-Hydroxyecdysone Derivatives with Lithium Aluminum Hydride S.R. Afon'kina, R.V. Shafikov, R.G. Savchenko, I.V. Galyautdinov, and V.N. Odinokov Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa, 450075 Russia e-mail: ink@anrb.ru Received February 20, 2006 **DOI:** 10.1134/S1070428006080239 We reported formerly on a hydride reduction of the 6-keto group in 20-hydroxyecdysone derivatives leading to the formation of the corresponding 6α - and 6β -epimeric alcohols of the 5α -series [1]. We established in this study that the reaction of 20-hydroxyecdysone diacetonide (I) and its 24,25/25,26-anhydro derivatives II (a mixture of Δ^{24}/Δ^{25} -alkenes, ~3:2) with LiAlH₄ gave rise to the corresponding 7,8-dihydro analogs III and IV (alongside with 6-hydroxy derivatives V and VI respectively). In the ¹³C NMR spectra of saturated ketones III and IV the changes observed compared with the spectra of initial conjugated enones I and II are due to the reduction of the Δ^7 -bond. The difference consists in the disappearance of the signals from the sp^2 -hybridized carbons in the region ~120 and 165 ppm and the appearance of the peaks from atoms C⁷ and C⁸ further upfield (δ ~41 and ~44 ppm respectively). The lack of the Δ^7 -bond caused a considerable downfield shift ($\Delta\delta$ ~9 ppm) of the signal of the C^6 atom in the spectra of ketones III and IV. Although the poor solubility of the 20-hydroxyecdysone decreased its conversion (less than 20%), its reaction with $LiAlH_4$ in ethers (THF, Et_2O) led to the formation of the corresponding dihydro analog whose ${}^{1}H$ and ${}^{13}C$ NMR were identical to those of 7,8 α -dihydro-20-hydroxyecdysone [2]. Thus the reduction of the Δ^{7} -bond with LiAlH₄ does not cause epimerization at the C⁵, and the hydrogen at the newly arising chiral center C⁸ has the α -orientation. Consequently, the dihydro derivatives **III** and **IV** obtained are 7,8 α -dihydro-20-hydroxyecdysone and 7,8 α -dihydro-24,25/25,26-anhydro-20-hydroxyecdysone diacetonides respectively. (20R,22R)- 2β , 3β :20,22-Bis[(dimethylmethylene)-dioxy]- 14α ,25-dihydroxy- 5β ,8 α -cholestan-6one $(7.8\alpha$ -dihydro-20-hydroxyecdysone 2,3:20,22diacetonide) (III). To a stirred suspension of 0.27 g (7.1 mmol) of LiAlH₄ in 25 ml of Et₂O was added under an argon atmosphere at ~25°C a solution of 0.82 g (1.46 mmol) of diacetonide I [3] in 25 ml of anhydrous Et₂O. The mixture was stirred for 20 min at room temperature and 30 min at 36°C. Then the reaction mixture was cooled to 0°C, 3 ml of H₂O and ~2 ml of 5% HCl was added (till weakly acidic reaction). The organic layer was separated, the water layer was extracted with Et₂O (3×20 ml). The combined ether solutions were evaporated in a vacuum, and the residue was subjected to column chromatography (5 g of SiO₂, eluent CHCl₃). A fraction of formerly described [1] alcohols V was isolated, 0.59 g (72%), R_f 0.30, CHCl₃–MeOH, 10:1, and 0.2 g (24%) of compound III (R_f 0.69, CHCl₃-MeOH, 10:1), mp 275–277°C, $[\alpha]_D^{19}$ +14.2° (c 11.97, CHCl₃). IR spectrum, ν , cm⁻¹: 1700 (C=O). ¹H NMR spectrum, δ , ppm: 1.10 s (3H, H₃C²¹), 1.19 s (9H, H₃C¹⁸, H_3C^{26} , H_3C^{27}), 1.35 s (3H, H_3C^{19}), 1.26 s, 1.27 s, 1.38 s and 1.47 s (12H, Me₂C), 1.54–2.09 m (17H, CH, CH₂), 2.16 m (1H, HC^{7 α}), 2.29 m (1H, HC¹⁷), 2.33 d.t (1H, HC^8 , J_{8-9} 13.5, $J_{8-7\alpha}$ 4.0 Hz), 2.55 br.s (1H, HC^5 , $w_{1/2}$ 8.9 Hz), 2.68 t (1H, HC^{7 β}, J 13.4 Hz), 3.62 m (1H, HC^{22} , $w_{1/2}$ 13.0 Hz), 4.17 m (1H, HC^3 , $w_{1/2}$ 12 Hz), 4.45 m (1H, HC², $w_{1/2}$ 13.5 Hz). ¹³C NMR spectrum, δ , ppm: $18.1 \text{ t} (C^{11})$, $18.4 \text{ q} (C^{18})$, $21.0 \text{ t} (C^{16})$, $21.3 \text{ q} (C^{21})$, 23.5 t (C^{23}), 25.3 t (C^4), 26.7 q (C^{19}), 25.8 q and 28.9 q $(2,3-Me_2CO_2)$, 26.7 q and 29.6 q $(20,22-Me_2CO_2)$, 28.4 q (C^{26}), 29.0 q (C^{27}), 31.3 t (C^{15}), 33.1 t (C^{12}), 34.2 t (C¹), 39.5 s (C¹⁰), 41.3 t (C²⁴), 41.3 t (C⁷), 41.5 d (C^9) , 43.7 d (C^8) , 46.8 s (C^{13}) , 49.7 d (C^{17}) , 50.5 d (C^5) , $70.2 \text{ s} (C^{25})$, $70.8 \text{ d} (C^3)$, $73.5 \text{ d} (C^2)$, $81.8 \text{ d} (C^{22})$, 84.4 s (C^{20}) , 84.9 s (C^{14}) , 106.8 s $(20,22-Me_2CO_2)$, 107.6 s $(2,3-Me_2CO_2)$, 212.1 s (C^6) . A mixture of (20R,22R)-2 β ,3 β :20,22-bis[(dimethylmethylene)dioxy]-14 α -hydroxy-5 β ,8 α -cholest-24/25-en-6-ones (a mixture of 24,25/25,26-anhydro-7,8 α -dihydro-20-hydroxyecdysones 2,3: 20,22-diacetonides) (IV). To a stirred suspension of 0.46 g (12.1 mmol) of LiAlH₄ in 10 ml of anhydrous THF was added under an argon atmosphere at ~0°C a solution of 1.3 g (2.41 mmol) of alkenes II [4, 5] in 5 ml of THF. The reaction mixture was stirred for 3 h at room temperature, then cooled to 0° C, 5 ml of H₂O and \sim 13 ml of 5% HCl was added (till weakly acidic reaction). The organic layer was separated, the water layer was extracted with EtoAc (3×50 ml). The combined organic solutions were evaporated in a vacuum, and the residue was subjected to column chromatography (20 g of SiO₂, eluent CHCl₃). A fraction of formerly described [1] alcohols VI was isolated, 0.71 g (54%), R_f 0.4, CHCl₃– MeOH, 20:1, and 0.33 g (25%) of compound **IV** (R_f 0.5, CHCl₃-MeOH, 20:1), mp 190–192°C, $[\alpha]_D^{19}$ +16.1° (c 8.83, CHCl₃). IR spectrum, v, cm⁻¹: 1695 (C=O). ¹H NMR spectrum, δ , ppm: 0.93 s (3H, H₃C¹⁹), 1.11 s $(3H, H_3C^{18})$, 1.14 s $(3H, H_3C^{21})$, 1.28 s, 1.38 s, 1.40 s and 1.50 s (12H, 2Me₂C), 1.56–2.20 m (~14.3H, CH, CH₂), 1.62 s (~2.7H, H₃C²⁶), 1.70 s and 1.72 s (~3H, H_3C^{27} and H_3C^{27}), 2.22 m (1H, $HC^{7\alpha}$), 2.30 m (1H, HC^{17}), 2.37 m (1H, HC^8), 2.57 br.s (1H, HC^5 , $w_{1/2}$ 10.7 Hz), 2.70 t (1H, HC^{7 β}, J13.4 Hz), 3.65–3.71 m (1H, HC²² and HC²²), 4.20 m (1H, HC³, $w_{1/2}$ 13.0 Hz), 4.49 m (1H, HC², $w_{1/2}$ 22.6 Hz), 4.69 br.s and 4.72 br.s $(1.3H, H_2C^{26}, \text{ for both } w_{1/2} 6.8 \text{ Hz}), 5.17 \text{ t} (0.7H, H_3C^{24},$ J 6.2 Hz). ¹³C NMR spectrum, δ , ppm: 17.9 q (C¹⁸), 18.2 t (C^{11}), 18.6 q (C^{27}), 21.1 t (C^{16}), 21.4 q (C^{21} , C^{21}), 22.5 q (C^{27}), 25.4 t (C^{23}), 25.7 q (C^{19}), 25.9 q (C^{26}), 26.0 q and 28.5 q (2,3-Me₂C), 26.8 q and 29.6 q (20,22- $\underline{\text{Me}}_{2}\text{C}$), 27.7 t (C⁴), 31.5 t (C¹⁵), 33.3 t (C¹²), 34.4 t (C²⁴), 35.0 t (C^{I}), 39.6 s (C^{I0}), 41.3 t (C^{7}), 41.6 d and 41.7 d (C^9) , 43.8 d and 43.9 d (C^8) , 46.9 s (C^{13}) , 50.0 d (C^{17}) , $50.1 d(C^{17})$, $50.6 d(C^5)$, $70.9 d(C^3)$, $73.5 d(C^2)$, 80.6 d (C^{22}) , 81.0 d $(C^{22'})$, 84.1 s (C^{20}) , 84.98 s and 85.04 s (C^{14}) , 106.7 s and 106.8 s (20,22-Me₂CO₂), 107.6 s (2,3- Me_2CO_2), 110.0 t (C²⁶), 120.4 d (C²⁴), 133.5 g (C²⁵), 145.3 s (C²⁵), 211.9 s (C⁶). IR spectra were recorded on a spectrophotometer Specord 75IR from mulls in mineral oil. ¹H and ¹³C NMR spectra were registered on a spectrometer Bruker AM-300 (at operting frequencies 300.13 and 75 MHz respectively) from solutions in CDCl₃. Chemical shifts are reported relative to TMS used as an internal reference. Melting points were measured on a small Boëtius heating block. The specific rotation was measured on a Perkin-Elmer 141 polarimeter. TLC monitoring was performed on Silufol plates, development with a vanillin solution in ethanol acidified with sulfuric acid. The authors are grateful to Dr.Chem.Sci. L.M.Khalilov for taking part in discussing the NMR spectra. The study was carried out under a financial support of the Russian Foundation for Basic Research (grant no. 04-03-33103). ## **REFERENCES** - 1. Odinokov, V.N., Savchenko, R.G., Shafikov, R.V., Afon'kina, S.R., Khalilov, L.M., Kachala, V.V., and Shashkov, A.S., *Zh. Org. Khim.*, 2005, vol. 41, p. 1323. - 2. Suksamrarn, A., Tanachatchairatana, T., and Sirigarn, C., *Tetrahedron*, 2002, vol. 58, p. 6033. - 3. Odinokov, V.N., Galyautdinov, I.V., Nedopekin, D.V., and Khali-lov, L.M., *Izv. Akad. Nauk, Ser. Khim.*, 2003, p. 220. - 4. Yingyongnarongkul, B. and Suksamrarn, A., *Tetrahedron*, 1998, vol. 54, p. 2795. - 5. Odinokov, V.N., Savchenko, R.G., Nazmeeva, S.R., Galyautdinov, I.V., and Khalilov, L.M., *Zh. Org. Khim.*, 2002, vol. 38, p. 550.