SHORT COMMUNICATIONS

3-Nitro- and 3-Bromo-3-nitroacrylates in Reactions with 2-Phenyl-1,3-indanedione

A.S. Smirnov, S.V. Makarenko, V.M. Berestovitskaya, A.I. Pekki, and K.S. Konovalenko

Herzen Russian State Pedagogical University, St. Petersburg, 191186 Russia e-mail: kohrgpu@yandex.ru

Received January 18, 2006

DOI: 10.1134/S1070428006080264

Alkyl 3-nitroacrylates are highly reactive reagents used in the designed synthesis of practically important substances. In particular methods were developed based on these compounds for preparation of oryzoxymycin antibiotic [1], and also for β-amino acids used in the synthesis of β-peptides [2, 3]. An introduction of a halogen into the molecules of alkyl 3-nitroacrylates a priori extends their synthetic opportunities [4, 5] and makes it possible to regard the halonitroacrylates as promising synthons in designing compounds with desired properties. In this respect the investigation of reactions of 3-nitro- and 3-bromo-3-nitroacrylates **I–IV** with C-nucleophiles is of a great interest, in particular, the reaction with 2-phenyl-1,3-indandione which possesses its proper importance as

ROOC
$$X$$
 $+$ NO_2 $+$ H

I-IV

ROOC
$$X$$
 (H_X , Br)

O $H_{\overline{B}}$

Ph NO_2

V-VIII

X = H, R = Me(I, V), Et(II, VI); X = Br, R = Me(III, VII), Et(IV, VIII).

an anticoagulant and which is used in the treatment of thrombosis as a phenindione medicine [6, 7].

Our studies demonstrated that the mentioned substrates **I–IV** readily added 2-phenyl-1,3-indanedione (in benzene solution at equimolar reagents ratio in the presence of a catalytic amount of triethylamine) forming adducts of a Michael condensation **V–VIII**.

Compound V is a colorless viscous liquid, and compounds VI-VIII are crystalline substances; their structure is confirmed by spectral methods. For instance, the IR spectra of adducts VII and VIII contain the absorption bands of β-dicarbonyl (1715–1750 cm⁻¹), nitro (1350, 1575–1580 cm⁻¹) groups and multiple C=C bonds of the aromatic rings (1600 cm⁻¹). It should be noted that the split bands in the region 1700–1750 cm⁻¹ are typical of the β-diketo fragments [8], and the observed large distance between the bands of the symmetric and antisymmetric vibrations of the nitro group ($\Delta \nu \sim 230$ cm⁻¹) is characteristic of the geminal location of a nitro group and a halogen atom [9]. In the ¹H NMR spectra all the signals from the structural fragments of the compounds were revealed. In particular, the ¹H NMR spectrum of compound VII contained a double set of proton signals from the methine and methyl groups corresponding to the existence of the compound as a mixture of two diastereomers in a ratio (VIIa):(VIIb) = 12:1. According to the ¹H NMR data the ethoxy analog VIII is stereo homogeneous. Compounds V-VIII obtained may be regarded as precursors of the β-alanine containing a pharmacophoric fragment of 2-phenyl-1,3indanedione.

Initial nitroacrilates **I** and **II** were synthesized by a modified published procedure [10], and alkyl 3-bromo-

3-nitroacrylates **III** and **IV** were prepared as described in [4].

2-(1-Methoxycarbonyl-2-nitroethyl)-2-phenyl- 1,3-indanedione (V). Yield 76% (eluent benzene), R_f 0.36. IR spectrum, cm⁻¹: 1735, 1710 (C=O), 1600 (C=C), 1560, 1380 (NO₂). 1 H, δ , ppm: 3.56 s (3H, OCH₃), 5.13 d.d (1H, H_A, J_{AB} 14.6, J_{AX} 9.2 Hz), 4.33 d.d (1H, H_B, J_{AB} 14.6, J_{BX} 2.7 Hz), 4.74 d.d (1H, H_X, J_{AX} 9.2, J_{BX} 2.7 Hz), 7.31–8.06 m (9H, C₆H₄, C₆H₅). Found, %: C 64.68, 64.64; H 4.41, 4.40; N 3.95, 3.94. C₁₉H₁₅NO₆. Calculated, %: C 64.59; H 4.28; N 3.96.

2-(2-Nitro-1-ethoxycarbonylethyl)-2-phenyl-1,3-indanedione (VI). Yield 82%, mp 133–135°C (from ethanol). IR spectrum, cm⁻¹: 1750, 1730 (C=O), 1600 (C=C), 1560, 1380 (NO₂). ¹H NMR spectrum, δ , ppm: 0.99 t (3H, CH₃), 3.99 q (2H, OCH₂), 5.13 d.d (1H, H_A, J_{AB} 14.6, J_{AX} 9.8 Hz), 4.30 d.d (1H, H_B, J_{AB} 14.6, J_{BX} 2.4 Hz), 4.70 d.d (1H, H_X, J_{AX} 9.8, J_{BX} 2.4 Hz), 7.31–8.07 m (9H, C₆H₄, C₆H₅). Found, %: C 65.44, 65.42; H 3.95, 3.99; N 3.89, 3.90. C₂₀H₁₇NO₆. Calculated, %: C 65.39; H 4.66; N 3.81.

2-(2-Bromo-1-methoxycarbonyl-2-nitroethyl)-2-phenyl-1,3-indanedione (VIIa, b). Yield 22%, mp 174–176°C (from methanol); ratio of (**VIIa**):(**VIIb**) = 12:1. IR spectrum, cm⁻¹: 1740, 1715 (C=O), 1600 (C=C), 1580, 1350 (NO₂). ¹H NMR spectrum, δ , ppm: isomer **VIIa** 3.59 s (3H, CH₃O), 6.33 d (1H, H_A, J_{AB} 4.9 Hz), 4.47 d (1H, H_B, J_{AB} 4.9 Hz), 7.33–8.07 m (9H, C₆H₄, C₆H₅); isomer **VIIb** 3.66 s (3H, CH₃O), 6.42 d (1H, H_A, J_{AB} 4.3 Hz), 5.21 d (1H, H_B, J_{AB} 4.3 Hz), 7.33–8.07 m (9H, C₆H₄, C₆H₅). Found, %: C 52.84, 52.85; H 3.32, 3.33; N 3.22, 3.23. C₁₉H₁₄BrNO₆. Calculated, %: C 52.80; H 3.26; N 3.24.

2-(2-Bromo-2-nitro-1-ethoxycarbonylethyl)-2-phenyl-1,3-indanedione (VIII). Yield 40% (eluent benzene), mp 133–136°C (from ethanol). IR spectrum, cm⁻¹: 1735, 1715 (C=O), 1600 (C=C), 1575, 1350 (NO₂). ¹H NMR spectrum, δ, ppm: 1.14 t (3H, CH₃), 4.09 q (2H, CH₂O), 6.38 d (1H, H_A, J_{AB} 3.7 Hz), 5.19 d (1H, H_B, J_{AB} 3.7 Hz), 7.33–8.11 m (9H, C₆H₄, C₆H₅). Found, %: C 53.99, 54.00; H 3.91, 3.93; N 3.39, 3.38. C₂₀H₁₆BrNO₆. Calculated, %: C 53.83; H 3.61; N 3.14.

IR spectra were recorded on a spectrophotometer Infra-LYuM FT-02 from solutions in chloroform, c 0.1–0.001 mol l^{-1} . 1 H NMR spectra were registered on a spectrometer Bruker AC-200 (200 MHz) in deuterochloroform; the chemical shifts were measured relative to an external reference HMDS with an accuracy \pm 0.5 Hz. The purification and isolation of individual compounds was performed by recrystallization and column chromatography on silica gel Chemapol 100/250 using Trappe solvents series. The homogeneity of compounds obtained was checked and the reaction progress was monitored by TLC on Silufol UV-254 plates, eluent a mixture hexane–acetone, 2:1, development under UV irradiation and in iodine vapor.

The study was carried out under financial support of the Saint-Petersburg administration (grants PD06-1.3-185, M06-2.5K-379).

REFERENCES

- 1. Bunnange, M.E., Ganesh, Th., Masesane, Ishm. B., Orton, D., and Steel, P.G., *Org. Lett.*, 2003, vol. 5, p. 239.
- 2. Rimkus, A. and Sewald, N., Org. Lett., 2003, vol. 5, p. 79.
- 3. Cheng, R.P., Gellman, S.H., and DeGrado, W.F., *Chem. Rev.*, 2001, vol. 101, p. 3219.
- 4. Sarkisyan, Z.M., Sadikov, K.D., Smirnov, A.S., Kuzhaeva, A.A., Makarenko, S.V., Anisimova, N.A., Deiko, L.I., and Berestovitskaya, V.M., *Zh. Org. Khim.*, 2004, vol. 40, p. 944.
- 5. Sadikov, K.D., Smirnov, A.S., Makarenko, S.V., and Berestovitskaya, V.M., *Zh. Org. Khim.*, 2004, vol. 40, p. 1591.
- 6. Registr lekarstvennykh sredstv Rossii (Registr of Medicines of Russia), Moscow: OOO "RLS-2002", 2002, vol. 9, p. 887.
- 7. Mashkovskii, M.D., *Lekarstvennye sredstva* (Drugs), Moscow: Novaya Volna, 2002, vol. 1, p. 462.
- 8. Neiland, O.Ya., *Tsiklicheskie β-diketony* (Cyclic β-Diketons)m Riga: Izd. Akad. Nauk Latv. SSR, 1961, p. 41.
- 9. Paperno, T.Ya. and Perekalin, V.V., *Infrakrasnye spektry nitro-soedinenii* (Infra Red Spectra of Nitro Compounds), Leningrad: Izd. Leningrad. Gos. Ped. Inst., 1974, 185 p.
- 10. Shechter, H. and Conrad, F., *J. Am. Chem. Soc.*, 1953, vol. 75, p. 5610.