Preliminary communication

Réarrangement d'organomagnésiens dérivant d'halogênures β-éthyléniques

Ph. MIGINIAC et B. COUSSERAN

Laboratoire de Chimie des Organométalliques, Groupe de recherches de Chimie Organique, Faculté des Sciences, 86 - Poitiers (France)

(Reçu le 3 février 1971)

Le magnésien du bromure de cyclopropylméthyle, préparé dans les conditions usuelles conduit, après condensation, à des produits possédant l'enchaînement $CH_2=CH-CH_2-\pm$. Inversement aucune transposition ne semble intervenir quand on utilise le dérivé magnésien d'un halogénure β -éthylénique primaire. Il ne s'agit en fait que d'une apparence car à partir d'un bromure primaire β -éthylénique deutéré en 1, on observe un réarrangement dans lequel les atomes de carbone 1 et 2 s'échangent^{2,3}:

$$CH_2 = C - CH_2 - CD_2 - Br \xrightarrow{\text{Mg}} \xrightarrow{\text{\'ether}}$$

L'intermédiaire cyclopropanique qui a été parfois invoqué pour expliquer ce réarrangement n'a pu être décelé, jusqu'à présent, ni par spectrographie RMN ni par voie chimique*.

Peu de travaux ont été consacrés aux dérivés métalliques d'halogénures β-éthyléniques secondaires ou tertiaires: une courte note signale très brièvement que le magnésien

^{*}Voir les principales références dans réf. 1.

**Ce n'est que lorsque l'halogénure β-éthylénique primaire est substitué en 4 par un groupement vinyle qu deux groupements phényle qu'on obtient, après hydrolyse ou condensation, une certaine quantité de produits cyclopropaniques⁴.

du chlorure (I) donne après condensation avec l'O-méthylhydroxylamine, un mélange des deux amines (II) et (III)²:

$$CH_{3}-CHCI-CH_{2}-CH=CH_{2}\xrightarrow{(1)Mg} \begin{cases} CH_{3}-CH-CH_{2}-CH=CH_{2} & (II) \\ NH_{2} & + \\ CH_{3}-CH-CH=CH_{2} & (III) \end{cases}$$

$$(I) \qquad CH_{3}-CH-CH=CH_{2} & (III)$$

Plus récemment le réarrangement ci-dessous a été mis en évidence⁵:

Enfin le magnésien du chlorure (IV), condensé au bromure d'allyle, conduit a un mélange de deux carbures (V) et (VI) 6:

$$(CH_{2}=CH-CH_{2})_{3}CCI \xrightarrow{(1) Mg/THF} + CH_{2}=CH-CH_{2}(CH_{2}-CH=CH_{2})_{2} (VI)$$

$$(CH_{2}=CH-CH_{2})_{3}CCI \xrightarrow{(1) Mg/THF} + CH_{2}=CH-C(CH_{2}-CH=CH_{2})_{2} (VI)$$

$$(CH_{2}=CH-C(CH_{2}-CH=CH_{2})_{2} (VI)$$

Nous avons préparé puis condensé à l'aldéhyde heptylique les magnésiens des halogénures (VII) (X = Br ou Cl) et (VIII) (X = Br ou Cl):

$$CH_2$$
= CH - $CH(CH_3)$ - CH_2X CH_2 = CH - CH_2 - CHX - CH_3 (VIII) (VIII)

Les résultats que nous avons obtenus sont rassemblés dans le Tableau 1. On observe une réaction normale dans son bilan à partir des halogénures primaires. A partir du bromure secondaire, le bilan de la réaction correspond à une transposition totale quand on opère dans l'éther. Dans le THF, le taux de transposition est très faible (10%); par contre, si le métallique est maintenu à 60° durant 3 h avant de le condenser, le taux de transposition atteint 100%.

A partir du chlorure secondaire, la réaction est normale dans le THF; par contre, si le métallique est chauffé avant condensation, on observe un taux de transposition de 39%.

TABLEAU 1a

CH ₂ =CH-CH(CH ₃)-CH ₂ X	(VII); $CH_2=CH-CH(CH_3)-CH_2-CHOH-n-C_6H_{13}$	(IX);
CH ₂ =CH ₋ CH ₂ -CHX-CH ₃	(VIII); CH_2 = $CH-CH_2-CH(CH_3)-CHOH-n-C_6H_{13}$	(X)

Ald. heptylique + magnésien de	Solvant	Rdt (%)	IX	x
(VII) (X = Br)	éther	63	100%	_
	THF	62	100%	_
(VII) $(X = CI)$	éther	57	100%	
	THF	60	100%	-
(VIII) $(X = Br)$	éther	66	100%	_
	THF	25	10%	90%
	THF, 3h 60°	35	100%	→
(VIII) (X = Cl)	éther	51	47%	53%
	THF	60	_	100%
	THF, 3h 60°	53	39%	61%

^a A partir des bromures (VII) (X = Br) et (VIII) (X = Br), nous avons obtenu des résultats analogues lors de condensation avec l'aldéhyde acétique et le bromure d'allyle.

Nous avons ensuite réalisé une oxydation volontaire de ces magnésiens: les résultats obtenus figurent dans le Tableau 2*. On note que même à partir des halogénures primaires il se forme une certaine quantité d'alcool de transposition. De plus le magnésien du chlorure secondaire donne lieu, au sein du THF, à une transposition notable, alors que par condensation on n'obtient que l'alcool normalement attendu.

TABLEAU 2

$$CH_2=CH-CH(CH_3)-\dot{C}H_2OH$$
 (XI);
 $CH_2=CH-CH_2-CHOH-CH_3$ (XII)

Oxydation du magnésien de	Solvant	Rdt (%)	XI .	XII
(VII) (X = Br)	éther	66	92%	8%
	THF	59	88%	12%
(VII) $(X = C1)$	éther	56	98%	2%
	THF	69	100%	
(VIII) $(X = Br)$	éther	63	75%	25%
	THF	41	18%	82%
(VIII) $(X = CI)$	éther	63	50%	50%
	THF	61	78%	22%

Enfin nous avons pu préparer le bromure cyclopropanique (XIII) pur à 80%**.

[★]Julia et Noel⁷ ont obtenu des proportions différentes des deux alcools (XI) et (XII) par oxydation du magnésien du bromure (VIII) (X = Br) dans l'éther: cette différence est peut être due aux conditions opératoires car nous avons remarqué que la composition du mélange d'alcools d'oxydation variait avec la vitesse d'introduction de l'oxygène. Une remarque analogue a d'ailleurs été faite lors de l'oxydation de magnésien du bromo-1-hexène-5 8.

^{*}Létude des isomères qui accompagnent ce bromure est en cours...

Le magnésien correspondant a été condensé à l'aldéhyde heptylique: dans l'éther on obtient uniquement l'alcool (IX) (Rdt = 40%) et dans le THF on obtient (Rdt = 59%) un mélange d'alcools (IX) (81%) et (X) (19%).

Notons que dans aucune des réactions magnésiennes décrites ci-dessus il n'a été possible de déceler la formation de produit cyclopropanique.

La transposition que nous avons décelée dans certains cas peut s'etre faite:

(a) soit lors de la formation du métallique; (b) soit lors d'une évolution du magnésien normal vers une forme thermodynamiquement plus stable, par exemple par chauffage;
(c) soit lors de la réaction de condensation: des résultats récents viennent en effet de nous montrer qu'il y avait parfois transposition à la condensation.

Nous poursuivons ces recherches afin de préciser la nature des facteurs qui interviennent dans cette transposition.

BIBLIOGRAPHIE

- 1 D.J. Cram, Fundamental of Carbanion Chemistry, Academic Press, 1965, p. 215.
- 2 M.S. Silver, P.R. Shafer, J.E. Nordlander, C. Rüchardt et J.D. Roberts, J. Amer. Chem. Soc., 82 (1960) 2646.
- 3 A. Maercker et K. Weber, Angew. Chem. Intern. Ed. Engl., 8 (1969) 912.
- 4 M.E.H. Howden, A. Maercker, J. Burdon et J.D. Roberts, J. Amer. Chem. Soc., 88 (1966) 1732.
- 5 A. Maercker et R. Geuss, Angew. Chem. Intern. Ed. Engl., 9 (1970) 909.
- 6 W. Reeve et R.J. Bianchi, J. Org. Chem., 34 (1969) 1921.
- 7 M. Julia et Y. Noel, Bull. Soc. Chim. France, (1968) 3749.
- 8 C. Walling et A. Cioffari, J. Amer. Chem. Soc., 92 (1970) 6609.
- J. Organometal Chem., 28 (1971) C5-C8