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SUMMARY

Proton chemicai shifts and spin-spin coupling constants are presented and
discussed for the compounds, (CH3);MM'(CHj;);, where M and M’ are C, Si, Ge and

Sn.

INTRODUCTION

The series of compounds, (CH3);M—M"(CHj)3, where M and M’ represent C,
Si, Ge and Sn, was prepared during an investigation! of cleavage of bonds between
the elements of Group IV-M. The present report was prompted by observations of
trends of the NMR spectral parameters.

RESULTS AND DISCUSSION

Proton chemical shifts and 'J(*3CH) coupling constants are presented in
Tables 1 and 2, respectively. Values of 2J(*°SiH), 2J{SnH), 3J(SnH), and & and
LJ(**CH)for (CH3),M are collected in Table 3. Long-range silicon~hydrogen coupling

TABLE 1
'H CHEMICAL SHIFT DATA OF (CH,);MM’(CH,); cCOMPOUNDS®

(CH,),C—C(CH;); (CH;);C-Si(CH3), (CH;);C-Ge(CH3); (CH;);C-5n(CH,);
0.868 —0.053 0.041 -0.005
(CH,);Si—C(CH), (CH,);Si-Si(CH3)5 (CH3)3Si-Ge(CH,;), (CH;)5Si—-Sn(CHjy);
0.872 0.034 0.120 0.040
(CH;)3Ge~C(CH;), (CH3)3Ge—Si(CH3)s (CH3)3Ge—Ge(CHa)s (CH3)3G=—Sn(CH;);
09526 0.103 0.198 0.115
(CH;3),Sn~C(CH ), (CH;)3Sn—Si(CH3), (CH;)3:Sn—Ge(CHj;); (CH;);Sn—Sn(CH,)5’
1.079 0.228 0.332 0210

< Positive shifts are downfield from the reference tetramethylsilane. * Ref. 3.
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(3J(?*SiH) 6.0 Hz) 6ccurs in (CH3);CSi(CH 3);. Measurements for (CH5);SiSn(CH ;)5
and (CH ;);GeSn(CH;); agree with values reported earlier®. For (CH3)3Pbe(CH 3)3
in benzene, Clark et al. reported §(H) (1.01 ppm), *J(**CH) (134 4 Hz), 2J (Z°7PbI—I)
(—42.1 Hz), *J(*°"PbH) (22.9 Hz) and other spectral parameters’.

Several trends in chemical shifts can be noted. For each M'(CH;); group in
(CH3);MM'(CH3);, variation of M from C to Si to Ge to Sn (columns in Table 1)
shifts the proton resonance downfield. This downfield shift with congeners of higher
atomic number in the § position has been observed also for the methyl resonances of

TABLE 2

J(*3CH)" cOUPLING CONSTANTs OF (CH3);MM’{CH,); coMPOUNDS

(CH;);C—C(CH3)-
1242

(CH,3)3S1-C(CH 3)3
1250

(CH;);Ge—C(CH,);
1245

(CH4)38n-C (EI‘_‘I_s)s

(CHa)JC_Si(CHJ)a
118.6

(CH3),Si~Si(CH3);
118.7

(CH);Ge-Si(CH,);
120.0

(CH;);Sn—-Si(CH )5

(CH 3)3C_Ge (CH 3)s
124.3

(CH;),Si—-Ge(CH,),
1253

(CH ;);Ge-Ge(CH5);
125.7

{CH3)3Sn-Ge(CH),

(CH3);C-Sn{CH,),
126.9

(CH,);Si—Sn(CH;),
127.9

(CH,) 3Ge—Sn(CH3)3
1285

(CH,),50-Sn(CH;),

124.1 120.1 1260 +128.0°
2 Hz. PRef. 4.
TABLE 3
MISCELLANEOUS NMR SPECTRAL PARAMETERS
M (CH 3);MSi(CH,); (CH;);MSn(CH;)s (CH,;).M
2J(?9SiH) (Hz) :
3J(1'9SnH)? (Hz) 2J(*'°SnH)’ (Hz) 4 (ppm)® *J(*3CH) (H2)"
C 6.3¢ 65.8 . 496 0.927 124.3
Si 6.40 30.8 47.1 0.000 118.2
Ge 6.1 269 48.7 0.127 1244
Sn 69 —17.3¢ 49.5° 0.070 127.7
Pb 0.727 134.2

@ Also J(*'7SnH) was observed in each case. J(*'’SnH) 0.954 x J(**°SnH). * In dilute CCl, with TMS as
the reference. Ref. 3. < Ref. 5. 4 3J(?9SiH) 6.0 Hz. € Ref 4. ¥ Ref. 6.

CH;3CH,X?"%, (CH,),CHX?®, (CH,);CX"'°, (CH3),SiX'!, [(CH,);Si],Y'!, (CH;)s-
GeX'2, [(CH,),Gel,Y 2, (CH,);SnX "2, (CHs), SnX,!3, CH,SnX,!3, [(CH,)sSn],-
Y% (CH,);PbX'?, and (CH,);MSCH3*¢. The dominant contribution to chemical
shift differences of methyl groups within each of these series including (CH,);MM-
(CH,); appears to be magnetic anisotropy®>-*°.

Another trend may be seen by comparing the chemical shifts of (CH;),M
(column 4, Table 3) and (CH,);(t-C,Ho)M (row 1, Table 1). In each case substituting

* The value for d[(CH,);CSCH,] is slightly anomalous.
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a tert-butyl group for a methyl group shifts the resonance of the remaining methyls
to higher field.

As M’ is varied with M constant in the (CH,;);M-M'(CH ;)5 series, [ M'-
(CH3); ] shifts upfield in the order C < Ge < Sn < Si{rowsin Table 1)**. The same order
was observed for the (CH;), M’ series, Table 3, and interpreted in terms of electronega-
tivities of M’ 3. Different sequences, depending upon whether changes at the f position
or the contiguous position occur, are expected owing to attenuation of the inductive
effect by approximately one-tenth!® thru each bond. For the (CH ;)M , series (diagonal
of Table 1), the contiguous and the B metal atom are being changed, and both M—M
bond anisotropy and inductive effects apparently determine the order of 6(CH ).
Since for compounds having a tert-butyl bonded to C, N, O or F, §[(CH;);C-] in-
creases monotonically with increasing electronegativity of the first-row element (0.25
ppm/y unit)'?, it is interesting to compare available'® §[(CH;);C] values for other
rows in the periodic system: 6[(CH3);C-Si(CH3)3] (0.872 ppm), §{[(CH,);C-S],}
(1.280ppm), [ (CH 3)3CCI](1.592 ppm) ; S[(CH 5)sCGe(CH )31 (0.926 ppm), 5 [(CH 3)5-
CBr] (1.778 ppm); and 8[(CH,);CSn(CH3;);] (1.079 ppm), S[(CH5);CI] (1.940).
Thus within rows in the periodic system, proton resonance shifts downfield with in-
creasing electronegativity of the substituent bound to the tert-butyl group although
the magnitudes of the shifts are much too great to be accounted for by inductive effects
alone.

For each of the four series of (CH3);M—M'(CH3); having M constant and M’
variable, J(**CH) increases as M’ changes from Si to C to Ge to Sn. This variation
of 1J(*3CH), evident within rows of Table 2, is the same as that reported for the (CH 3),,-
M series. No other simple patterns of 'J(CH) values are obvious. McFarlane'’
concluded that variations in 'J(CH) could be accounted for by changes in s-character
if the substituent electronegativities are similar, or by variations in the substituent
electronegativities if the bulk of the substituent varies only slightly. Although com-
pounds in each column in Table 2 roughly fulfill both conditions, no simple trend
emerges. The absence of trends within columns in Table 2 contrasts with observations!?!
of the series (CH3);SiX [1J(!3CH) 118.8 Hz (F), 120.5 (Cl), 121.0 (Br), and 121.5 (I)]
and [(CH,);S1],Y ['J(**>CH) 118.0 (0), 119.5(S), and 120.5 (Se)]. For four analogous
series, (CH;);GeX, [(CHj;);Ge].Y, (CH3);SnX, and [(CHs);Snl,Y, there are ir-
regular variations®>.

For the (CH,);SnM(CH ,), series, 3J(1!°SnH) decreases markedly as the size
of M increases while 2J(*'SnH) varies only slightly and irregularly. For both tri-
methyl-tert-butylsilane and trimethyl-tert-butyltin, 2J(MH) is less than the corres-
ponding reported values for (CH;),M. Dimethyldi-tert-butyltin exhibits'® an even
smaller 2J(MH) value (45 Hz). A strange variation in J(**°Sn—H) with increasing
numbers of intervening bonds occurs in the series: Sn(CH;),, 2J(**°Sn-H) 54.0
Hz'®, (CH3);SnC(CH,);, 3J(*'°Sn-H) 65.8 Hz, Sn[CH,C(CH,);]4, *J(*'°Sn-H)
107.9 Hz?°, and Sn[CH,CH,C(CH3);]4, *J(**°Sn—H) is not observable?!.

EXPERIMENTAL
Trimethyl-tert-butylsilane was prepared by the reaction of tert-butyllithium

** There is a minor exception in the 4th row, Table 1.
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(0.16 mole) with trimethylfluorosilane (0.13 mole) at 0° under a helium atmosphere.
The volatile prcducts were removed from lithium fluoride under vacuum, and tri-
methyl-tert-butylsilane was purified by trap-to-trap distillation; m.p. 76° (lit?2. 77°),
829 yield. (Found: C, 64.54; H, 14.02; Si, 21.35. C;H,Si calcd.: C, 64.52; H, 13.92;
Si, 21.56 %).

Trimethyl-tert-butylgermane was prepared from the combination of tert-
butyllithium (0.063 mole) in hexane (35 m!) with trimethylbromogermane (0.037 mole)
under a helium atmosphere. The mixture was refluxed for 2 h and preducts distilling
above 70° were collected. A solid was isolated by vapor phase chromatography (VPC)
and recrystallized from ethyl ether at —78°23, m.p., 71-72°. (Found: C, 47.56; H,
10.95; Ge, 41.99; C,;H,3Ge calcd.: C, 48.09; H, 10.38; Ge, 41.52%,.)

Trimethyl-tert-butyltin was obtained by the dropwise addition of trimethyltin
chloride (0.05 mole) dissolved in pentane (15 ml) to tert-butyllithium (0.06 mole) in
pentane under a helium atmosphere. The solution was refluxed for 1 h. A fraction con-
taining the desired product was obtained by fractional distiliation and purified by
VPC, low temperature recrystallization??, and finally trap-to-trap distiliation; m.p.
31.5° 419, yield. (Found: C, 38.31; H, 8.19. C,;H,Sn calcd.: C, 38.06; H, 8.21%,)

Hexamethylethane?* and the other compounds were prepared previously®.

A Hewlett—Packard Model 5752 gas chromatograph with a thermal conducti-
vity detector and variable oven temperature control was used to purify the compounds.
Separations and analyses were performed on columns packed with Apiezon L on
firebrick (analytical, 1/8” x 12', and preparative, 1/2” x 8'). Retention times relative
to hexamethylethane were measured at 100° with a helium flow rate of 66 mi/min for
(CH;)¢MM’ where MM'=CC (1.00), CSi (0.68), CGe (1.03), SCn (1.77), SiSi (0.45),
SiGe (1.03), SiSn (2.01), GeGe (1.22), and GeSn (2.57).

NMR measurements were made with a Bruker Scientific HXF-10 spectrometer
operating at 90 MHz with a probe temperature of 30°. Unless stated otherwise, NMR
data are for solutions containing carbon tetrachloride, approximately 5%, v/v (CH;),-
MM, and 59 v/v chloroform which served as the internal standard and as the lock-
signal. In this solvent system, §(TMS/CHCI;) is 7.233 ppm. All chemical shifts are
reported with respect to TMS. *J(*3CH) values are for pure liquids or saturated
CCl,/(CH3)¢MM’ solutions.
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