Preliminary communication

Isomerism in ruthenium(II) isocyanide complexes

B.E. PRATER

Department of Inorganic Chemistry, University of Newcastle upon Tyne, NE1 7RU (Great Britain)

(Received December 7th, 1970)

With the exception of the complexes $RuX_2(CNR)_4$ (X = Cl, Br, I, CN; R = alkyl or aryl)¹⁻³, compounds of ruthenium containing isocyanide ligands have been little investigated. I now report the preparation of some ruthenium(II) isocyanide complexes containing triphenyl-phosphine, -arsine and -stibine

The interaction of $RuX_2(PPh_3)_3$ (X = Cl, Br)⁴, $RuX_3(AsPh_3)_2(CH_3OH)$ (X = Cl, Br)⁴, $RuCl_2(SbPh_3)_3$ and $RuBr_2(SbPh_3)_4$ with ethyl isocyanide in an appropriate solvent (see Table 1) gives complexes of general formula $Ru(EtNC)_2(EPh_3)_2X_2$ (E = P, As, Sb; X = Cl, Br). These can be isolated as yellow to red, air-stable crystals. Their IR spectra show only one band of significant intensity in the $\nu(NC)$ region (Table 1), indicating a *trans* configuration for the EtNC ligands.

When the *trans* complexes are heated dry at 240° or in refluxing 2-methoxy-ethanol, isomerisation occurs, and the complexes *cis*-Ru(EtNC)₂(EPh₃)₂ X₂ can be isolated as colourless to yellow, air-stable crystals. A *cis* configuration is assigned to the EtNC groups on the basis of their IR spectra in the ν (NC) region. Similar isomer-

TABLE 1

Compound ^a	Colour	ν(NC) ^b	Reaction solvent
trans-Ru(EtNC)2(PPh3)2Cl2	Yellow	2146vs	Acetone
trans-Ru(EtNC)2(PPh3)2Br2	Orange	2183vw, 2135vs	Acetone
trans-Ru(EtNC)2(AsPh3)2Cl2	Orange	2146vs	Methanol
trans-Ru(EtNC)2(AsPh3)2Br2	Red-brown	2185vw, 2140vs	Methanol
trans-Ru(EtNC)2(SbPh3)2Cl2	Orange-pink	2136vs	Chloroform
trans-Ru(EtNC)2(SbPh3)2Br2	Red	2135vs	Chloroform
cis-Ru(EtNC)2(PPh3)2Cl2	White	2182vs, 2139vs, ~2110sh, w	2-Methoxyethanol
cis-Ru(EtNC) ₂ (PPh ₃) ₂ Br ₂	Very pale yellow	2186vs, 2137vs, ~2115sh, w	2-Methoxyethanol
cis-Ru(EtNC) ₂ (AsPh ₃) ₂ Cl ₂	Pale yellow	2181vs, 2140vs, ~2110sh, w	2-Methoxyethanol
cis-Ru(EtNC) ₂ (AsPh ₃) ₂ Br ₂	Pale vellow	2187vs, 2142vs, ~2115sh, w	2-Methoxyethanol
cis-Ru(EtNC)2(SbPh3)2Cl2	Yellow	2165vs, 2127vs, ~2105sh, w	2-Methoxyethanol
cis-Ru(EtNC) ₂ (SbPh ₃) ₂ Br ₂	Yellow	2168vs, 2121vs	2-Methoxyethanol

 $[^]a$ Satisfactory elemental analyses (C, H, N, halogen) obtained for all compounds. b Nujol mull s .

isations have been observed in octahedral ruthenium(II) dicarbony14,5 and bis-nitrile6 complexes.

Far infrared studies are in progress to determine the configuration of the other ligands in these complexes.

ACKNOWLEDGEMENTS

This work was carried out during the tenure of an Earl Grey Memorial Fellowship. I wish to thank Messrs. Johnson, Matthey Ltd., for a loan of ruthenium trichloride.

REFERENCES

- 1 L. Malatesta, G. Padoa and A. Sonz, Gazz. Chim. Ital., 85 (1955) 1112.
- 2 L. Malatesta and G. Padoa, Rend. Ist. Lombardo sci. Pt. 1, 91 (1957) 227.
- 3 W. Hieber and H. Heusinger, J. Inorg. Nucl. Chem., 4 (1957) 179.
- 4 T.A. Stephenson and G. Wilkinson, J. Inorg. Nucl. Chem., 28 (1966) 945.
- P.R. Brookes and B.L. Shaw, Chem. Commun., (1968) 919.
 J.D. Gilbert and G. Wilkinson, J. Chem. Soc., A, (1969) 1749.
- J. Organometal. Chem., 27 (1971) C17-C18