NOTE

ZUR SYNTHESE KOVALENTER ZINN-STICKSTOFF-VERBINDUNGEN

J. LORBERTH

Institut für Anorganische Chemie der Philipps-Universität, Marburg (Deutschland) (Eingegangen den 24. Juni 1969)

Trialkyl- bzw. Triarylstannyllithium-Verbindungen bilden in polaren Lösungsmitteln beständige reaktive Solvate, die im allgemeinen in ionischer Form (R₃Sn⁻Li⁺)_{solv.} oder als Ionenpaar beschrieben werden. Die ¹H-KMR- und ⁷Li-KMR-Spektren der Lösungen unterstützen diese Formulierung^{1,2}, obwohl chemische Folgereaktionen mit diesen Reagenzien nicht immer eindeutig verlaufen und häufig von nicht näher definierten Zersetzungsprodukten begleitet sind.

Ph₃SnLi, Me₃SnLi und Et₃SnLi wurden so z.B. in früheren Arbeiten zur Knüpfung der Zinn-Phosphor³- bzw. Zinn-Bor⁴-Bindung herangezogen. Umsetzungen von Trimethylstannyllithium (als THF-Solvat) mit N-Halogenaminen—die üblicherweise als Verbindungen mit positiv polarisiertem Halogenatom Cl^+ - NX_2^- formuliert werden— sollten nun nach (1) zum Aufbau von Zinn-Stickstoff-Bindungen führen:

$$Me_3Sn-Li+Hal-NX_2 \xrightarrow{THF} Me_3Sn-NX_2+Li-Hal$$
 (1)

N-Halogenamine vermögen, je nach Art und Struktur sowie unter ausgewählten Reaktionsbedingungen, ionisch oder radikalisch aminierend wie auch halogenierend zu wirken:

Um diese Reaktionsmöglichkeiten eventuell mit dem "Standardreagenz" Me₃SnLi abzutasten, wurden folgende N-Halogenamine damit umgesetzt (2-5):

$$Me_3SnLi+Cl-N_3 \xrightarrow{THF} Me_3Sn-SnMe_3, LiN_3$$
 (4)

$$Me_3SnLi + Br - N(SiMe_3)_2 \xrightarrow{THF} Me_3SnN(SiMe_3)_2, Me_3SnBr$$
 (5)

Unter der Annahme annähernd gleicher Reaktionsbedingungen (Lösungsmittel, Konzentrationen der Reaktionspartner) lassen sich aus Gl. (2)–(5) folgende Aussagen machen: Die Reaktionen nach (2) und (5) verlaufen über ionische Zwischenstufen, wobei in (5) gleichzeitig die einzig erfolgreiche Synthese einer Sn-N-Bindung auf diesem Wege zu sehen ist; Me₃SnN (SiMe₃)₂ ist eine bekannte Verbindung, die auch durch andere Reaktionen leicht zugänglich ist^{5,6}. Das Auftreten beträchtlicher Mengen Hexamethyldistannan in (3) und (4) ist ungewöhnlich und war nicht von vorneherein zu erwarten; meistens wird es beobachtet, wenn Trimethylstannyl-Radikale auftreten, die dann zu Me₃Sn-SnMe₃ kombinieren.

Eine weitere Synthesemöglichkeit für kovalente Zinn-Stickstoff-Verbindungen, die aus systematischen Gründen untersucht und ausgearbeitet wurde, besteht in der Umsetzung von Organozinn-Sauerstoff-Verbindungen mit Lithium dialkylamiden nach (6) bzw. (7), wobei die leicht zugänglichen Nitrate bzw. Acylate des Zinns als Ausgangsverbindungen dienten:

$$Me_{3}SnONO_{2} \xrightarrow{\text{LinR}_{2}} Me_{3}Sn-NR_{2}$$

$$R = CH_{3}, C_{2}H_{5}$$
(6)

$$(n-Bu)_{4-n}\operatorname{Sn}(\operatorname{OAc})_n \xrightarrow{\text{LiNR}_2} (n-Bu)_{4-n}\operatorname{Sn}(\operatorname{NR}_2)_n$$

$$\underset{HNR_2}{\longrightarrow} (n-Bu)_{4-n}\operatorname{Sn}(\operatorname{NR}_2)_n$$
(7)

Die Umsetzung nach (6) erfolgt, vermutlich als Redoxreaktion, unter sehr heftiger Wärmetönung; die Ausbeute wird durch die Bildung braun-rot gefärbter Nebenprodukte stark beeinträchtigt.

Hingegen liefern die Acylate Ausbeuten, die z.B. im Fall des n-Tributylzinnacetats an die angegebenen Ausbeuten der Standardmethoden⁷ zur Darstellung kovalenter Zinn-Stickstoff-Verbindungen herankommen.

EXPERIMENTELLE ERGEBNISSE

1. Darstellung der Ausgangsverbindungen

Trimethylzinnchlorid, N-Bromsuccinimid und Trimethylzinn-nitrat-hydrat waren Handelsprodukte, die ohne weitere Reinigung eingesetzt wurden; n-Tributylzinn-acetat, n-Dibutylzinn-diacetat und Zinn-tetraacetat standen zur Verfügung.

Trimethylstannyllithium in THF. Me₃SnCl (50 g, 0.4 Mol) bzw. 66 g (0.2 Mol) Me₃SnSnMe₃ wurden in 300 ml abs. THF unter N₂-Atmosphäre gelöst und 10.7 g (1.6 Mol) Lithium, fein geschnitzelt und mit blanker Oberfläche, unter raschem Rühren zugegeben. Die bei Raumtemperatur sofort einsetzende exotherme Reaktion wurde durch Eiskühlung gemässigt und nach 4 Std. überschüss. Lithium abfiltriert. Der Gehalt der dunkelgrünen Lösungen von Me₃SnLi wurde durch Hydrolyse und Titration mit N HCl bestimmt. Durchschnittliche Ausbeuten bei diesem Ansatz lagen bei 0.3 Mol Me₃SnLi in 300 ml THF. Da die Lösungen nur begrenzt haltbar sind,

NOTE 437

wurden sie sofort nach Gehaltsbestimmung in die Reaktionen eingesetzt.

N-Chlordimethylamin⁸. Diese Verbindung wurde aus Natrium-hypochlorit-Lösung (techn.) und wässriger Dimethylamin-Lösung unter Eiskühlung dargestellt. Die Reinigung erfolgte durch frakt. Kondensation im Hochvak. Ausbeuten wurden zu 70% d.Th. bestimmt, die Reinheit wurde durch das ¹H-NMR-Spektrum bestätigt.

Chlorazid⁹. Man erhält Chlorazid, gasförmig und verdünnt mit trockenem Stickstoff, beim Durchleiten eines Gasstromes Cl₂/N₂ (Verhältnis 1:2) durch eine gesättigte, wässrige Natriumazid-Lösung und anschliessende Trocknung mit P₂O₅. Der Gasstrom ist möglichst gering und von Druckschwankungen absolut frei zu halten, da sonst Explosionen zu befürchten sind. Relativ lange Reaktionszeiten können sich bei dieser Methode nachteilig bemerkbar machen.

N-Bromhexamethyldisilazan¹⁰. Ein Gemisch von 10 g (60 mMol) N-Bromsuccinimid und 10 g (64 mMol) Hexamethyldisilazan in 50 ml abs. CCl_4 wurde in einem braunen Kolben bei Temperaturen unter 20° ca. 3 Std. gerührt, ev. ausgefallenes Succinimid abfiltriert und das Filtrat durch frakt. Destillation aufgearbeitet. Man erhält N-Bromhexamethyldisilazan als rotbraun gefärbte Flüssigkeit, Sdp. 54° (10 mm). Nach obigem Ansatz erhält man 8.6 g (ca. 60% d.Th.) d²⁰ 1.1. ¹H-NMR-Spektrum (in Benzol): δ (CH₃) -0.02 ppm (Singulett).

Lithiumdialkylamide. Diese Amide wurden durch Umsetzung von 20%-iger n-C₄H₉Li-Lösung in n-Hexan mit einem grossen Überschuss des jeweiligen sek. Amins (HNMe₂, HNÄt₂) dargestellt. Flüchtige Bestandteile wurden im Vak. abkondensiert, das erhaltene Lithiumsalz mit absol. Pentan gewaschen und als Suspension in Benzol bzw. gelöst in trockenem Amin in die Reaktionen eingesetzt.

2. Beschreibung der Umsetzungen

Reaktionen von Me₃SnLi mit N-Bromsuccinimid: Zu 0.3 Mol Me₃SnLi in 300 ml THF wurden unter Kühlung im Verlauf von 30 Min 50 g (0.28 Mol) N-Bromsuccinimid portionsweise zugegeben. Vor Zugabe der letzten Portion trat Farbumschlag von dunkelgrün nach hellgelb ein. Nach weiteren 30 Min Rühren war die Lösung wieder dunkel gefärbt; THF wurde bei Normaldruck abdestilliert und der Rückstand der Destillation unterworfen. Man erhielt Me₃SnBr, Sdp. 65° (20 mm), Ausbeute 28 g (38.5% d.Th.).Ein Vergleich der IR- und ¹H-NMR- Spektren mit einer authentischen Probe bestätigte die Identität der Verbindungen: δ (CH₃) -0.63 ppm (Benzol), -0.73 ppm (CCl₄); J(^{117.119}Sn-CH₃) 57.5 bzw. 60.0 Hz.

Reaktionen von Me₃SnLi mit N-Chlordimethylamin. Me₃SnLi (0.1 Mol) in 100 ml THF wurde unter Kühlung mit 7 g (0.087 Mol) N-Chlordimethylamin versetzt. Auch hier diente der Farbumschlag grün → gelb als Indikator für die Beendigung der Zugabe des Halogenamins. Die Aufarbeitung erfolgte analog obiger Umsetzung. Eine beträchtliche Menge Dimethylamin wurde bei der Destillation freigesetzt. Vakuumdest. ergab Hexamethyldistannan, Sdp. 62–65° (5 mm), Ausbeute 12 g (73.5% d.Th.). Das reine Produkt erstarrte bei Raumtemp. zu farblosen Kristallen. Die Identifizierung erfolgte wieder durch Vergleich der physikalischen Daten sowie der IR- und ¹H-NMR-Spektren eines Vergleichspräparats.

Reaktion von Me₃SnLi mit Chlorazid*. Durch eine Lösung von 0.2 Mol Me₃SnLi in 200 ml THF wurde bei Raumtemp. ca. 6 Std. ein langsamer Strom von

^{*} Diese Reaktion wurde von Herrn Dr. J. Müller durchgeführt.

438 NOTE

ClN₃/N₂ geleitet. Zunächst war keine Veränderung in der Lösung zu bemerken, nach ca. 3 Std. jedoch trat offenbar Zersetzung des Me₃SnLi-Reagenses unter Abscheidung eines grauschwarzen Niederschlags ein, d.h. metallisches Zinn schied sich ab. Nach 6 Std. wurde vorsichtig dekantiert, THF bei vermindertem Druck abgezogen und der Rückstand vorsichtig destilliert. Es trat weitere Zersetzung unter Abscheidung eines Zinnspiegels ein; in geringer Menge, ca. 10% bezogen auf eingesetztes Me₃SnLi, wurde Hexamethyldistannan erhalten, Sdp. 65° (5 mm). Aus dem Rückstand wurde noch LiN₃ extrahiert und durch das IR-Spektrum nachgewiesen.

Reaktion von Me₃SnLi mit N-Bromhexamethyldisilazan. Me₃SnLi (0.05 Mol) in 100 ml THF wurde im Verlauf von 2 Std. unter Eiskühlung mit 5.5 g (0.023 Mol) BrN(SiMe₃)₂ versetzt. Dest. ergab Me₃SnBr, Sdp. 35–38° (1 mm), Ausbeute 7.5 g und Me₃Sn-N(SiMe₃)₂, Sdp. 48–50° (1 mm), 5.0 g. Beide Reaktionsprodukte wurden an Hand ihrer bekannten physikalischen Daten und durch IR- sowie ¹H-NMR-Spektren identifiziert.

Reaktion von Me_3SnONO_2 mit $LiNEt_2$. In eine Suspension von 50 g (0.7 Mol) LiNEt₂ in 250 ml abs. Pentan wurden unter N₂-Atmosphäre portionsweise 50 g (0.15 Mol) $Me_3SnONO_2 \cdot H_2O$ unter Eiskühlung eingetragen. In heftiger Reaktion färbte sich das Gemisch rotbraun; nach beendeter Zugabe wurde Pentan abgezogen und im Vakuum destilliert: Me_3SnNEt_2 , Sdp. 45° (1 mm), Ausbeute 11.8 g (25% d.Th.).

Zur Reaktion von Zinn-acetaten mit LiNEt₂. Zu einer Suspension von LiNEt₂ in absol. Benzol, vorgelegt in grossem Überschuss, wurde das jeweilige Zinn-acetat zugegeben und 24 Std. am Rückfluss erhitzt. Benzol wurde bei Normaldruck abdestilliert und der Rückstand im Vak. fraktioniert. Nachdem zahlreiche Versuche, Sn(OAc)₄ mit LiNEt₂ bzw. LiNMe₂ in Benzol, Pentan oder Äther umzusetzen, fehlschlugen, wurde mit HNEt₂ als Lösungsmittel in homogener Reaktionsführung ein bescheidener Erfolg erzielt (Tabelle 1).

TABELLE I
REAKTIONEN VON ZINN-ACETATEN MIT LITHIUM-DIÄTHYLAMID

Zinn-acetat	(g)	(mMol)	ReaktProdukt	Sdp. [°C(mm)]	Ausbeute % d. Th.
n-Bu ₃ SnOAc	12	35	n-Bu ₃ SnNEt ₂	96(1)	24
n-Bu ₂ Sn(OAc) ₂	28	40	$n-Bu_2Sn(NEt_2)_2$	98(1)	22
Sn(OAc) ₄	17	50	Sn(NEt ₂) ₄	124(0.1)	Spuren

LITERATUR

- 1 N. FLITCROFT UND H. D. KAESZ, J. Amer. Chem. Soc., 85 (1963) 1377.
- 2 W. L. Wells und T. L. Brown, J. Organometal. Chem., 11 (1968) 271.
- 3 H. Schumann, H. Köpf und M. Schmidt, Angew. Chem., 75 (1963) 672.
- 4 H. NÖTH UND H. HERMANNSDÖRFER, Angew. Chem., 76 (1964) 377.
- 5 O. SCHERER UND M. SCHMIDT, Angew. Chem., 75 (1963) 642.
- 6 J. LORBERTH UND M.-R. KULA, Chem. Ber., 98 (1965) 520.
- 7 K. JONES UND M. F. LAPPERT, Organometal. Chem. Rev., 1 (1966) 67.
- 8 A. BERG, Ann. Chim. Physique, [3] 7 (1894) 315.
- 9 K. DEHNICKE, J. Inorg. Nucl. Chem., 27 (1965) 809.
- 10 F. RASCHIG, Dissertation, Universität München, 1966.