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ORGANOMETALLIC COMPOUNDS
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STRUCTURES AND OF THE PSEUDO-ROTATIONS DESCRIBING
THEIR INTRAMOLECULAR REARRANGEMENTS
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SUMMARY

Matrix representations are given for five-coordinate structures (product
matrices P) and for the intramolecular isomerization reactions of these complexes
(reaction matrices R) via pseudo-rotation processes. Matrix transformations are
also described, which allow to deduce from the general case the subset of rearrange-
ments generated by various constraints (using constraint matrices C). Several
examples are depicted and compared with previous descriptions.

INTRODUCTION

Non-topological’ and topological®3 representations have been given to
describe the isomerization paths of trigonal-bipyramidal molecules via pseudo-
rotation processes. It seemed interesting to see whether matrix representations might
also be found to represent these structures and their intramolecular rearrangements.

RESULTS AND DISCUSSION

Matrix representation of bipyramidal structures

It is possible to represent the twenty trigonal-bipyramidal isomers of a penta-
coordinate complex 12,345' by a matrix which relates the relative position of the
ligand to the name (or symbol) of the different isomers. The function used here will
be the apical (A) configuration of a given substituent.

If one uses the numbering which has been suggested in ref. 1 to describe the
different ML s>, isomers, one has a=12345; b=34,125; ¢=35,142; d=45,123;
e=25,134; f=15,243; g=14,235; h=24,153; i=13254 and j=23,145.

The py, coefficients of matrix P describe then the different isomers having
ligands k and 1 in trans (or apical AA) position.

* For Part XV see ref. 1.
* Titulaire d’'une bourse de spécialisation de 'LR.S.IA.

* For the numbering convention and symbolism, see ref. 2 and 3.
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12345
1loaigf
2l a0jhe
P=3]ij0bc
4] ghbod
5{fecdoO |

Since all five ligands in 12,345 are different, the diagonal elements p,, are zero.

Matrix transformations

This matrix P gives thus immediately all the structures which have a given
ligand (k) in an apical position (p,, and p,, for all allowed values of x :eight possi-
bilities, two series of enantiomers).

Let us define a matrix C(kEYy* which is a p by p unit matrix whose kth column
has been replaced by a column of zero’s; the operation

C(kE) x P x C(kE) = P(kE)
changes the original matrix P into the particular one P(kE), which describes the case
where ligand k may not be apical**.

The matrix transformation of P for the particular case where ligand k must
be apical is simply

P—P(kE)=P(kA)

The same may be done for two ligands; if k and 1 must both be apical, one has

C(KA,IA) x P x C(kA,IA) = P(kA,IA)

where C(kA,1A) is a p by p zero matrix where ¢, and ¢; have been replaced by 1.
Similarly, if kX and 1 must both be equatorial, the transformation matrix
C(kE,IE) is formed from a unit matrix where columns k and I are replaced by zero’s

P(kE,]E) = C(KE,IE) x P x C(kE,IE)
When'kl is 2 chelating ligand, k and I cannot both be apical and one finds
P(k],AA) = P—P(kA,1A)

If, for reasons of angular strain for instance, k and 1 may not be both apical
or both equatorial (see ref. 2, example 5), the result is clearly

P(KAE,IEA) = P—P(kA,1A) — P(kE, IE)

The changes which occur when two ligands (say k and 1) are identical, are the
following :

a. the six (kE, IE) isomers are converted into three inactive structures, having a plane

of symmetry containing the central atom, the two A ligands and the third E one.

* The C matrices used in the present paper describe the reduction of original matrices under the influence
of special constraints. The type of constraint is represented in the parentheses.
** C(KE) is the transposed of C{kE); in this particular case, C(kE) = C(kE).
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For these six (kE,IE) isomers, one has thus ppn,=Pom (if m, n5#k, 1)
b. the two (kA,lA) enantiomers become identical, symmetrical with respect to the
plane of the three equatorial ligands
c. each of the six original (kA,IE) or (kE,1A) isomers become identical to one of the
other AE or EA structures.
These changes are summarized by the following successive matrix trans-

formations: we first define
I = P+ P(KkE,IE)

and the final matrix P(k=1) is formed by
Pk=1)=Ck=)xIxCk=l)

where C(k=1) is a rectangular matrix constructed from a (p—1) by (p—1) unit
matrix by inserting between lines (I—1) and 1, a row which is identical to line k.
For example, if ligands 4 and 5 are identical

0 “(@a+a) (i+i) (g+f)
(a+a) O (G+j) (h+e)
PE=9=\ 411 (+3) o B+ c)

(g+f) (e+h) (b+c) (d+d)

The elements (a-+a), (i+1), (j+j) and (d +d) represent inactive isomers. Elements
such as (g+T) show that g and f have merged into one single compound, which is
the enantiomer of (g+f).

If more than two ligands are made identical to one another, all the structures
become optically inactive, for the reason that one necessarily finds two equivalent
groups either in EE or in AA position, which implies the existence of a symmetry
plane. In these cases, one has thus to consider P+ P instead of P.

Matrix representation of intramolecular rearrangements via pseudo-rotations of tri-
gonal-bipyramidal structures

It is also possible to represent the isomerization reactions of these pentacoordi-
nate structures by a square 20 x 20 matrix R representing the possible isomers of
12,345, whose coeflicients 1y, ry,, and r,, are 1 if isomer k may be converted into the
isomers 1, m and n by the three possible pseudo-rotations?-> and 0 otherwise. As a
given isomer may only be converted into three isomers of the enantiomorph series
by a single step process if the modified numbering is used!+*, the matrix describing
the rearrangements is of the type

a ja j
o A

=
!

-~

A o

] W B

* With this numbering, the topological representation is alternate.
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and may be formally reduced to a 10 x 10 symmetrical one A. This sub-matrix A4
can be used instead of the topological graphs to find isomerization paths, the non-
zero elements being the turning-points (or transition states) to go from one isomer
to another.

abcdefghij 12,345

(0111000000
1000110000
1000001100
1000000011
0100001010
0100000101
0010100001
0010010010
0001100100
| 0001011000

v
Il
- -

Matrix transformations
The introduction of a chemical bond between two ligands® or any other
constraint? such as having two identical ligands reduces the number of possible
. isomers (vide supra), and this reduces also the size of the isomerization matrix R.

Chelating groups

The introduction of a bond between two ligands k and I* restricts the number
of possible isomers [the structures p,, and p;, are impossible, see matrix P(kl,AA)].
These structures have thus to be excluded from matrix R by eliminating the rows and
columns corresponding to py and py.

This can be done by the following matrix transformation

6(l’m=Pn<=0) X Rx C(py=pu=0)= R(pu=pi=0)

If R is a r by r matrix, C{py;= py. =0) has (r—2) columns and r rows and is constructed
from a (r—2) x (r —2) unit matrix by inserting two lines of zero’s which will become
the pyth and p,th ones.

‘abcdefghi _

011100000 -
100011000
100000110
100000001 .
010000101 |=A4(12,345)
010000010
001010000
001001001
000110010

- TN .m0 A0 o

* The case of structures which contain two chelating groups will be discussed elsewhere®.
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It is thus possible to transform the matrix R of the 12,345 system into another
one for 1'2_,-‘345 for instance [R(j=_]T= 0)J*. The obtained matrix corresponds to the
topological description given before>.

Identity of ligands

If the isomers m and n become identical when ligand k =ligand I, one has to
replace in matrix R every I, by I, + I, and r,q by Iy + 1., and to suppress row and
column n.

This can also be done by the following matrix transformation

C(m=n)x Rx C(m=n) =R(m=n)

where C(m=n) has (r—1) columns and r rows and is constructed from a unit matrix
with (r—1) columns and lines by inserting one line, which is identical to row m,
between the (n—1)th and nth line of the unit matrix.

It is thus possible to examine the case of 12,245 structures for instance, defining
first P(2E,3E):

10000 10000
00000 00000
00000 | x P x| 00000]| = P(2E,3E)
00010 00010
00001 00001

One may now calculate

o

a i g+g f+?—

a 0 j h e

I=P+PQE3E)=| 1 i 0 b c
g+g h b O d+d

| f+f e ¢ d+d O

The final matrix P(2:=3) is formed by

10000 1000
~ 0100
P2=3)=C2=3)xIxC@=3) = 9100 1 1.l 5100
00010 ,
00001 0010
_ 0001
1 2=3 4 5
1 0 a+i g+g [+
P23 2=3| a+i j+j h+b e+c
@=3)=4 g+g h+b 0 d+d
5 f+f e+c d+d O

* p,3=]j (see matrix P).
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P(2=3) shows how a=1, b=h, c=¢,d=d, e=c, f=f, g=g, h=b,i=a and j=].

It is now possible to determine R(2=3)=R(12,245) using the suitable trans-
formation matrix defined from P(2=3) which will have ten columns less than R. The
matrix C(a=1, b=h, c=¢, d=d, e=c, f=T, g=g, h=Db, i=3a, j=]) may thus be
written

C(a=T, b=h, c=¢, d=4d, e=c, =T, g=g h=b, i=3a, j=]) =

abcdefghijabede fghl_]

_100000000000000000161
01000000000000000100
00100000000000100000
00010000000001000000
00001000000010000000
00000100000000010000
00000010000000001000
00000001000100000000
00000000101000000000
100000000010000000001 ]

C x Rx C=R(2=3)=R(12,245) and R(12,245) is analogous to A, the reduced form
of R

P|gUImR ol 60 o

Comt o

abedcfghbaj
0111000000
1000110000
1000001100
1000000011
0100001010
0100000101
0010100001
0010010010
0001100100
0001011000 |

x 2 = R(12,245)

= RIgIe ™ oia 6 o R

From this particular case (12, 245) one can deduce, by an analogous way,
the 12,225 system, setting 4=2. This gives finally

abecf 12,225

0120
1011
2100
0100
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a

This matrix is equivalent to the following topological description | b

One may also deduce the matrix description of the 12,225 system from the

former one. One gets

abc
a/7012 —
b{ 10 1) x 6 = R(12,225)
c\210

a\
which gives topologically ﬂ/b

Other constraints )
One may finally examine some of the examples given by Lauterbur and Ramirez?.

— [

Example 1: Substituent 1 can be equatorial but not apical.
C(1E)x Px C(1E) = P(1E)

and, as —
00000 00000

01000 OO?hg
C(E)={00100{, PUE)= |o;0be
00010 272

00001 Ohbod

OecdoO

R(1E) = R(a-a=1= 1 =g—§—f—?=6

“Slolalel Y- oo Ao g

=Cla=a=i=i=g=g=f=f=0 xRxC(a
Here, the transformation matrix C(a=a=i

abcdefghljabcuefgﬂlj

{31000000000000000000

00100000000000000000
00010000000000000000
00001000000000000000
00000001000000000000
00000000010000000000
00000000000100000000
00000000000010000000
06000000000001000000
00000000000000100000
00000000000000000100

| 00000000000000000001

- I
I
m
I
|
II
T
|

5'T=ggf—=

=0) is given by
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0 | A(1E) \
This gives R(1E) = \
(:AUE)l o )

with

000100
000010
000001
100000
210000
001000

= A(1E)

oo g

R(1E) may thus be reduced to six one by one unit matrices

e h i b ¢ d
b(1); c(1); d(1); e(1); h(1); j(1)

which is analogous to Lauterbur and Ramirez’s topological representation: only
isolated pairs of isomers may interconvert?.

Example 2: Substituent 1 can be apical but not equatorial.
P(1A) = P—P(1E)
Qaigf
a0000
=| 10000
0000
£0000

The suitable matrix transformation C(j=j=h=h=e=e=b=b=c=c=d=d=0)
changes R into R(1A) .

afgi

(0] , A(1A) ajoo0o0o0

_ _fto0000
R(1A) = where A(1A) =s]0000
A(1A) o i 10000

so that no isomerizations at all can occur?.

Example 5 (which is analogous to example 7 ref. 2): Substituents 1 and 2 cannot be both
apical or both equatorial. ,
One has first to determine P(kA,1A) and P(kE,1E). In this case
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. -
00000 | [00000] 99999
00000 00000} |JUVVUO
PUE,2E) =] 00100 |xPx|00100|=] 000b¢
00010 00010 00bod
| 00001 | | 00001 | 005d0
(10000 10000 [omo000
01000 01000 a0000
P(A,2A) =| 00000 xPx [00000 =] 00000
00000 [98998] 00000
- = - -+ 100000

It is now possible to calculate P(kAE,1EA):

P(I1AE,2EA) = P—P(1A,2A) — P(1E, 2E)

I—OOiEf_
00jhe
=1ij000
gh000
| fe000 |

Ca=a=b=b=c=c=d=d=0) may thus be written and R(a=a=b=b=

c=c=d=d=0) = R(IAE,2EA) is equal to
0o , A(1AE,2EA)
_ = R(1AE,2EA)
A(IAE,2EA) | ©
~ where
"o ol ifmawﬁwéo
0 0:0 Ff‘é?ﬁ}
A(AE2EA)=| 1 0:0,0 0:1,
o i1: 010 1 o
E—§0 0|1 o o
| 0i1i1 0 o o

The remainipg isomers form two distinct and unconnected sets2, which can be seen
on the matrix or on Lauterbur and Ramirez’s graph?.
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