Preliminary communication

Siliciumorganische Verbindungen XXXXIX*. N-Trimethylsilyl-carbamidsäure-trimethylsilylester

LEONHARD BIRKOFER und PETER SOMMER

Institut für Organische Chemie der Universität Düsseldorf (Deutschland)
(Eingegangen den 23. Dezember 1971)

N- oder O-Silyl-Derivate der freien Carbamidsäure sind unseres Wissens nicht bekannt. Bisher wurden lediglich N-silylierte Carbamidsäure-alkylester bzw. N-alkylierte Carbamidsäure-silylester dargestellt²⁻⁸. Im Zuge unserer Untersuchungen über die silylierte Carbonamid-Funktion^{5,9-11} ist es uns gelungen, durch Umsetzung von Ammoniumcarbamat (I) mit Trimethylchlorsilan in Tetrahydrofuran (THF) den N-Trimethylsilyl-carbamidsäure-trimethylsilylester (III) in guter Ausbeute und reiner Form darzustellen (Ber.: C, 40.93; H, 9.32; N, 6.82; Si, 27.34. C₇H₁₉NO₂Si₂ gef.: C, 40.75; H, 9.12; N, 6.68; Si, 27.02%.)

Wie Versuche mit äquimolaren Mengen I und Trimethylchlorsilan in THF bei 0° zeigen, wird zunächst ein mono-Trimethylsilyl-Derivat der Carbamidsäure (m/e 133), wahrscheinlich der Carbamidsäure-trimethylsilylester (II), gebildet.

II zerfällt gaschromatographischen Untersuchungen zufolge unter den gewählten Aufarbeitungsbedingungen zu III, CO₂ und NH₃.

$$\begin{array}{c} O-NH_{4} \\ 2 \ O=C \\ NH_{2} \\ \end{array} + 2 \ CISi(CH_{3})_{3} \\ \hline \begin{array}{c} THF/0^{\circ} \\ -2 \ NH_{4}CI \\ \end{array} \\ > 2 \ O=C \\ NH_{2} \\ \end{array} \\ (II) \\ \hline \begin{array}{c} O-Si(CH_{3})_{3} \\ NH_{2} \\ \end{array} \\ O-Si(CH_{3})_{3} \\ \hline \begin{array}{c} O-Si(CH_{3})_{3} \\ O-Si(CH_{3})_{3} \\ \end{array} \\ \end{array} \\ \begin{array}{c} O-Si(CH_{3})_{3} \\ O-Si(CH_{3})_{3} \\ \end{array} \\ (III) \\ \end{array}$$

[★]XXXXVIII. Mitteilung siehe Ref. 1.

J. Organometal, Chem., 35 (1972)

III, eine farblose, kristalline, leicht zersetzliche Substanz, lässt sich auch (allerdings in geringerer Ausbeute) durch Reaktion von CO₂ mit Hexamethyldisilazan gewinnen. Die physikalische Daten von III sind in der Tabelle 1 angegeben.

TABELLE 1

PHYSIKALISCHE DATEN VON III

Schmp.: m/e:	80°C (aus Hexan) 205
IR (in CHCl ₃):	ν (N-H) 3415, ν (C=O) 1680, δ_{as} (CH ₃) 1405, δ_{s} (CH ₃) 1247, ν (Si-O-C) 1045 cm ⁻¹
NMR (in CDCl ₃ ; TMS	0 \$ (0.1.3) 12.11,7 (0.1.0.0) 10.10 12.11
als innerer Standard):	τ (N-H) 5.50-5.82 s, τ (O-Si(CH ₃) ₃) 9.72 s, τ (N-Si(CH ₃) ₃) 9.80 s.

LITERATUR

- 1 L. Birkofer und M. Franz, Chem. Ber., im Druck.
- 2 H. Breederveld, Rec. Trav. Chim. Pays-Bas, 81 (1962) 276.
- 3 E.A.V. Ebsworth, G. Rocktäschel und J.C. Thompson, J. Chem. Soc. A, (1967) 362.
- 4 A.E. Lemire und J.C. Thompson, J. Org. Chem., 36 (1971) 1163.
- 5 L. Birkofer und K. Krebs, Tetrahedron Lett., (1968) 885.
- 6 K. Krebs, Dissertation, Universität Köln, 1969.
- 7 J. Pump und U. Wannagat, Monatsh. Chem., 93 (1962) 352.
- 8 J. Pump und E.G. Rochow, Chem. Ber., 97 (1964) 627.
- 9 W. Giessler, Dissertation, Universität Köln, 1963.
- 10 L. Birkofer und H. Dickopp, Chem. Ber., 101 (1968) 2585; 101 (1968) 3579-102 (1969) 14.
- 11 L. Birkofer, H. Dickopp und S. Khan Majlis, Chem. Ber., 102 (1969) 3094.
- J. Organometal, Chem., 35 (1972)