PRELIMINARY COMMUNICATION

ORGANOMETALL-SULFOXIMIDE - KOORDINATIONSOLIGOMERE MIT NEUEN ACHTGLIEDRIGEN RINGSYSTEMEN

H. SCHMIDBAUR und G. KAMMEL

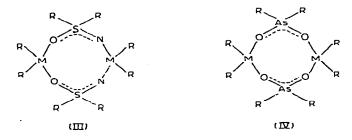
Institut für Anorganische Chemie der Universität Würzburg, 8700 Würzburg (Deutschland) (Eingegangen den 13. August 1968)

Organometall-phosphinate des Aluminiums, Galliums und Indiums bilden nach Coates und Mukherjee¹ dimere Moleküle mit achtgliedrigen Ringsystemen des Typs (I) aus. Eine Röntgenstrukturanalyse² an einem Vertreter der Reihe (M = Ga, $R = CH_3$) wies nach, dass das anorganische Ringgerüst nur wenig gewellt ist und hohe Symmetrie besitzt.

Im Rahmen von Arbeiten über isostere metallorganische Verbindungen³ interessierten wir uns für die bisher unbekannten Organometallsulfoximide des Typs (II), die du den Organometall-phosphinaten in enger isoelektronischer Beziehung stehen.

$$(CH_3)_2$$
 SONH + $(CH_3)_3$ M \rightarrow CH₄ + $(CH_3)_2$ MONS $(CH_3)_2$

Die Darstellung der Grundglieder der Reihe gelingt leicht durch Umsetzung der Metalltrimethyl-atherate mit Dimethylsulfoximin⁴ in wasserfreiem Benzol. Unter Methanentwicklung entstehen die Verbindungen IIa, M = Al; IIb, M = Ga und IIc M = In in Form farbloser, in Benzol wenig löslicher Kristalle, von denen IIa und b durch Vakuumsublimation gereinigt werden können. Nach ebullioskopischen Molekulargewichtsbestimmungen in Benzol sind IIa und b tatsächlich, wie erwartet, dimer aufgebaut. Nur die Indiumverbindung IIc ist in allen brauchbaren Lösungsmitteln unlöslich und nicht unzersetzt sublimierbar. Für sie ist im Gegensatz zu ihrem dimeren Isosteren [(I) mit


M = In] eine koordinationspolymere Struktur anzunehmen. Eigenschaften*:

(IIa), $[(CH_3)_2 AIONS(CH_3)_2]_2$, F.p. 184–185°, Subl. 160°/0.01 mm; NMR (in CH_2Cl_2 gegen ext. TMS; 60 MHz): $\delta(CH_3AI)$ +44, $\delta(CH_3S)$ -184 Hz (Flächen 1:1).

(IIb), $[(CH_3)_3GaONS(CH_3)_2]_2$, F.p. 151–152*, Subl. 100*/0.01 mm; NMR [wie bei (IIa)]: $\delta(CH_3Ga) + 14$, $\delta(CH_3S) - 179$ Hz (1:1).

(IIc), $[(CH_3)_2 InONS(CH_3)_2]_2$, F.p. (Zers.) 219°; NMR [wie bei (IIa), jedoch sehr geringe Konzentration]: $\delta(CH_3In) +1.5$, $\delta(CH_3S) -181.5$ Hz (1:1).

Unter Berücksichtigung der IR- und NMR-spektroskopischen Befunde schreiben wir den Verbindungen (IIa) und (IIb) die Struktur (II) zu. Die Alternative (III) kann wegen der NMR-Äquivalenz der R₂M-Signale ausgeschlossen werden. Die ungünstigere Ladungsverteilung macht sie ohnehin weniger wahrscheinlich.

Das Strukturprinzip (I) findet sich auch bei den analogen Organometall-arsonaten (IV) wieder. Von diesen konnten wir vor einigen Jahren⁵ die beiden noch fehlenden Typen¹ mit M = Al und In aus den entsprechenden Metallalkylen und Dimethylarsonsäure synthetisieren:

$$(CH_3)_2 AsOOH + (CH_3)_3 M \rightarrow CH_4 + (CH_3)_2 MO_2 As(CH_3)_2$$

Die Ausbeuten dieser und der obigen Reaktionen liegen in allen Fällen über 90% d.Th. Eigenschaften*:

(IVa), [(CH₃)₂ AlO₂ As(CH₃)₂]₂ F:p. 182-186*, Subl. 160*/1 mm; farblose Kristalle, stark hydrolyseempfindlich.

(IVb), $[(CH_3)_2GaO_2As(CH_3)_2]_2$ loc. cit.¹; NMR (in CCl₄ gegen int. TMS, 60 MHz): $\delta(CH_3Ga) + 28$, $\delta(CH_3As) - 102$ Hz (1:1).

(IVc), $[(CH_3)_2 InO_2 As(CH_3)_2]_2$ F.p. 168°, Subl. 160°/1 mm; NMR [wie bei (IVb)]: $\delta(CH_3In) +13$, $\delta(CH_3As) -98$ Hz (1:1).

Über weitere Metall- und Organometallderivate der Sulfoximine wird in Kürze an anderer Stelle berichtet.

LITERATUR

- 1 G.E. Coates und R.N. Mukherjee, J. Chem. Soc., (1964) 1295
- 2 H.M.M. Shearer und J. King, in G.E. Coates und K. Wade (Eds.), Organometallic Compounds, Vol. 1, Methuen, London, 1967, S.354.
- 3 H. Schmidbaur, Allg. Prakt. Chem. (Wien), 18 (1967) 138; Fortschr. Chem. Forschg., im Druck.
- 4 H.R. Bentley, E.E. McDermott und J.K. Whitehead, Proc. Roy. Soc., B 138 (1951) 265.
- 5 H. Schmidbaur, unveröffentlichte Versuche Marburg 1964.

[★]Von allen Verbindungen wurden zufriedenstellende Elementaranalysen erhalten.