SULTONES ORGANOMÉTALLIQUES IV*. RÉACTIONS DE SULFONATION EN SÉRIE SILACYCLOBUTANIQUE

J. DUBAC, P. MAZEROLLES, M. LESBRE ET M. JOLY

Laboratoire des Organométalliques, Faculté des Sciences, Toulouse (France)
(Reçu le 10 juillet 1970)

SUMMARY

The behaviour of some substituted silacyclobutanes with respect to sulfur trioxide and other sulfonating agents (SO_3 /dioxane, trimethylsilyl chlorosulfonate) is studied. The 1,1-dialkylated derivatives of silacyclobutane, 2-methylsilacyclobutane and 3-methylsilacyclobutane as well as the spiranes of the type (CH_2)_nSi(CH_2)₃ (n=4 or 5) react with sulfur trioxide to give 4-sila-1,4-butanesultones. On the other hand, the alkoxylated or dialkylaminated derivatives fix SO_3 via the functional group, thus giving silacyclobutanyl sulfates or amidosulfates of the type $XSO_2O(R)Si(CH_2)_3$ ($X=OR', NR'_2$). The sulfonation of 1-methyl-1-phenylsilacyclobutane leads mainly to 1-methyl-1-silacyclobutylbenzenesulfonate, besides the expected sultone. The structure of the insertion products of SO_3 in the Si-C, Si-N, Si-O and Si-Cl bonds is deduced from their infrared and protonic resonance spectra. Reaction mechanisms, permitting to ascertain the role of the substituents on the mode of insertion of sulfur trioxide and the reactivity of the cyclobutane Si-C bond, are considered.

RESUMÉ

Le comportement de quelques silacyclobutanes substitués vis à vis de l'anhydride sulfurique, et d'autres agents de sulfonation (SO₃/dioxanne, chlorosulfonate de triméthylsilyle) est étudié. Les dérivés 1,1-dialcoylés du silacyclobutane, du méthyl-2 silacyclobutane et du méthyl-3 silacyclobutane, ainsi que les spirannes du type (CH₂)_nSi(CH₂)₃ (n=4 ou 5), réagissent sur l'anhydride sulfurique pour donner des sila-4-butanesultones-1,4. Par contre, les dérivés alcoxylés ou dialcoylaminés fixent SO₃ par l'intermédiaire du groupement fonctionnel donnant ainsi des sulfates ou des amidosulfates silacyclobutaniques du type XSO₂O(R)Si(CH₂)₃ (X=OR', NR'₂). La sulfonation du méthyl-1-phényl-1 silacyclobutane conduit principalement au benzènesulfonate de méthyl-1 silacyclobutyle à côté de la sultone attendue. La structure des produits d'insertion de SO₃ dans les liaisons Si-C, Si-N, Si-O et Si-Cl est déduite de leurs spectres infrarouges et de résonance protonique. Des mécanismes réactionnels, qui permettent de dégager le rôle des substituants sur le mode d'insertion de

^{*} Pour partie III voir réf. 15.

l'anhydride sulfurique et sur la réactivité de la liaison Si-C cyclobutanique, sont envisagés.

INTRODUCTION

Les travaux de Eaborn et coll. 1,2 sur les arylsilanes ont montré la réactivité de la liaison Si-C aryle vis à vis de l'anhydride sulfurique. En utilisant le chlorosulfonate de triméthylsilyle comme agent de sulfonation, Calas et coll. 4-6 ont réalisé la fixation de SO₃ sur de nombreux organosilanes, parmi lesquels les tétraalcoylsilanes qui semblaient résister à l'anhydride sulfurique 1,2. Plus récemment, Schmidbaur et coll 3. ont étudié l'action de SO₃ sur les tétraméthylsilane, -germane, -stannane et -plumbane, et montré l'insertion de l'anhydride sulfurique dans la liaison métal-CH₃, la liaison Si-CH₃ apparaissant la moins réactive.

Depuis 1966, nos travaux⁷⁻¹⁰ sur les réactions d'expansion du cycle à quatre chaînons des sila- et germacyclobutanes par le soufre, le sélénium et l'anhydride sulfureux, mettent en évidence l'aptitude des liaisons Si-C et Ge-C cyclobutaniques à donner des réactions d'insertion pouvant conduire à des hétérocycles à 5 ou 6 chaînons.

$$8 R_2 M$$
 + Y_8 - $8 R_2 M$ Y=S, Se; $M = Si^8$. Ge^{7,9}

$$R_2M$$
 + SO_2 - R_2M - SO_2 - S

En 1969, les premières sultones organométalliques, obtenues par sulfonation des silacyclobutanes, étaient décrites par Schmidbaur¹² et par nous-mêmes¹³:

$$Me_2Si$$
 $SiMe_2$ + SO_3 (12) Me_2Si $O-SO_2$

$$R_2M$$
 + SO_3 (13) R_2M $O-SO_2$

M=Si, Ge; R=Me, Et, Bu

^{*} Nous avons réalisé récemment d'autres réactions de sulfination de la liaison Si-C des silacyclobutanes 16.

J. Organometal. Chem., 25 (1970) 367-384

Connaissant la facilité de sulfonation des liasions Si-O, Si-N et Si-Cl depuis les importants travaux de Schmidt et Schmidbaur¹⁷, il nous a paru intéressant d'envisager des réactions compétitives de sulfonation entre la liaison Si-C cyclobutanique d'une part, et les autres liaisons Si-X capables de fixer SO_3 (X=C, N, O, Cl) d'autre part.

A. SYNTHÈSE DES MONOSILACYCLOBUTANES SUBSTITUÉS

Le méthyl-1 chloro-1 silacyclobutane et le dichloro-1,1 silacyclobutane, composés essentiels pour la synthèse des monosilacyclobutanes substitués, sont obtenus¹⁹⁻²¹ par cyclisation de chlorosilanes à l'aide du magnésium.

(1). Dérivés dialcoylés et spiranniques

Le diméthyl-1,1 silacyclobutane a été le premier silacyclobutane décrit¹⁸. Il est toutefois plus accessible en trois étapes à partir du méthyldichlorosilane^{19,20}. Nous l'avons préparé aussi, comme d'ailleurs les autres dialcoyl-1,1 silacyclobutanes⁸, par alcoylation du dichloro-1,1 silacyclobutane.

Les dialcoyl-1,1 méthyl-3 silacyclobutanes ont été obtenus par alcoylation du dichloro-1,1 méthyl-3 silacyclobutane:

$$Cl_3SiCH_2CHCH_2CI$$
 Mg
 Cl_2Si
 Me
 $RMgX$
 R_2Si
 Me
 $R = Me, Et, Pr, Bu (II q-d)$

Les méthyl-2 silacyclobutanes ont été obtenus par le même procédé:

$$Cl_3SiCH_2CH_2CHCI$$
 CH_3
 Mg
 Cl_2Si
 Me
 R_2Si
 Me
 Me
 Me
 Me
 Me
 $R=Me, Et, Pr, Bu$

Le sila-4 spiro [3.4] octane est déjà connu⁴⁴. Le sila-4 spiro [3.5] nonane est préparé par action du dimagnésien du dibromo-1,5 pentane sur le dichloro-1,1 sila-cyclobutane:

$$Cl_2Si$$
 + $BrMg(CH_2)_5MgBr$ - $MgBr_2$ + $MgCl_2$ + Si

(2). Dérivés siloxaniques, alcoxylés et dialcoylaminés

Les méthoxy-1, éthoxy-1 et diméthylamino-1 méthyl-1 silacyclobutanes ont été préparés par les réactions suivantes:

Me Si + ROH + Quinotéine
$$\longrightarrow$$
 Si + Quin. • HCI RO \longrightarrow R= Me(\bigcirc I), Et \bigcirc III)

Les dérivés heptoxy-1 et diéthylamino-1 sont obtenus de la même façon⁴⁵. La réaction de cohydrolyse du méthyl-1 chloro-1 silacyclobutane et du triméthylchlorosilane en excès conduit au triméthylsilyloxy-1 méthyl-1 silacyclobutane:

B. RÉSULTATS EXPÉRIMENTAUX DES RÉACTIONS DE SULFONATION

(1). Sulfonation des dialcoyl-1,1 silacyclobutanes, des dérivés spiranniques et du méthyl-1 phényl-1 silacyclobutane

Dans une note précédente¹³ nous avons montré la sulfonation préférentielle de la liaison Si-C cyclobutanique par rapport à la liaison Si-C alcoyle. Une étude plus développée de cette réaction portant sur les dialcoyl-1,1 silacyclobutanes décrits ci-dessus (IIa-d, IVa-d) confirme ce fait:

$$R_2Si$$
 Me + SO_3
 CH_2CI_2
 R_2Si
 $O-SO_2$
 $(X q-d)$

R = Me, Et, Pr, Bu

$$R_2Si$$
 + SO_3 CH_2Cl_2 R_2Si $O-SO_2$ (XIa-d)

Nous avons utilisé, comme précédemment¹³, la quantité stoechiométrique d'anhydride sulfurique en solution dans le chlorure de méthylène. La réaction d'addition aux silacyclobutanes, dans le même solvant, est réalisée à -70° à partir de solutions SO_3/CH_2Cl_2 à 30 ou 40% en poids, ou à 0° à partir de solutions à 10 ou 15% en poids. La pureté des produits isolés a toujours été plus grande en opérant à -70° .

Le complexe SO₃/dioxanne a aussi été utilisé, ainsi que le chlorosulfonate de triméthylsilyle:

J. Organometal. Chem., 25 (1970) 367-384

$$Me_2Si$$
 + $SO_3 \cdot O$ CH_2Cl_2 O + Me_2Si $O - SO_2$ (XII)

La stabilité à l'égard des réactifs électrophiles des silacyclopentanes et des silacyclohexanes étant voisine de celle des tétraalcoylsilanes, la liaison Si-C cyclobutanique est seule sulfonée dans les composés spiranniques présentant un cycle à 5 ou 6 chaînons:

$$(CH_2)_n$$
 Si $+$ SO_3 \longrightarrow $(CH_2)_n$ Si $O-SO_2$

La sulfonation de la liaison Si-C aryle ayant été réalisée^{1,2} à 0° on pouvait penser que cette liaison était moins sensible à l'anhydride sulfurique que la liaison Si-C cyclobutanique. Or, par sulfonation du méthyl-1 phényl-1 silacyclobutane nous avons caractérisé deux produits dont l'un, le benzènesulfonate de méthyl-1 silacyclobutyle (XV), correspondant à l'insertion de SO₃ dans la liaison Si-Ph, est largement prépondérant (6/1):

n=4 (XIII), n=5 (XIV)

L'hydrolyse du sulfonate (XV) fournit l'oxyde de méthyl-1 silacyclobutyle et l'acide benzène sulfonique hydraté (F. 45°):

$$H_2O$$
 $Si-O-Si$ + $PhSO_3H$, H_2O

(2). Sulfonation des silacyclobutanes azotés, oxygénés et chlorés

Nous avons réalisé des réactions de sulfonation sur des dialcoylamino-1, des alcoxy-1 et des chloro-1 silacyclobutanes.

Dans les premiers cas, la réaction se fait par insertion de SO₃ dans la liaison Si-N ou dans la liaison Si-O:

Me Si + SO₃
$$R = Me$$
, Et (XVII a,b)

 R_2NSO_2O

ROSO₂O

Re Me, Et (XVIII
$$\alpha,b$$
)

La sulfonation du triméthylsilyloxy-1 méthyl-1 silacyclobutane est plus complexe du fait de l'instabilité du dérivé d'insertion qui se dismute en deux sulfates symétriques²⁴:

$$SO_4(SiMe_3)_2$$
 + $SO_4(Si)_2$

(XIXb)

La distillation de la solution fournit essentiellement le sulfate (XIXb) souillé de sulfate (XIXa) (identification par spectrométrie de masse et par RMN: voir partie expérimentale). L'alcoylation du mélange réactionnel permet également de confirmer la formation de ces sulfates et, par conséquent, la sulfonation de la liaison Si-O:

Les chloro-1 silacyclobutanes, par contre, subissent l'insertion préférentielle de SO₃ dans la liaison Si-C cyclobutanique. Avec le méthyl-1 chloro-1 silacyclobutane on obtient une silasultone monochlorée qui se décompose partiellement au cours de la distillation:

Avec le dichloro-1,1 silacyclobutane, l'insertion se fait dans les deux sens, mais préférentiellement dans la liaison Si-C cyclobutanique:

$$Cl_2Si$$
 + SO_3 - Cl_2Si + Cl_2Si + Cl_2Si (XXII)

La liaison Si-C cyclobutanique est moins réactive dans ce composé que dans le diméthyl-1,1 ou le méthyl-1 chloro-1 silacyclobutane; en effet, SO_3 ne réagit que vers -10° , et le chlorosulfonate de triméthylsilyle, qui réagit exothermiquement sur le diméthyl-1,1 silacyclobutane, est sans action sur le dérivé dichloré, même à 130° .

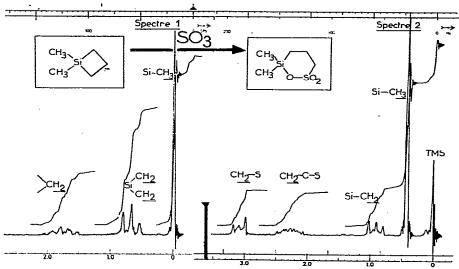


Fig. 1. Spectres RMN du diméthyl-1,1 silacyclobutane et de son produit.

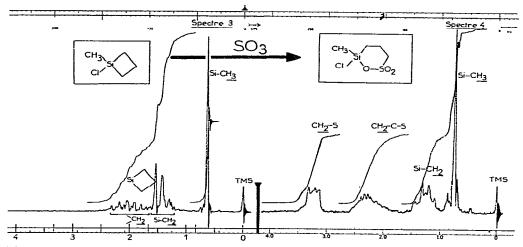


Fig. 2. Spectres RMN du méthyl-1 chloro-1 silacyclobutane et de son produit de sulfonation.

C. DISCUSSION

La spectrométrie infrarouge et la résonance magnétique nucléaire ont fourni des informations complémentaires, toujours en accord avec les formules indiquées.

L'examen des spectres IR des silasultones indique deux régions d'absorption intense vers 1350 et vers 1170 cm⁻¹, comme dans les sultones du carbone²⁵⁻²⁷ et du germanium¹³, correspondant aux vibrations asymétrique et symétrique du groupement SO₂. On note aussi dans tous ces spectres la disparition vers 1120 cm⁻¹ de la bande d'absorption caractéristique des silacyclobutanes^{21,28,29}.

Sur les spectres des dérivés d'insertion juxtacycliques (sulfates et amidosulfates silacyclobutaniques), qui présentent eux aussi les deux absorptions v_a et v_s du groupe-

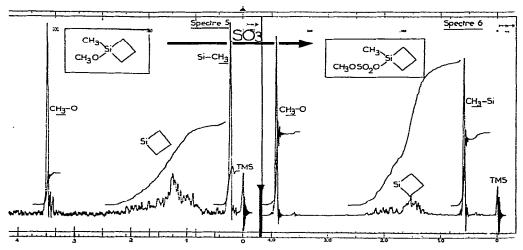


Fig. 3. Spectres RMN du méthyl-1 méthoxy-1 silacyclobutane et de son produit de sulfonation.

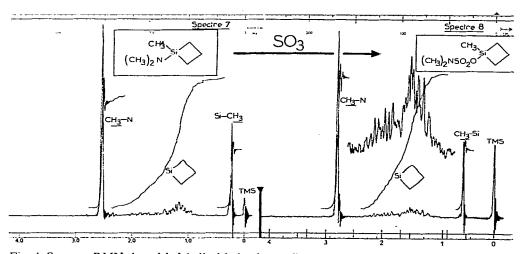


Fig. 4. Spectres RMN du méthyl-1 diméthylamino-1 silacyclobutane et de son produit de sulfonation.

ment SO₂, on remarque la présence de la bande vers 1120 cm⁻¹ indiquant que le cycle silacyclobutanique est conservé.

Les spectres de RMN mettent nettement en évidence les deux modes d'insertion : intracyclique (Figs. 1 et 2) et juxtacyclique (Figs. 3 et 4). Sur les spectres 5 à 8 (Figs. 3 et 4), les protons du cycle résonnent entre δ 1.1 et δ 2.3 ppm, et les autres signaux sont aisément interprétables (singulets CH_3Si , CH_3O ou CH_3N). Ainsi, les spectres du cycle de départ et du produit de sulfonation sont très semblables.

Mais lorsque la sulfonation a lieu par ouverture du cycle (Figs.1 et 2) la distribution protonique est modifiée (spectres 2 et 4): il apparaît des signaux dus aux protons méthyléniques en α et en β du groupement SO_2 :

 $\delta(CH_2SO_2)$ vers 3 ppm et $\delta(CH_2CSO_2)$ vers 2.3 ppm

J. Organometal. Chem., 25 (1970) 367-384

Sur les spectres présentés, tous les groupes de protons sont nettement différenciés. Dans les autres cas (dérivés éthylés, propylés ou butylés) la partie à champ fort du spectre est masquée, mais les protons CH₂SO₂ et CH₂CSO₂ donnent toujours, à champ faible, leurs signaux caractéristiques.

Les silacyclobutanes (IVa-d) peuvent donner deux sultones isomères par insertion de SO₃ dans les liaisons Si-C² ou Si-C⁴ du cycle. Les spectres de RMN indiquent qu'il s'agit de l'insertion Si-O-SO₂-C⁴ [sultones (XIa-d)] par la position et l'intensité des signaux suivants: $\delta(\text{CH}_2\text{SO}_2)$ 3.1, intensité 2 protons; $\delta(\text{CH}_2\text{CSO}_2)$ 2.2 ppm, intensité égale.

En ce qui concerne les mécanismes permettant d'interpréter ces réactions de sulfonation il faut tout d'abord distinguer le cas des alcoxy- et des aminosilacyclobutanes. En effet, il paraît établi \overline{N} que l'anhydride sulfurique, acide fort de Lewis, se fixe sur les bases telles que \overline{N} et \overline{N} et \overline{N} par l'intermédiaire du doublet électronique de l'azote ou de l'oxygène. On peut alors écrire le processus suivant qui permet d'interpréter la formation des sulfates (XVIII):

Un processus analogue expliquerait la formation des amidosulfates (XVII).

De leur côté, les alcoylchlorosilanes fixeraient SO₃ par l'intermédiaire d'un doublet électronique d'un atome de chlore¹⁷, mais leur basicité paraît plus faible que celle des alcoxy- ou des aminosilanes, comme d'ailleurs celle des dérivés chlorés du carbone (solvants de SO₃) par rapport aux éthers ou aux amines. Nous observons, en effet, que la liaison Si-C cyclobutanique est plus facilement sulfonée que la liaison Si-Cl

Ce comportement très différent des chlorosilacyclobutanes d'une part, et des alcoxy- ou aminosilacyclobutanes d'autre part vis à vis de SO₃ aboutit à l'ordre de réactivité décroissante des liaisons:

$$si-o$$
 ; $si-N$ \gg \prod_{si-c} $> si-ci$

Si l'on considère, en accord avec Eaborn², que la sulfonation de la liaison Si-C serait due à une attaque électrophile de SO₃ sur l'atome de carbone électronégatif, on peut envisager un processus de rupture de la liaison Si-C cyclobutanique par l'intermédiaire d'un état à quatre centres (A)* ou bien par fixation du groupement électrophile SO₃ sur l'atome de carbone (B) suivie d'une cyclisation avec formation d'une liaison Si-O:

^{*} La grande facilité d'obtention d'un état de transition à silicium pentavalent (sp^3d) à partir d'un silacyclobutane a déjà été envisagée^{28,46}.

$$R_2Si$$
 + SO_3 R_2Si SO_2 (B) R_2Si SO_2 (B)

Les positions relatives des charges dans l'état (B) sont favorables à la cyclisation, ainsi que les conditions de dilution des réactifs dans CH₂Cl₂. Mais la coupure bimoléculaire électrophile (A) de la liaison Si-C a été envisagée au cours des réactions d'insertion de SO₃ dans la liaison Si-Ph², et de SO₂ dans les liaisons Ge-C⁸, Sn-C^{31,32} et Pb-C^{35,36}. Remarquons en outre que l'insertion a lieu sur le carbone-α le moins encombré (sultones XIa-d), ce qui pourrait être en faveur du mécanisme (A).

La présence de deux atomes de chlore sur le silicium, qui diminue la charge partielle négative sur les carbones-α, rend la liaison Si-C moins sensible à une attaque électrophile sur l'un de ces carbones: le dichloro-1,1 silacyclobutane réagit moins facilement sur SO₃, et ne réagit pas sur le chlorosulfonate de triméthylsilyle.

La sulfonation du méthyl-1 phényl-1 silacyclobutane montre aussi que le carbone- α est moins sensible à l'attaque électrophile de SO_3 que le carbone du noyau aromatique. Mais il s'agit là d'une diminution du caractère négatif de ce carbone- α à cause du substituant phénylé, car nous avons vérifié, par la réaction compétitive suivante, que le diméthyl-1,1 silacyclobutane est plus sensible à la sulfonation (à -70°) que le triméthylphénylsilane:

$$Me_2Si$$
 + Me_3SiPh + SO_3 \longrightarrow Me_2Si + Me_3SiOSO_2Ph (35%)

On peut donc écrire, compte tenu des travaux de Eaborn^{1,2} un ordre de réactivité décroissante vis à vis de SO₃ des liaisons Si-C:

Les silacyclobutanes, dont la conformation semblable à celle des cyclobutanes a été récemment établie^{41,42}, présentent une exaltation de la réfraction moléculaire²⁰, comme d'ailleurs les germacyclobutanes^{7,43}. Cette constatation, qui implique une polarisabilité plus grande des liaisons Si-C cyclobutaniques par rapport aux liaisons Si-C dans les tétraalcoylsilanes, est en accord avec les conceptions actuelles³⁸⁻⁴⁰ sur la structure électronique des petits cycles. L'influence de l'hétéroatome qui confère à ces liaisons un certain caractère polaire Si⁵⁺-C⁵⁻ favorise alors l'attaque des réactifs ioniques, et oriente le sens de l'addition [mécanismes (A) ou (B)].

Il semble donc que la réactivité des silacyclobutanes (et des germacyclo-

butanes¹³) s'inscrit dans le domaine des réactions d'addition électrophile favorisées par la nature polarisable des liaisons Si-C cyclobutaniques, et par l'aptitude de l'atome de silicium à prendre, dans ces composés particulièrement, une structure pentavalente sp^3d .

TABLEAU 1 RÉACTIVITÉ DES MÉTALLACYCLOBUTANES $R_2M(CH_2)_3$

Réactif	R Et	M	Conditio expérime		Rdt. (%)	Réf.
S		Si	270°	5 h	30	8
S	Bu	Si	270°	5 h	30	8
S	Et	Ge	250°	0.5 h	90	9
S	Bu	Ge	250°	0.5 h	90	7, 9
Se	Bu	Si	300°	5 h	7	8
Se	Bu	Ge	260°	5 h	50	9
SO ₂	Me	Si	50°	3 jours	90	11
SO_2	Et	Ge	-10°	0.5 h	90	8
SO ₂	Bu	Ge	-10°	0.5 h	90	8
SO ₃	Me	Sì	-70°	Instantané	90	13
SO ₃	Et	Si	70°	Instantané	90	13
SO ₃	Bu	Si	70°	Instantané	90	13
SO ₃	Et	Ge	−70°	Instantané	90	13
SO ₃	Bu	Ge	− 70°	Instantané	90	13

Enfin, le Tableau 1, qui récapitule nos résultats sur la réactivité des sila- et des germacyclobutanes $R_2M(CH_2)_3$ vis à vis du soufre et de ses oxydes, montre la réactivité plus grande des germacyclobutanes et, dans une même série, une réactivité croissant avec le caractère électrophile du réactif (Se < S et S < SO₂ < SO₃). Ces résultats sont en accord avec d'autres travaux concernant la réactivité des liaisons M-C(M=Si,Ge,Sn,Pb) dans les composés R_4M vis à vis du soufre³⁰, de l'anhydride sulfureux³¹⁻³⁶ et de l'anhydride sulfurique^{3.37}.

PARTIE EXPÉRIMENTALE

Les principales constantes physiques et les résultats d'analyse des nouveaux silacyclobutanes préparés et des produits de sulfonation sont consignés respectivement dans les Tableaux 2 et 3.

Dichloro-1,1 méthyl-3 silacyclobutane (I)

Dans un réacteur de 6 l muni d'un réfrigérant relié à un tube à CaCl₂ et d'un agitateur, on introduit 245 g de (chloro-1 méthyl-2 propyl)trichlorosilane dans 2 litres d'éther anhydre, et 52 g de magnésium en poudre (excès 100%); on ajoute quelques cristaux d'iode. La solution est portée au reflux. Elle devient pâteuse et on doit ajouter de l'éther à plusieurs reprises dans les jours qui suivent, jusqu'à 5 l environ dans le réacteur. Reflux 14 jours. Après filtration du magnésium en excès et du chlorure de magnésium, qu'on lave 4 fois avec 1 litre d'éther anhydre, on concentre la solution. On recueille 115 g de dichloro-1,1 méthyl-3 silacyclobutane (Rdt. 70%). Spectre IR

TABLEAU 2
SILACYCLOBUTANES

Composés	Eb (°C/mm)	d ₄ ²⁰	n_{D}^{20}	C (%)		Н (%)	
				Calc.	Tr.	Calc.	Tr.
(I)	80°/80	1.1285	1.4565	30.97	31.09	5.19	5.20
(ПЬ)	71°/45	0.8023	1.4435	67.51	67.40	12.74	12.83
(IIc)	72°/10	0.8088	1.4478	70.49`	70.57	13.01	12.96
(IId)	110°/12	0.8200	1.4509	72.63	72.47	13.20	13.00
(III)	85°/80	1.1435	1.4616	30.97	30.80	5.19	4.99
(IVa)	102°/756	0.7746	1.4300	63.06	63.13	12.35	12.11
(IVb)	102°/63	0.8199	1.4495	67.51	67.30	12.74	12.83
(IVe)	80°/10	0.8211	1.4537	70.49	70.65	13.01	12.93
(IVd)	112°/12	0.8259	1.4552	72.63	72.53	13.20	13.19
(V)	90°/25	0.9011	1.4884	68.48	68.50	11.49	11.41
(VII)	74°/80	0.8626	1.4239	55.32	55.34	10.83	10.91
(VIII)	74°/60	0.8560	1.4506	55.74	55.69	11.69	11.56
(IX)	70°/70	0.8444	1.4168	48.21	48.37	10.40	10.43

TABLEAU 3
PRODUITS DE SULFONATION

Composés	Eb (°C/mm)	d ₄ ²⁰ ou F	n_{D}^{20}	C (%)		Н (%)		S (%)	
				Calc.	Tr.	Calc.	Tr.	Calc.	Tr.
(Xa)	115°/0.2	87°		37.08	36.92	7.26	7.13	16.50	16.30
(Xb)	118°/0.05	50°		43.20	43.32	8.15	8.23	14.41	14.31
(Xc)	135°/0.05	1.0677	1.4662	47.96	47.76	8.85	8.88	12.80	12.66
(Xd)	140°/0.05	1.0346	1.4646	51.75	51.92	9.41	9.50	11.51	11.30
(XIa)	106°/0.1	56°		37.08	37.13	7.26	7.31	16.50	16.68
(XIb)	123°/0.04	1.1152	1.4690	43.20	43.30	8.15	8.18	14.41	14.33
(XIe)	138°/0.02	1.0936	1.4702	47.96	47.75	8.85	8.76	12.80	12.93
(XId)	$150^{\circ}/0.05$	1.0435	1.4659	51.75	52.10	9.41	9.55	11.51	11.39
(XIII)	131°/0.05	24°		40.74	40.77	6.83	6.97	15.53	15.44
(XIV)	145°/0.1	36°		43.60	43.90	7.31	7.44	14.55	14.42
(XV)	112°/0.01	1.1958	1.5184	49.55	49.68	5.82	5.95	13.22	13.09
(XVIIa)	80°/0.03	1.1431	1.4578	34.42	34.43	7.22	7.39	15.31	15.30
(XVIIb)	85°/0.04	1.0912	1.4575	40.47	40.52	8.06	8.20	13.50	13.78
(XVIIIa)	80°/0.02	1.2044	1.4421	30.59	30.79	6.16	6.10	16.33	16.23
(XVIIIb)	78°/0.05	1.1650	1.4420	34.26	34.38	6.70	6.70	15.14	15.50
(XX)	122°/0.1"	1.4091	1.4870	23.93	23.55	4.52	4.39	15.97	15.52
(XXI)	> 100°/0.01"			16.29	15.99	2.73	2.18	14.49	14.17 ^b
(XXII)	40°/0.04	1.4586	1.4670	16.29	16.13	2.73	2.95	14.49	14.50

^a Décomp. ^b L'analyse centésimale de ce composé peu stable et très hydrolysable a présenté des difficultés.

(film liquide): bande des silacyclobutanes à 1135 cm $^{-1}$. Spectre RMN (CCl₄): doublet CH₃ à δ 1.25 (J 6 Hz); protons CH et CH₂ cyclobutaniques entre 1.3 et 2.8 ppm.

Dialcoyl-1,1 méthyl-3 silacyclobutanes (IIa-d)

L'alcoylation du dichloro-1,1 méthyl-3 silacyclobutane (I) est réalisée en solu-

J. Organometal. Chem., 25 (1970) 367-384

tion éthérée par un excès (50%) d'organomagnésien (MeMgI, EtMgBr, PrMgBr, BuMgBr). Après addition, la solution est maintenue au reflux pendant 3 h, puis hydrolysée, extraite à l'éther, séchée sur CaCl₂ et rectifiée. On isole ainsi les dérivés dialcoylés (IIa-d) (Rdt. 80%). Le dérivé méthylé (IIa) est déjà connu²². Spectres IR (film liquide): tous ces dérivés présentent la bande caractéristique des silacyclobutanes vers 1130 cm⁻¹.

Dichloro-1,1 méthyl-2 silacyclobutane (III)

Le dispositif et la technique expérimentaux sont identiques à ceux utilisés pour le chlorure (I). À partir de 190 g de (chloro-1 méthyl-1 propyl)trichlorosilane (obtenu par action du trichlorosilane sur le chloro-3 butène-1, en présence d'acide chioroplatinique, Rdt. 80%), on isole 96 g de dichlorure (III) (Rdt. 78%). Spectre IR (film liquide): bande intense à 1135 cm⁻¹. Spectre RMN (CCl₄): doublet CH₃ à δ 1.05 (J 6 Hz); protons CH et CH₂ cyclobutaniques entre 1 et 2.8 ppm.

Dialcoyl-1,1 méthyl-2 silacyclobutanes (IVa-d)

L'alcoylation du dichloro-1,1 méthyl-2 silacyclobutane (III) est réalisée comme précédemment. Rdt. 80%. Spectres IR: bande intense à 1135 cm⁻¹ dans chaque cas. Spectre RMN du dérivé méthylé (IVa) (CCl₄): δ (CH) 2.4 (1 proton); δ (CH₃) 1.0 (doublet); δ (CH₂) 0.8 à 1.9; δ (SiCH₃) 0.2: deux singulets d'égale intensité ($\Delta v = 2$ Hz) correspondant aux deux groupements SiCH₃ cis et trans par rapport au substituant CCH₃ en position 2.

Sila-4 spiro $\lceil 3.5 \rceil$ nonane (V)

Le dimagnésien du dibromo-1,5 pentane est préparé à partir de 95.5 g de dibromopentane et de 25 g de magnésium.

Un réacteur de 4 l muni d'une ampoule à brome reliée à un desséchant, d'un réfrigérant et d'un agitateur, contient 44 g de dichloro-1,1 silacyclobutane dans 1.5 l d'éther anhydre. On additionne le dimagnésien lentement en refroidissant au bain de glace, puis la solution est agitée pendant 5 h à la température ambiante. Après les opérations habituelles on obtient 23 g de spiranne (V) (Rdt. 50%).

Méthoxy-1 méthyl-1 silacyclobutane (VI)

Un ballon de 500 cm³ muni d'une ampoule à brome et d'un réfrigérant contient 3.98 g (0.124 mole) de méthanol et 16.5 g (0.127 mole) de quinoléine dans 100 cm³ de pentane. A cette solution on ajoute goutte à goutte 15 g de chloro-1 méthyl-1 silacyclobutane (0.124 mole). On observe immédiatement un précipité blanc de chlorhydrate de quinoléine. Un reflux de 30 min est maintenu. Le précipité est filtré et lavé au pentane, la solution distillée. On obtient 12.2 g de méthoxy-1 méthyl-1 silacyclobutane (Rdt. 85%). Eb. 106°/750 mm·

Ce composé a déjà été préparé avec un rendement de 63 % en utilisant l'urée comme agent de déchlorhydratation⁴⁷.

Ethoxy-1 méthyl-1 silacyclobutane (VII)

Même technique que précédemment. À partir de 20 g (0.165 mole) de chloro-1 méthyl-1 silacyclobutane et de 15 g (0.330 mole) d'éthanol absolu, on obtient 23 g de dérivé (VII). Rdt. 80%. Spectre RMN (CCl₄): δ (CH₂O) 3.70 (quartet); δ (CH₃C) 1.2 (triplet); δ (CH₃Si) 0.20 (singulet); protons cyclobutaniques 0.8 à 2.0 ppm.

Diméthylamino-1 méthyl-1 silacyclobutane (VIII)

Dans un réacteur refroidi par un circuit de méthanol à -20° et contenant 25 g (0.555 mole) de diméthylamine dans 300 cm³ de pentane, on additionne goutte à goutte 16 g (0.133 mole) de chloro-1 méthyl-1 silacyclobutane en solution dans 50 cm³ de pentane anhydre. La réaction est instantanée et on observe un précipité blanc abondant de chlorhydrate de diméthylamine. La solution est agitée pendant 3 h, puis filtrée et distillée. On recueille 11 g de diméthylamino-1 méthyl-1 silacyclobutane. Rdt. 70%. Spectre RMN (CCl₄): Fig. 4, spectre 7.

Triméthylsilyloxy-1 méthyl-1 silacyclobutane (IX)

Dans un ballon contenant 21 g (0.175 mole) de chloro-1 méthyl-1 silacyclo-butane en présence d'un grand excès de triméthylchlorosilane (67 g, 0.62 mole) et de 500 cm³ d'éther, on introduit lentement 500 cm³ d'eau en agitant. Après extraction et concentration, on recueille à la distillation 27 g de siloxane (IX). Rdt. 90%. Spectre RMN (CCl₄): CH₃Si: deux singulets à δ 0.2 (3 protons) et 0.1 (9 protons); protons cyclobutaniques de 0.9 à 2 ppm.

Dialcoyl-4,4 méthyl-2 sila-4 butanesultones-1,4 (Xa-d)

Un ballon de 500 cm³ muni d'une ampoule à brome reliée à un desséchant (CaCl₂) contient 0.2 mole de dialcoyl-1,1 méthyl-3 silacyclobutane (IIa-d) dans 100 cm³ de CH₂Cl₂. À cette solution, refroidie au bain de carboglace/acétone, on additionne 53 g d'une solution d'anhydride sulfurique à 30% en poids dans CH₂Cl₂. L'addition terminée (1 h), on chasse le solvant. Les sultones (X) sont purifiées par distillation. Rdt. 80 à 90%. Spectre RMN du dérivé méthylé (Xa) (CCl₄): CH₂SO₂ et CH entre δ 2 et 3.3 (3 protons); CCH₃, doublet à 1.15; SiCH₃: 2 singulets (cis et trans par rapport au substituant CCH₃) à δ 0.38 et 0.45, d'égale intensité. Dans le benzène comme solvant, ces deux singulets SiCH₃ sont mieux différenciés, δ 0.08 et 0.30 ppm.

Dialcoyl-4,4 méthyl-3 sila-4 butanesultones-1,4 (XIa-d)

Même technique que ci-dessus. Spectre RMN du dérivé méthylé (XIa) (CCl₄): CH₂SO₂ à δ 3.1 (2 protons); CH₂CSO₂ à δ 2.2 (2 protons); CHCH₃ confondus entre 0.9 et 1.3 (4 protons); SiCH₃: un singulet à 0.4 ppm. Dans le benzène, les deux singulets SiCH₃ (cis et trans) sont différenciés: δ 0.08 et 0.15 ppm.

Les spectres des composés (XIb-d) présentent les mêmes signaux CH₂SO₂ et CH₂CSO₂ confirmant la position 3 d'un substituant méthyle.

Diméthyl-4,4 sila-4 butanesultone-1,4 (XII)

(a). Utilisation du complexe SO_3 /dioxanne. Dans un ballon de 500 cm³ muni d'une ampoule à brome reliée à un tube à $CaCl_2$, et refroidi au bain de glace, on introduit 4.4 g (0.049 mole) de dioxanne dans 40 cm³ de CH_2Cl_2 . On ajoute ensuite 3.99 g (0.049 mole) d'anhydride sulfurique. Le complexe précipite. On ajoute alors lentement 5 g (0.049 mole) de diméthyl-1,1 silacyclobutane dans 50 cm³ de CH_2Cl_2 . La réaction est exothermique.

À la distillation on recueille 7.7 g (Rdt. 85%) de sultone (XII), que nous avons préalablement décrite¹³.

(b). Utilisation du chlorosulfonate de triméthylsilyle. À 4.3 g (0.043 mole) de diméthyl-1,1 silacyclobutane refroidi au bain de glace, on ajoute, goutte à goutte,

8.1 g (0.043 mole) de chlorosulfonate de triméthylsilyle¹⁷. La réaction, après une courte période d'initiation, est exothermique. Le triméthylchlorosilane est chassé et on recueille à la distillation 6.2 g (Rdt. 80%) de sultone (XII).

Cyclotétraméthylènesila-4 butanesultone-1,4 (XIII)

Même technique que pour les composés (X) et (XI). La sulfonation du sila-4 spiro [3.4] octane a lieu avec un rendement de 85%. Spectre RMN (CCl₄): CH₂SO₂ δ 3.1 (2 protons); CH₂CSO₂ δ 2.3 (2 protons); deux CH₂ cyclopentaniques vers 1.6 (4 protons); trois CH₂Si vers 0.9 ppm (6 protons).

Cyclopentaméthylènesila-4 butanesultone-1,4 (XIV)

Même technique. La sultone (XIV) est obtenue à partir du sila-4 spiro [3.5]-nonane avec un rendement de 80%. Spectre RMN (CCl₄): CH₂SO₂ δ 3.1 (2 protons); CH₂CSO₂ δ 2.3 (2 protons); trois CH₂ cyclohexaniques vers 1.6 (6 protons); trois CH₂Si vers 0.9 ppm (6 protons).

Benzènesulfonate de méthyl-1 silacyclobutyle (XV) et méthyl-4 phényl-4 sila-4 butane-sultone (XVI)

Même technique. Par sulfonation du méthyl-1 phényl-1 silacyclobutane on obtient: (a) Le sulfonate (XV) (Rdt. 65%), qui est isolé pur. Spectre IR (film liquide): bande des silacyclobutanes à 1125 cm⁻¹; SO₂ à 1180 et 1350 cm⁻¹. Spectre RMN (CCl₄): 5 protons aromatiques δ 4.7 à 8.0; 6 protons cyclobutaniques δ 1.0 à 2.3; 3 protons SiCH₃ (singulet) δ 0.50 ppm. L'hydrolyse, en solution éthérée, du sulfonate (XV) fournit l'oxyde de méthyl-1 silacyclobutyle déjà connu²²; de la phase aqueuse on isole l'hydrate de l'acide benzènesulfonique (F. 45°). (b). Une fraction plus lourde (Eb. 150–160%0.01 mm) constituée essentiellement de sultone (XVI) (10%). Spectre RMN (CCl₄): 5 protons aromatiques à δ 7.2 à 7.8; CH₂SO₂ à δ 3.1 (2 protons); CH₂CSO₂ à δ 2.3 (2 protons); CH₂Si à δ 1.0 (2 protons); singulet des 3 protons CH₃Si à δ 0.6 ppm.

Diméthylamidosulfate de méthyl-1 silacyclobutyle (XVIIa)

Même technique. La sulfonation du diméthylamino-1 méthyl-1 silacyclobutane (VIII) est réalisée avec un rendement de 85% en produit (XVIIa). Spectre RMN (CCl₄): Figure 4, spectre 8. Spectre IR (film liquide): bande des silacyclobutanes à 1130 cm⁻¹; Si-CH₃ à 1260 cm⁻¹; SO₂ à 1170 et 1360 cm⁻¹.

Diéthylamidosulfate de méthyl-1 silacyclobutyle (XVIIb)

Même technique. Obtenu par sulfonation du diéthylamino-1 méthyl-1 silacyclobutane. Rdt. 75%. Spectre RMN (CCl₄): CH₂N δ 3.25 (quartet); CH₃CN δ 1.2 (triplet); protons cyclobutaniques 0.9 à 2.2; SiCH₃ δ 0.50 (singulet). Spectre IR (film liquide): bande des silacyclobutanes à 1130 cm⁻¹; SO₂ à 1170 et 1350 cm⁻¹.

Sulfate de méthyle et de méthyl-1 silacyclobutyle (XVIIIa)

Même technique. Obtenu par sulfonation du méthoxy-1 méthyl-1 silacyclobutane (VI). Rdt. 90%. Spectre RMN (CCl₄): Fig. 3, spectre 6. Spectre IR (film liquide): bande des silacyclobutanes à 1130 cm⁻¹; Si-CH₃ à 1260 cm⁻¹; SO₂ à 1200 et 1380 cm⁻¹.

Sulfate d'éthyle et de méthyl-1 silacyclobutyle (XVIIIb)

Même technique. Obtenu par sulfonation de l'éthoxy-1 méthyl-1 silacyclobutane (VII). Rdt. 85%. Spectre RMN (CCl₄): CH₂O δ 0.3 (quartet); CH₃CO δ 1.4 (triplet); protons cyclobutaniques 0.9 à 2.2; SiCH₃ δ 0.60 (singulet). Spectre IR (film liquide): bande des silacyclobutanes à 1130 cm⁻¹; SO₂ à 1200 et 1380 cm⁻¹.

Remarque. Au cours des réactions de sulfonation (XVII) et (XVIII) aucun produit de sulfonation de la liaison Si-C cyclobutanique n'a été caractérisé. Il se forme, en plus des sulfates et amidosulfates, dans chaque réaction, un produit plus lourd (environ 10%) résultant probablement de la fixation de 2 molécules de SO₃ dans les liaisons Si-O ou Si-N.

Essai de sulfonation du triméthylsilyloxy-1 méthyl-1 silacyclobutane (XIX)

On traite par la même technique 20.8 g (0.119 mole) de silacyclobutane (IX). À la distillation on recueille une fraction 1 (Eb. 84–86°/0.02 mm, 17.5 g) composée des sulfates (XIXa et b); un résidu de 6.7 g, très visqueux, n'a pu être identifié.

- (a). Etude de la fraction 1. Spectrométrie de masse: on observe sur le spectre les pics (M-15) à m/e 227 et 239 correspondant aux sulfates (XIXa et b). Il n'y a pas de fragment à m/e 251, ce qui semble exclure la présence du sulfate (XIXc). Spectre RMN: SiCH₃ à 0.4 et protons cyclobutaniques entre 0.8 et 2.2 ppm; les intensités relatives des signaux indiqueraient un mélange équimoléculaire de (XIXa et b).
- (b). Action du bromure de n-butylmagnésium sur la fraction 1. On traite cette fraction, en solution éthérée par un excès de BuMgBr. Après les opérations habituelles, on recueille 2 fractions de distillation: Eb. 115°/760 mm (8 g); Eb. 60–65 °/25 mm (3 g); identifiées respectivement au n-butyltriméthylsilane⁴⁸ et au n-butyl-1 méthyl-1 silacyclobutane²⁰. Le rapport molaire de ces deux composés correspond au mélange équimoléculaire des deux sulfates (XIXa et b) dans la fraction 1.

Méthyl-4 chloro-4 butanesultone-1.4(XX)

On traite, à -70° , dans CH₂Cl₂ 28.3 g (0.234 mole) de méthyl-1 chloro-1 silacyclobutane par 76.5 g de solution SO₃/CH₂Cl₂ à 24.53 % en poids (0.234 mole SO₃). Le solvant est chassé et le résidu analysé par résonance protonique (Fig. 2, spectre 4): les 3 massifs des protons méthyléniques, d'intensité égale, caractérisent l'hétérocycle proposé, ainsi que le singulet des protons SiCH₃. On obtient 44.8 g (Rdt. 95%) de produit brut. La distillation de celui-ci ne peut être réalisée totalement (65 %) à cause de l'instabilité thermique de la sultone chlorée (XX).

Dichloro-4,4 sila-4 butanesultone-1,4 (XXI) et chlorosulfonate de chloro-1 silacyclo-butyle (XXII).

L'addition vers -10° de 61 g d'une solution SO_3/CH_2Cl_2 à 24.53% (0.187 mole SO_3) à 26.4 g (0.187 mole) de dichloro-1,1 silacyclobutane conduit après élimination du solvant sous vide, à 37.3 g de produit brut (Rdt. 90%). Une rectification permet d'isoler une fraction (Eb. $40^\circ/0.04$ mm) de 4.2 g (Rdt. 10%) correspondant au chlorosulfonate (XXII). Le résidu (33.1 g, rdt. 80%), qui ne peut être distillé sans décomposition, est constitué par la silasultone dichlorée (XXI). Le spectre RMN de ce résidu, dans CCl_4 , présente 3 massifs d'égale intensité centrés à δ 1.5, 2.3 et 3.3 ppm, correspondant aux 3 groupes méthyléniques du cycle de la sultone (XXI).

REMERCIEMENTS

Nous sommes particulièrement reconnaissants à M. G. H. Weinreich (Institut du Génie Chimique de Toulouse) qui nous a fourni, et purifié, avant l'emploi, l'anhydride sulfurique préparé par oxydation catalytique de l'anhydride sulfureux.

BIBLIOGRAPHIE

- 1 C. EABORN ET T. HASHIMOTO, Chem. Ind. (London), (1961) 1081.
- 2 R. Bott, C. Eaborn et T. Hashimoto, J. Organometal. Chem., 2 (1965) 442.
- 3 H. SCHMIDBAUR, L. SECHSER ET M. SCHMIDT, J. Organometal. Chem., 15 (1968) 77.
- 4 R. CALAS, P. BOURGEOIS ET N. DUFFAUT, C. R. Acad. Sci., Ser. C, 263 (1966) 243.
- 5 R. Calas et P. Bourgeois, C. R. Acad. Sci., Ser. C, 268 (1969) 1525.
- 6 P. BOURGEOIS ET R. CALAS, J. Organometal. Chem., 22 (1970) 89.
- 7 P. MAZEROLLES, J. DUBAC ET M. LESBRE, J. Organometal. Chem., 5 (1966) 35.
- 8 J. DUBAC ET P. MAZEROLLES, C. R. Acad. Sci. Paris, Ser. C. 267 (1968) 411.
- 9 P. MAZEROLLES, J. DUBAC ET M. LESBRE, J. Organometal. Chem., 12 (1968) 143.
- 10 J. Dubac, Thèse, Toulouse, 1969, n° A.O.2604 (C.N.R.S. Paris).
- 11 J. Dubac, P. Mazerolles et M. Joly, Assemblée Annuelle de la Société Chimique de France, Rouen, 19 mai 1970.
- 12 H. SCHMIDBAUR, L. SECHSER ET M. SCHMIDT, Chem. Ber., 102 (1969) 376.
- 13 J. DUBAC ET P. MAZEROLLES, Bull. Soc. Chim. Fr., (1969) 3608.
- 14 J. DUBAC ET P. MAZEROLLES, J. Organometal. Chem., 20 (1969) P5.
- 15 J. Dubac, P. Mazerolles et M. Joly, J. Organometal. Chem., 22 (1970) C7.
- 16 J. Dubac, P. Mazerolles, M. Joly, W. Kitching, W. H. Atwell et C. W. Fong, J. Organometal. Chem., 25 (1970) C20.
- 17 M. SCHMIDT ET H. SCHMIDBAUR, Chem. Ber., 93 (1960) 878; 94 (1961) 2446; 95 (1962) 47; Angew. Chem., 70 (1958) 469, 657.
- 18 L. H. SOMMER ET G. A. BAUM, J. Amer. Chem. Soc., 76 (1954) 5002.
- 19 V. M. VDOVIN, K. S. PUSCHEVAYA ET A. D. PETROV, Dokl. Akad. Nauk SSSR, 141 (1961) 843.
- 20 V. M. VDOVIN, N. S. NAMETKIN ET P. L. GRINBERG, Dokl. Akad. Nauk SSSR. 150 (1963) 799.
- 21 J. LAANE, J. Amer. Chem. Soc., 89 (1967) 1144.
- 22 P. G. CAMPBELL, Diss. Abstr., 17 (1957) 2808; Chem. Abstr., 52 (1958) 4532.
- 23 A. D. Petrov, V. A. Ponomarenko, B. A. Sokolov et G. O. Odabashyan, Izv. Akad. Nauk SSSR, (1957) 1206.
- 24 N. Duffaut, R. Calas et J. Dunogues, Bull. Soc. Chim. Fr., (1963) 512.
- 25 E. M. PHILBIN, E. R. STUART, R. F. TIMONEY ET T. S. WHEELER, J. Chem. Soc., (1956) 4414.
- 26 R. B. Scott Jr. et M. S. Heller, J. Org. Chem., 31 (1966) 1999.
- 27 J. WOLINSKY, D. R. DIMMEL ET T. W. GIBSON, J. Org. Chem., 32 (1967) 2087.
- 28 L. H. SOMMER, O. F. BENNET, P. G. CAMPBELL ET D. R. WEYENBERG, J. Amer. Chem. Soc., 79 (1957) 3295.
- 29 N. S. NAMETKIN, V. D. OPPENGEIM, V. I. ZAV'YALOV, K. S. PUSCHEVAYA ET V. M. VDOVIN, Izv. Akad. Nauk SSSR, Ser. Khim., (1965) 1547.
- 30 H. SCHUMANN ET M. SCHMIDT, Angew. Chem. Int. Ed. Engl., 4 (1965) 1007.
- 31 C. W. Fong et W. Kitching, J. Organometal. Chem., 22 (1970) 95 et 107.
- 32 W. KITCHING, C. W. FONG ET A. J. SMITH, J. Amer. Chem. Soc., 91 (1969) 767.
- 33 G. VITZTHUM, U. KUNZE FT E. LINDNER, J. Organometal, Chem., 21 (1970) P38.
- 34 F. HUBER ET F. J. PADBERG, Z. Anorg. Allg. Chem., 351 (1967) 1.
- 35 R. Gelius, Z. Anorg. Allg. Chem., 349 (1967) 22.
- 36 C. W. FONG ET W. KITCHING, J. Organometal. Chem., 21 (1970) 365.
- 37 R. GELIUS ET R. MUELLER, Z. Anorg. Allg. Chem., 351 (1967) 42.
- 38 C. A. COULSON ET W. E. MOFFITT, J. Chem. Phys., 15 (1947) 151.
- 39 B. Pullman et A. Pulman, Les Théories électroniques de la Chimie Organique, Masson, Paris, 1952.
- 40 B. TCHOUBAR, Les mécanismes réactionnels en Chimie Organique, Dunod, Paris, 1964.
- 41 L. V. VILKOV, V. S. MASTRYUKOV, YU. V. BAUROVA, V. M. VDOVIN ET P. L. GRINBERG, *Dokl. Akad. Nauk SSSR*, 177 (1967) 1084.

- 42 J. LAANE ET R. C. LORD, J. Chem. Phys., 48 (1968) 1508.
- 43 P. MAZEROLLES, M. LESBRE ET J. DUBAC, C. R. Acad. Sci., 260 (1965) 2255.
- 44 N. S. Nametkin, V. M. Vdovin, P. L. Grinberg et E. D. Babich, *Dokl. Akad. Nauk SSSR*, 161 (1965) 358.
- 45 N. S. NAMETKIN, V. M. VDOVIN ET P. L. GRINBERG, Dokl. Akad. Nauk SSSR, 155 (1964) 849.
- 46 H. GILMAN ET W. ATWELL, J. Amer. Chem. Soc., 86 (1964) 2687.
- 47 S. I. YACKIMOVICH ET S. N. BORISOV, Khim. Geterotsikl. Soedin, 3 (1968) 565; Chem. Abstr., 69 (1968) 87053r.
- 48 F. C. Whitmore, L. H. Sommer, P. A. di Giorgio, W. A. Strong, R. E. van Trien, D. L. Bailey, H. K. Hall, E. W. Pietrusza et G. T. Kerr, *J. Amer. Chem. Soc.*, 68 (1946) 475.
- J. Organometal. Chem., 25 (1970) 367-384