Preliminary communication

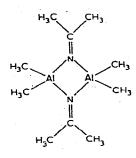
Thermal behavior of anionic organoaluminum thiocyanates

J.L. ATWOOD, P.A. MILTON and S.K. SEALE

Department of Chemistry, University of Alabama, University, Alabama 35486 (U.S.A.) (Received December 14th, 1970; in revised form February 22nd, 1971)

Alkali metal halides react with aluminum alkyls to form anionic complexes in which the two trialkylaluminum units are bridged together by the halide ion^{1,2}. We report here the preparation of the analogous thiocyanate complexes:

 $MSCN + 2AIR_3 \rightarrow M[R_3AISCNAIR_3]$


(M = alkali metal; R = methyl group)

The white crystalline compound $K[Al_2(CH_3)_6 SCN]$ (m.p. 99–101°) was prepared by the vacuum line distillation of 0.01 mole $(CH_3)_3 Al$ onto 0.005 mole KSCN. The sample tube was then sealed and the temperature raised to 85° for one hour. Reaction was deemed to have reached completion when no liquid trimethylaluminum was observed in the vessel. The sample was opened under a nitrogen atmosphere and placed under a vacuum of 10^{-5} mm Hg for a period of several hours. No trimethylaluminum was recovered from the cold trap. (Anal.: Found: C, 35.09; H, 7.88. Calcd. for $K[Al_2(CH_3)_6 SCN]$: C, 34.83; H, 7.52%.) Addition of higher mole ratios of $(CH_3)_3 Al$ to KSCN than 2/1 resulted in all cases in the recovery of the trimethylaluminum in excess of the 2/1 ratio.

Infrared absorptions occur at 2920s, 2870sh, 2810m, 2100m, 2070s, 1190m, 1155s, 800m, 715s, br, 630s, 600s, 520m, 490w, 480w, 450w cm⁻¹. The strong characteristic N--C stretching frequency at 2070 cm⁻¹ agrees well with the values reported for both the sulfur-bridged trimer $[(C_2H_5)_2AISCN]_3$ (2075 cm⁻¹)³, and the thiocyanate-bridged polymer (CH₃)₃SnNCS (2079 cm⁻¹)^{4,5}. For K[(CH₃)₃AISCNAl(CH₃)₃] steric considerations strongly favor a bridging arrangement involving both sulfur and nitrogen atoms in the thiocyanate group.

If $K[(CH_3)_3 AlSCNAl(CH_3)_3]$ is heated for several hours at temperatures in excess of 120°, the initially colorless melt gradually changes to yellow and finally to deep red. From the melt a quantity of a clear, colorless, crystalline product sublimes which elemental analysis shows to have the empirical formula $C_5H_{12}NAl$. Infrared and NMR spectra are consistent with the formulation of the substance as isopropylidenaminodimethylaluminum⁶. Wade and coworkers first isolated the compound from the thermal rearrangement of the neutral addition complex of trimethylaluminum and acetonitrile and proposed a dimeric structure:

J. Organometal. Chem., 28 (1971) C29-C30

Preliminary single crystal X-ray diffraction studies have now proved the two substances to be identical. The crystal system is triclinic and the unit cell parameters are:

 $a = 7.04 \pm 0.01$ Å; $b = 7.77 \pm 0.01$ Å; $c = 8.60 \pm 0.01$ Å; $\alpha = 115.6 \pm 0.2^{\circ}$; $\beta = 105.8 \pm 0.2^{\circ}; \gamma = 92.4 \pm 0.2^{\circ}.$

The formation of $[(CH_3)_2CNAl(CH_3)_2]_2$ from the thermal decomposition of $K[(CH_3)_3AISCNAI(CH_3)_3]$ demonstrates that the thiocyanate group can be broken down in a bridging environment under relatively mild conditions. Studies aimed at the elucidation of the mechanism of decomposition are currently in progress.

ACKNOWLEDGEMENTS

We are grateful to the Research Grants Committee of the University of Alabama for support of this work.

REFERENCES

- 1 K. Ziegler, R. Köster, H. Lehmkuhl and K. Reinert, Ann., 629 (1960) 33.
- 2 G. Allegra and G. Perego, Acta Cryst., 16 (1963) 185.
- 3 K. Dehnicke, Angew. Chem. Intern. Edit., 6 (1967) 947.
 4 M. Wada and R. Okawara, J. Organometal. Chem., 8 (1967) 261.
 5 Y.M. Chow, Inorg. Chem., 9 (1970) 794.
- 6 J.R. Jennings, J.E. Lloyd and K. Wade, J. Chem. Soc., (1965) 5083.

J. Organometal. Chem., 28 (1971) C29-C30