DIE HYDROLYTISCHE SPALTUNG VON TRIS(TRIMETHYLSILYL)-DERIVATEN DER ELEMENTE PHOSPHOR, ARSEN UND ANTIMON

HANS BÜRGER UND ULRICH GOETZE

Institut für Anorganische Chemie der Technischen Hochschule Braunschweig (Deutschland) (Eingegangen den 11. Dezember 1967)

SUMMARY

The cleavage of $[(CH_3)_3Si]_3M$ (M=P, As) by H_2O , D_2O , and CH_3OH is a convenient method for the preparation of $[(CH_3)_3Si]_nMH(D)_{3-n}$ compounds. The ¹H NMR and the vibrational spectra suggest a pyramidal structure for all P, As, and Sb derivatives and do not support the presence of π interactions in the Si-M bond.

ZUSAMMENFASSUNG

Die Spaltung von $[(CH_3)_3Si]_3M$ (M=P, As) durch H_2O , D_2O und CH_3OH bietet eine geeignete Methode für die Darstellung von $[(CH_3)_3Si]_nMH(D)_{3-n}$ Verbindungen. Die ¹H-NMR- und Schwingungsspektren legen eine pyramidale Struktur für alle P-, As- und Sb-Derivate nahe und sprechen nicht für das Vorliegen von π -Wechselwirkungen in der SiM-Bindung.

EINLEITUNG

In Silylaminen $(R_3Si)_nNH_{3-n}$ beeinflußt die Zahl n der an das zentrale N-Atom gebundenen Trialkylsilyl-Gruppen die Reaktionsfähigkeit der SiN-Bindung, und Berechnungen der SiN-Valenzkraftkonstanten haben ergeben, daß diese mit steigendem n absinken (z.B. Ref. 1). Zur Prüfung der Frage, ob sich diese letztere Eigenschaft bei den analogen Verbindungen der Elemente P, As und Sb fortsetzt, und weiterhin zur Klärung des Problems, ob die Schwingungsspektren dieser Verbindungen wie jene der Trisilyle $(H_3Si)_3M$ $[M=P^2]$, As und vermutlich auch Sb³] fälschlich⁴ eine planare Hybridisierung am M-Atom andeuten, haben wir Versuche unternommen, einen Syntheseweg für die Verbindungen

 $(CH_3)_3SiPH_2$ $[(CH_3)_3Si]_2PH$ $(CH_3)_3SiAsH_2$ $[(CH_3)_3Si]_2AsH$ $(CH_3)_3SiSbH_2$ $[(CH_3)_3Si]_2SbH$

aufzusinden, der es gestattet, diese bisher lediglich als Nebenprodukte bei der Darstellung der Tris-Verbindungen [(CH₃)₃Si]₃P⁵ und [(CH₃)₃Si]₃As⁶ gesaßten, teilweise noch unbekannten Verbindungen gezielt zu synthetisieren.

Als wichtige Nebenbedingung sollte der Syntheseweg die Möglichkeit bieten,

anstelle des Wasserstoffs auch Deuterium an das M-Atom zu binden, um prüfen zu können, wie weit die SiM-Valenzschwingungen dieser Moleküle wie im [(CH₃)₃-Sil2NH7 mit Deformationen des SiMH- bzw. HMH-Winkels gekoppelt und folglich uncharakteristisch sind.

DARSTELLUNG

Die Tris-Verbindungen [(CH₃)₃Si]₃M sind über die Reaktionen (1)-(3) leicht

$$\text{Li}_{3}P + 3 \text{ (CH}_{3})_{3}\text{SiCl} \rightarrow 3 \text{ LiCl} + [(\text{CH}_{3})_{3}\text{Si}]_{3}P; 24\%^{5}$$
 (1)

$$KAsH_2 + (CH_3)_3SiF \sim (CH_3)_3Si]_3As; 17\%^6$$
 (2)

$$\text{Li}_3\text{Sb} + 3 \text{ (CH}_3)_3\text{SiCl} \rightarrow 3 \text{ LiCl} + [(\text{CH}_3)_3\text{Si}]_3\text{Sb}; 80\%^8$$
 (3)

zugänglich. Wir haben durch Modifizierung von Reaktion (1) die Ausbeute an [(CH₃)₃Si]₃P auf 70% gesteigert und analog zu Gl. (1) und (3) auch [(CH₃)₃Si]₃As nach Gl. (4) mit Ausbeuten von 76% erhalten; aus Li und As in fl. NH3 bereitetes

$$\text{Li}_{3}\text{As} + 3 \text{ (CH}_{3})_{3}\text{SiCl} \rightarrow 3 \text{ LiCl} + [(\text{CH}_{3})_{3}\text{Si}]_{3}\text{As}$$
 (4)

Li₃As reagierte allerdings nicht. Die von Amberger und Salazar⁸ erhaltene Ausbeute an [(CH₃)₃Si]₃Sb können wir bestätigen (s. Experimentelles).

Spaltet man [(CH₃)₃Si]₃P und [(CH₃)₃Si]₃As in homogener Lösung mit der stöchiometrischen Menge an H₂O. D₂O oder CH₃OH, so erhält man nach Gl. (5)-(7)

$$[(CH_3)_3Si]_3M + H_2O \xrightarrow{30-40^{0}/0} [(CH_3)_3Si]_2O + (CH_3)_3SiMH_2$$
 (5)

$$2[(CH_3)_3Si]_3M + H_2O \xrightarrow{70-750/0} [(CH_3)_3Si]_2O + 2[(CH_3)_3Si]_2MH$$

$$[(CH_3)_3Si]_3As + 2CH_3OH \xrightarrow{25-300/0} 2(CH_3)_3SiOCH_3 + (CH_3)_3SiAsH_2$$
(7)

$$\lceil (CH_3)_3 Si \rceil_3 As + 2 CH_3 OH \xrightarrow{25-30\%0} 2 (CH_3)_3 SiOCH_3 + (CH_3)_3 SiAsH_2$$
 (7)

die Mono- bzw. Disilyl-Verbindungen in teilweise guten Ausbeuten. In heterogener Phase entstehen lediglich PH₃ und AsH₃.

Reaktion (7) wurde (6) vorgezogen, weil (CH₃)₃AsH₂ sich kaum durch Destillation vom (CH₃)₃SiOSi(CH₃)₃ trennen läßt. Von P zum As hin zunehmend tritt daneben besonders nach Gl. (6) die Bildung von PH3 und AsH3 in Erscheinung; gleichzeitig wird unumgesetztes Ausgangsprodukt zurückgewonnen. Die Bildung von PH3 und AsH3 geht weniger auf eine Totalspaltung nach Gl. (8) als eine in der M-Reihe P<As<Sb zunehmende Tendenz zur Dismutierung nach Gl. (9) und (10) zurück.

$$2[(CH_3)_3Si]_3M + 3 HOH \rightarrow 2 MH_3 + 3[(CH_3)_3Si]_2O$$
 (8)

$$3 [(CH_3)_3Si]_2MH \rightarrow 2 [(CH_3)_3Si]_3M + MH_3$$
 (9)

$$3 (CH_3)_3 SiMH_2 \rightarrow [(CH_3)_3 Si]_3 M + 2 MH_3$$
 (10)

Der Zerfall nach Gl. (9) und (10) steht beim Sb so im Vordergrund, daß es zwar gelingt, SbH-haltige Trimethylsilyl-Verbindungen zu erzeugen, diese sich jedoch allen Versuchen zu ihrer Isolierung über eine Dismutierung nach Gl. (9) oder (10) entziehen. Daneben ist ein schneller Zerfall des SbH3 unter Bildung von pyrophorem Sb zu beobachten.

Eine Alternative zur Darstellung der P-deuterierten Verbindungen erbrachte

auch die zu Reaktion (11) analoge Reaktionsfolge (12).

$$\begin{split} & [(CH_3)_3Si]_2NH \xrightarrow{+LiC_4H_9} [(CH_3)_3Si]_2NLi \xrightarrow{+D_2O} [(CH_3)_3Si]_2ND^7 \qquad (11) \\ & [(CH_3)_3Si]_2PH \xrightarrow{+LiC_4H_9} [(CH_3)_3Si]_2PLi \xrightarrow{+D_2O} \\ & [(CH_3)_3Si]_2PD \xrightarrow{+\frac{1}{2}D_2O} (CH_3)_3SiPD_2 \qquad (12) \end{split}$$

Damit sind die folgenden Trimethylsilyl-Verbindungen von Elementen der 5. Hauptgruppe bekannt:

	M = N	M = P	M=As	M = Sb
Si ₃ M	+	+	+	+
Si ₂ MH	+	+	+	_
Si ₂ MD	+	+	_	_
SiMH ₂	_	+	+	
SiMD ₂	-	+	_	-

Tabelle 1 gibt die physikalischen Konstanten der Verbindungen wieder.

TABELLE 1
PHYSIKALISCHE KONSTANTEN VON TRIMETHYLSILYL-VERBINDUNGEN DER ELEMENTE P. AS UND Sb

Verbindung	Schmp. (°C)	Sdp. (°C/mm)	d ²⁰	n_D/T (°C)
(CH ₃) ₃ SiPH ₂	-75	78/760	···	1.4368/25°
[(CH ₃) ₃ Si] ₂ PH	-38	60/16 172/760°	0.81884	1.4637/25°
[(CH ₃) ₃ Si] ₃ P	24	105/16 242-243/760°	0.8670ª	1.5027/254
(CH ₃) ₃ SiAsH ₂	< -90	90/728 33/100		1.4657/20
[(CH ₃) ₃ Si] ₂ AsH	-19	176/728 55/15 ⁶		
[(CH ₃) ₃ Si] ₃ As	0	84/4 82-84/4 ^b	0.9939 ^b	1.5069/20
[(CH ₃) ₃ Si] ₃ Sb	6 -1 bis +1°	.88/2	1.1246	1.5428/20

[&]quot; s. Ref. 5. b s. Ref. 6. c s. Ref. 8.

Die Zusammensetzung der Verbindungen haben wir teilweise über Elementaranalysen, bevorzugt über ihre ¹H- und ³¹P-KMR-Spektren sowie ihre IR- und Raman-Spektren gesichert.

Die chemischen Eigenschaften aller Verbindungen lassen sich hydrolyseempfindlich und in der Reihe P < As < Sb zunehmend oxydationsempfindlich beschreiben. An die Luft gebracht, entzünden sie sich. Dabei nimmt ihr pyrophorer Charakter in der Reihe $SiMH_2 < Si_2MH < Si_3M$ (M = P, As) deutlich erkennbar zu (s. dagegen Ref. 6). Bei völligem Ausschluß von H₂O und O₂ sind alle Verbindungen wasserklare, farblose Flüssigkeiten und unempfindlich gegen längere Bestrahlung mit Hg 4358 Å. An rauhen Glasoberflächen zersetzen sie sich unter Gelbfärbung. Wegen der Empfindlichkeit der Verbindungen sind Elementaranalysen nicht mit der üblichen Genauigkeit ausführbar.

SPEKTREN

¹H-KMR-Spektren

Über die ¹H- und ³¹P-KMR-Spektren der Silylphosphine haben wir bereits berichtet⁹. Gegen Cyclohexan und stets vorhandene Spuren [(CH₃)₃Si]₂O (< 1%) als innere Standards wurden an den reinen Flüssigkeiten die chemischen Verschiebungen und Kopplungskonstanten bestimmt (s. Tabelle 2).

TABELLE 2

1H-KMR-spektren von trimethylsilyl-M-verbindungen

Verbindung	τ(CH ₃)	τ(AsH)	J(¹ H- ¹³ C)	J(¹H∸ ²⁹ Si)
	(ppm)	(ppm)	(H2)	(Hz)
[(CH ₃) ₃ Si] ₃ N° [(CH ₃) ₃ Si] ₃ P' (CH ₃) ₃ SiAsH ₂ [(CH ₃) ₃ Si] ₂ AsH [(CH ₃) ₃ Si] ₃ As [(CH ₃) ₃ Si] ₃ Sb	9.82 9.56° 9.67' 9.69' 9.66'	9.31 ^f 10.18 ^f	118.0 120.2 ^d 121.0 ^d 120.4 ^d 120.0 ^d	6.76 6.6° 6.95° 6.9° 6.7° 6.95°

^a s. Ref. 10. ^b s. Ref. 9. ^c Gegen C_6H_6 (τ =2.63) als innerem Standard. ^d ±0.5. ^e ±0.1. ^f ±0.02.

Schwingungsspektren

Von allen Verbindungen haben wir IR- und Raman-Spektren aufgenommen, die im einzelnen an anderer Stelle¹¹ diskutiert werden sollen. Für Struktur und Bin-

TABELLE 3

LAGE DER SIM-VALENZSCHWINGUNGEN IN TRIMETHYLSU VI-VERRINDLINGEN[®]

LINE DER ONLY THE		SHELL IN IMBIEL	13.1 Profee 1 7°- A Tried	MADONOLIA .
(CH ₃) ₃ SiPH ₂	v(SiM)	423 m/vsp		
(CH ₃) ₃ SiPD ₂		407 m/vsp		
(CH ₃) ₃ SiAsH ₂		352 m/vsp		
[(CH ₃) ₃ Si] ₂ NH ^b	$v_3(Si_2M)$	568 m/vsp	vas(Si ₂ M)	934 vs/vw
$[(CH_3)_3Si]_2ND^b$		562 m/vsp		1030 vs/vw
$[(CH_3)_3Si]_2PH$		403 m/vsp		453 vs/m
[(CH ₃) ₃ Si] ₂ PD		404 m/vsp		437 vs/m
[(CH ₃) ₃ Si] ₂ AsH		344 (vs)/vsp		348 vs/(vsp)
[(CH ₃) ₃ Si] ₃ N ^c	$v_s(Si_3M)$	438 w/vsp	$v_{\epsilon}(Si_3M)$	916 vs/w
$[(CH_3)_3Si]_3P$		380 m/vsp		461 vs/m
$[(CH_3)_3Si]_3As$		341 m/vsp		357 vs/m
[(CH ₃) ₃ Si] ₃ Sb		319 (s)/vsp		319 s/(vsp)

^a In cm⁻¹; in Klammern IR/Raman-Intensität. ^b s. Ref. 7. ^c s. Ref. 12.

J. Organometal. Chem., 12 (1968) 451-457

dungsverhältnisse sind Lage und IR- bzw. Raman-Intensität der SiM-Gerüstschwingungen, die Tabelle 3 wiedergibt, von wesentlichem Interesse.

Tabelle 3 läßt erkennen, daß bei den P-Verbindungen der Ersatz von H durch D zu einem Absinken der SiP-Valenzschwingungen führt, wie man es für eine bezüglich der SiP-Bindung starre PH- bzw. PD-Gruppe erwarten kann. Deshalb ist es

TABELLE 4
MITTLERE SIM-VALENZSCHWINGUNGEN VON TRIMETHYLSILYL-M-VERBINDUNGEN

M	(CH ₃) ₃ SiMH ₂	(CH ₃) ₃ SiMD ₂	[(CH ₃) ₃ Si] ₂ MH	[(CH ₃) ₃ Si] ₂ MD	$[(CH_3)_3Si]_3M$
N	8284	792 ^b	751	796	7575
P	423	407	431	421	434
As	352		346		352
Sb					319

^a (C₂H₅)₃SiNH₂⁷. ^b (C₂H₅)₃SiND₂⁷. ^c Berechnet unter Berücksichtigung des Entartungsgrades.

vertretbar, an Stelle der Kraftkonstanten¹¹ in Tabelle 4 direkt die mittleren Valenzschwingungen $\bar{\nu}$ (arithmetisches Mittel) miteinander zu vergleichen.

Diskussion

Aus den von Tabelle 3 auszugsweise wiedergegebenen Schwingungsspektren läßt sich auf Grund der Auswahlregeln folgern, daß alle Si_3M -Verbindungen mit $(CH_3)_3Si$ -Gruppen pyramidal gebaut sind. Die Nachbarschaft von v_{as} (bzw. v_e -) und v_s (SiM) deutet bei P-, As- und Sb-Verbindung darauf hin, daß der SiMSi-Winkel im Einklang mit den Elektronenbeugungsuntersuchungen an $(H_3Si)_3P$ und $(H_3Si)_3As^4$ nahe 90° , dagegen im $[(CH_3)_3Si]_3N$ zwischen Tetraederwinkel und 120° liegen wird. Die Sonderstellung des N geht auch aus den 1H -KMR-Spektren hervor: chemische Verschiebung und Kopplungskonstanten fallen aus der Reihe der übrigen Elemente heraus.

Für die P-Verbindungen war auf Grund der 31 P-kernmagnetischen Resonanz-Spektren gefolgert worden, daß das P-Atom für seine Bindungen an das Si p-Orbitale benutzt⁹. Die Einheitlichkeit aller Spektren läßt für die höheren Homologen den gleichen Bindungstyp erwarten. Im $[(CH_3)_3Si]_3N$ dagegen geht der Stickstoff eine Hybridisierung ein, die zwischen sp^2 und sp^3 liegt.

Bei gleichbleibender SiM-Kraftkonstanten erwartet man wegen der abnehmenden MH_{3-n} -Masse in der Reihe $[(CH_3)_3Si]_nMH_{3-n}$ mit zunehmendem n ein Ansteigen der mittleren SiM-Valenzschwingung. Diese Erwartung wird von den Pund As-Verbindungen (wegen der großen As-Masse muß dieser Effekt sehr klein sein) erfüllt. Der Stickstoff zeigt ein entgegengesetztes Verhalten, das die deutlichen Änderungen der SiN-Kraftkonstanten in der Reihe

$$R_3 SiNH_2$$
 (4.0) > $(R_3 Si)_2 NH$ (3.5) > $(R_3 Si)_3 N$ (3.2 mdyn/Å)¹

wiederspiegelt.

Die Anfälligkeit von Struktur und Kraftkonstanten gegenüber Änderungen der Substituenten ist ein typisches Kriterium für Bindungen, die durch π -Anteile variablen Ausmaßes verstärkt sein können. Alle im Rahmen dieser Arbeit berichteten Daten weisen darauf hin, daß SiP, SiAs und vermutlich auch SiSb-Bindungen frei von

 π -Anteilen sind. Dies soll noch durch einen Vergleich der mittleren SiM-Valenzschwingungen der $(H_3Si)_3M^3$ - und $[(CH_3)_3Si]_3M$ -Verbindungen belegt werden:

M	v̄[(H₃Si)₃M]	$\tilde{v}\{[(CH_3)_3Si]_3M\}$
N	823	757
P	441	434
As	357	352
SЬ	309	319

Der hier nur qualitativ geführte Nachweis, daß SiP-, SiAs- und SiSb-Bindungen ihre Eigenschaften weitgehend unabhängig von den Si-Liganden beibehalten, wird durch die Berechnungen der Kraftkonstanten¹¹ gestützt.

EXPERIMENTELLES

Substanzen

Tris(trimethylsilyl) phosphin (I). Diese Verbindung wurde analog Ref. 5 aus Li₃P, das durch Einleiten eines Überschusses von PH₃ (aus Ca₃P₂ und HCl) in 1 Mol LiC₄H₉ in 500 ml Äther dargestellt wurde, durch Zugabe von 1 Mol (CH₃)₃SiCl. Erhitzen am Rücksluß bis zur Entfärbung des Niederschlages, Filtration, Abziehen des Äthers und Vakuumdestillation erhalten. Daneben wurden 2–3 ml (II) isoliert.

Bis(trimethylsilyl)phosphin (II) und Bis(trimethylsilyl)phosphin- d_1 (III). Zu einer Lösung von 0.1 Mol (I) in 50 ml THF wurden 0.05 Mol H_2O (D_2O) in 50 ml THF zugetropft. Nach Abklingen der exothermen Reaktion wurde über eine Drehbandkolonne fraktioniert. Ausbeute 71%

(II) reagiert mit stöchiometrischen Mengen Li C_4H_9 in Petroläther zu einem weißen, nicht flüchtigen, in "Diglyme" löslichen Niederschlag, vermutlich $[(CH_3)_3-Si]_2$ PLi, der mit D_2O in "Diglyme" zu (III) bzw. (V) zersetzt werden kann.

(Trimethylsilyl) phosphin (IV) und (Trimethylsilyl) phosphin- d_2 (V). (I) (0.1 Mol) in 50 ml "Diglyme" wurde mit einer Lösung von 0.1 Mol H_2O (D_2O) in 50 ml "Diglyme" versetzt und nach Beendigung der exothermen Reaktion unter Normaldruck über eine Drehbandkolonne fraktioniert. Ausbeute 30–40% an (IV) bzw. (V); daneben (I), (II) [bzw. (III)] und PH_3 bzw. PD_3 .

Tris(trimethylsilyl)arsin (VI). Diese Verbindung erhielten wir analog (I) aus Li₃As (aus Zn₃As₂+30%ig. H₂SO₄ \rightarrow AsH₃, Einleiten in 1 Mol LiC₄H₉ in Äther, brauner Niederschlag) und 1 Mol (CH₃)₃SiCl in 500 ml Äther durch 60 Std. Stehenlassen bei Raumtemperatur (Entfärbung des Niederschlages) mit 76% Ausbeute; daneben 1–3 ml (VII).

Bis(trimethylsilyl)arsin (VII). (VI) (0.1 Mol) in 50 ml THF wurde mit 0.05 Mol H_2O in 50 ml THF versetzt und analog (II) aufgearbeitet. Ausbeute 70%; daneben unumgesetztes (VI) und AsH_3 . (Gef.: C, 32.76; H, 8.92. $C_6H_{19}AsSi_2$ ber.: C. 32.41; H, 8.62%.)

(Trimethylsilyl)arsin (VIII). (VII) (0.25 Mol) in 100 ml Åther wurde mit 0.5 Mol CH₃OH versetzt, 2 Std. unter Rückfluß erhitzt und über eine Drehbandkolonne fraktioniert. Ausbeute 15–18 g (25–30%) (VIII), daneben CH₃OSi(CH₃)₃, CH₃OH und (VII). (Gef.: C, 24.24; H, 7.52. C₃H₁₁AsSi ber.: C, 24.11; H, 7.42%.)

Tris(trimethylsilyl)stibin (IX). Diese Verbindung haben wir analog Ref. 8 mit Ausbeuten zwischen 70 und 80% erhalten. Es bildet bei der Reaktion mit H₂O in homogener Phase SbH₃, das in pyrophores Sb und H₂ zerfällt, sowie SbH-haltige Produkte, die sich schnell zersetzen. Daneben wird unumgesetztes (IX) zurückgewonnen.

Spektren

¹H-KMR. Varian A 60, Reinsubstanzen mit Cyclohexan als innerem Standard. IR. Beckman IR 11 und IR 12; 4000–70 cm⁻¹; Reinsubstanzen bei Schichtdicken bis zu 1 mm; KBr/CsBr/Polyäthylenfenster.

Raman. Cary 81; 7 mm-Rohre, Anregung mit Hg 4358 Å, Polarisationszustände qualitativ nach der incident-light-Methode. Zuverlässigkeit aller Wellenzahlen aus Tabelle $3 \pm 1-2$ cm⁻¹. Einzelheiten s. Ref. 11.

DANK

Wir danken Herrn Prof. Dr. H. CORDES, Braunschweig, für die Erlaubnis zur Benutzung des Raman-Gerätes, der Deutschen Forschungsgemeinschaft für die Bereitstellung der Spektrographen sowie dem Fonds der Chemischen Industrie für die Unterstützung mit Sachmitteln.

LITERATUR

- 1 H. BÜRGER, Fortschr. Chem. Forsch., 9 (1967) 1; H. BÜRGER, Monatsh. Chem., 97 (1966) 869.
- 2 G. DAVIDSON, E. A. V. EBSWORTH, G. M. SHELDRICK UND L. A. WOODWARD, Spectrochim. Acta, 22 (1966) 67.
- 3 G. DAVIDSON, L. A. WOODWARD, E. A. V. EBSWORTH UND G. M. SHELDRICK, Spectrochim. Acta, 23A (1967) 2609.
- 4 B. BEAGLEY, A. G. ROBIETTE UND G. M. SHELDRICK, Chem. Commun., (1967) 601.
- 5 G. W. PARSHALL UND R. V. LINDSEY, JR., J. Amer. Chem. Soc., 81 (1959) 6273.
- 6 A. B. BRUKER, L. D. BALASHOVA UND L. Z. SOBOROVSKII, Dokl. Akad. Nauk SSSR, 135 (1960) 843; Chem. Abstr., 55 (1961) 13301.
- 7 H. BÜRGER, Inorg. Nucl. Chem. Lett., 1 (1965) 11.
- 8 E. Amberger und R. W. Salazar, J. Organometal. Chem., 8 (1967) 111.
- 9 E. FLUCK, H. BÜRGER UND U. GOETZE, Z. Naturforschg., 22b (1967) 912.
- 10 H. SCHMIDBAUR, J. Amer. Chem. Soc., 85 (1963) 2336.
- 11 H. BÜRGER, U. GOETZE UND W. SAWODNY, in Vorbereitung.
- 12 J. GOUBEAU UND J. JIMÉNEZ-BARBERÁ, Z. Anorg. Allg. Chem., 303 (1960) 217.
- J. Organometal. Chem., 12 (1968) 451-457