COMPLEXES OF POLYPYRAZOLYLBORATE LIGANDS

I. CONFORMATIONAL ISOMERISM IN [TETRAKIS(1-PYRAZOLYL)-BORATE] (h⁵-CYCLOPENTADIENYL)DICARBONYLMOLYBDENUM

J. L. CALDERON, F. A. COTTON and ALAN SHAVER

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A. (Received October 8th, 1971)

SUMMARY

Studies on the structure of $[B(pz)_4](C_5H_5)(CO)_2MO$, where $B(pz)_4$ represents the tetrakis(pyrazolyl)borate group, have shown that the $B(pz)_4$ ligand is bidentate, while the cyclopentadienyl group is *pentahapto*. The interesting six-membered metallocyclic ring can exist in two conformers in solution, and these interconvert, with an activation energy of the order of 10 kcal/mol, thus giving rise to extensive variations in the proton NMR spectrum as the temperature is varied.

INTRODUCTION

The recent discovery of the polypyrazolylborate class of ligands has resulted in the synthesis of many new complexes¹. Tris and tetrakis(1-pyrazolyl)borate ions, $(HB(pz)_3^-$ and $B(pz)_4^-$) have the potential to be tridentate or bidentate. To date no example of these ligands being bidentate to a metal atom has been reported. On the contrary, the tris(1-pyrazolyl)borate ligand is tridentate in $[HB(pz)_3]MO(CO)_2(NN-C_6H_5)_2$ and in $[HB(pz)_3]_2Co^3$. We wish to report our spectroscopic studies on $[B(pz)_4](C_5H_5)(CO)_2MO(I)$ which, together with preliminary results from a single crystal X-ray crystallographic study, show the $B(pz)_4$ ligand to be bidentate. Our evidence also suggests that the ring formed by the boron and molybdenum atoms and the two bonded pyrazolyl groups can exist in two conformers which interconvert in solution, thus giving rise to proton NMR spectra which vary markedly with temperature.

EXPERIMENTAL

The complex (I) was prepared according to a previously published procedure⁴. Infrared spectra were taken using a Perkin–Elmer 337 grating infrared spectrophotometer and 0.1 mm path-length sodium chloride cavity cells. Variable temperature proton nuclear magnetic resonance spectra were taken on a Varian HA-100.

RESULTS

Infrared spectra

The infrared spectrum of (I) dissolved in toluene- d_8 in the carbonyl region is

shown in Fig. 1. The spectrum consists of two doublets, individual peaks occurring at 1950, 1935, 1865, 1845 cm⁻¹, each with a possible error of ± 5 cm⁻¹. Thus a total of four bands is observed rather than the expected two. A similar pattern of bands is also

Fig. 1. A portion of the infrared spectrum of $[B(pz)_4](h^5-C_5H_5)(CO)_2Mo$ in toluene- d_8 .

observed when other solvents, such as CS_2 , *m*-xylene, CCl_4 and ether, are used. However, the intensities of the less intense bands at 1950 and 1865 cm⁻¹ relative to the intensities of the bands at 1935 and 1845 cm⁻¹ are extremely solvent dependent. The ratio of intensities ranges from about 1/20 in CCl_4 to about 1/2 in toluene- d_8 . Only one set of bands (*i.e.*, total of two bands) is observed in cyclohexane, in agreement with Trofimenko's report⁴.

Nuclear magnetic resonance spectra

The NMR spectra of (I) at various temperatures in a 3/2/1 mixture of toluene- d_8 , CDCl₃ and TMS are shown in Fig. 2. At room temperature the spectrum consists of a sharp peak at about $\tau 5.2$ which can be assigned to the C₅H₅ group, and a complex group of resonances between τ 4.0 and 2.0 which are due to the protons on the pyrazole rings. Trofimenko pointed out the futility of trying to determine the structure of (I) by NMR⁴. This is especially true in view of our observation of the extreme solvent dependence of the chemical shifts in the pyrazole region. We found the spectrum of (I) to be invariant with temperature from 25° to 150° in DMF- d_7 , but when the solution is cooled a number of changes occur. First, the whole spectrum begins to broaden and eventually to collapse. This is first noticeable at about -69° and becomes maximal at about -92° . On further cooling to about -120° the spectrum again sharpens and two peaks appear in the C_5H_5 region. At temperatures approaching -132° , although viscosity broadening effects may be interfering, it appears that the C_5H_5 resonances have again collapsed while the pyrazole resonances retain some sharpness. Thus, as the temperature is lowered the behavior of the NMR spectrum of (I) may be divided into three stages: (a), broadening and collapse of the whole spectrum; (b), sharpening of the spectrum with concomitant resolution of two C_5H_5 peaks; (c), collapse of the two

Fig. 2. The PMR spectra of $[B(p_2)_4](h^5-C_5H_5)(CO)_2Mo$ in a 3/2/1 mixture of toluene- d_8 , CDCl₃ and TMS (a) and (b) and in a 3/2/1 mixture of CCl₂F₂, CDCl₃ and TMS (c). The peaks at τ 2.7 and τ 2.9 in (a) are due to undeuterated solvent. The scale is in τ units.

 C_5H_5 peaks. Stages (a) and (b) have been fully observed using a solvent mixture of CCl_2F_2 , $CDCl_3$ and TMS in 3/2/1 volume ratios, but the solution froze in the incipient phase of stage (c).

X-ray crystallographic study

The molecular structure is presented in Fig. 3. This is based on the preliminary

Fig. 3. The $[B(pz)_4](h^5-C_5H_5)(CO)_2$ Mo molecule showing the structure and the atom numbering.

Fig. 4. Possible structures of the conformational isomers of $[B(pz)_4](h^5-C_5H_5)(CO)_2Mo$.

results of a single crystal X-ray study (see Appendix). The C_5H_5 group is *pentahapto* while the B(pz)₄ ligand is bidentate and forms a six-membered ring with the molybdenum. This structure had previously been proposed⁴, with some reservations. The plane formed by the ring of one of the unbound pyrazole groups (pz3) is perpendicular to the line formed by the Mo and the boron. The plane formed by the other unbound ring (pz4) is parallel to the Mo-B line. A mirror plane (non-crystallographic) which contains one unbound ring (pz4), the boron atom and the molybdenum atom and which bisects the C_5H_5 ring and the OC-Mo-CO group can be observed. The sixmembered ring formed by the molybdenum and boron atoms and edges of pz1 and pz2 has a boat configuration (see Fig. 4).

DISCUSSION

The spectroscopic results can be explained by postulating the presence in solution of conformational isomers similar to A and B in Fig. 4. The infrared spectrum of a mixture of the A and B isomers would be expected to consist of four bands in a pattern of the sort observed. It appears that for the cyclohexane solution the equilibrium between A and B is greatly in favor of one conformer. However, in toluene the equilibrium constant is closer to unity. In view of the very bulky nature of the *B*-substituents on the MoN₄B ring this solvent dependence may not be surprising.

To account for the NMR results, we postulate an interconversion process between A and B. At room temperature the interconversion is rapid with respect to the NMR time scale and an average spectrum is observed; this gives sharp multiplets for

all pz protons and a singlet for C_5H_5 . By cooling the solution, the rate of this interconversion is diminished, which accounts for the broadening and collapse of the whole spectrum [stage (a)]. Further cooling reduces the rate of interconversion so much that in stage (b) separate spectra for the isomers A and B can be resolved. The most conspicuous manifestation of this is the occurrence of the two resonances at about τ 5 due to the C₅H₅ rings of the two isomers. The complex pattern of the pyrazole region is due to the superposition of the resonances due to the pyrazole protons in the two isomers. Stage (c) represents a different phenomenon which we feel affects only the $C_{5}H_{5}$ ring since the resonances due to this group are extensively broadened while at the same time the pz resonances remain fairly sharp. This phenomenon may be the slowing of the rotation of the h^5 -C₅H₅ ring. If the structure of (I) in solution is the same at very low temperature as it is in the crystal then it is clear that the h^5 -C₅H₅ ring is in a very magnetically asymmetric environment due to the relatively close approach of pz3. Thus the protons of the C_5H_5 ring would have very different chemical shifts if the rotation were stopped which may account for the final broadening of these C_5H_5 resonances as observed in stage (c). We have not yet been able to obtain a low temperature limiting spectrum to test this postulate due to experimental difficulties.

We have considered, but rejected, the possibility that the temperature dependence of the NMR spectrum, to the extent that the details of the low temperature spectra are resolved, might be explainable in another way. In this alternative view, the rotation of the set of ligands, h^5 -C₅H₅, CO, CO, about a quasi-threefold axis passing through the molybdenum atom is invoked. By a rotation of about 60° one of the CO groups would be brought into the axial position of a square-pyramidal "piano stool" structure with the h^5 -C₅H₅ group occupying the position of one of the legs. If this structure were in fact the second structure being observed at low temperatures it should, in principle, be possible to identify it because its lack of symmetry would cause it to have a more complex spectrum than that of either of the "ring flip" conformers. However, the overall complexity and poor resolution of the low temperature spectra do not allow such a decision to be made.

We believe that this "rotational conformer" hypothesis is unlikely for several reasons. Among the vast number of $(h^5-C_5H_5)MoL_{4-n}L'_n$ molecules which have been studied there appears to be no case in which the $h^5-C_5H_5$ ring does not form the "seat" of the piano stool and the ligands L and L' the legs⁵. Another consideration is that in the infrared spectrum of (I) there are no significant differences in the splittings or relative intensities of the symmetric and antisymmetric CO stretching modes of the two conformers. If the two species were the "rotational conformers", in one of which the two CO groups are in quite different environments while in the other their environments are symmetry equivalent, such similarity in the spectra would not be likely. Finally, our work on analogous compounds with simpler NMR spectra, which will be reported in a future paper, provide support for the "ring flip conformer" hypothesis.

CONCLUSION

The postulation of conformational isomers for the rather unique six-membered inorganic metallocycle observed in $[B(pz)_4]$ (h^5 -C₅H₅)(CO)₂Mo appears to account for all the spectroscopic properties observed. The structural conclusions presented here have been extended in the interpretation of a study of two new compounds, [HB-

TABLE 1

THE OBSERVED AND CALCULATED STRUCTURE FACTORS IN ELECTRONS (×10)

																			_	
н	LFO	PS FCA			E CRIS	FCAL	ы	1 679										-		
						211	10		s reat		LFOR	S FCAL		-	P.145	PC IL			FCRS	E CAL
,	0.7	79 1041				144			3 37		2 21	247	e.	2	143	1 34	11	•	21 1	146
						107	12	17 1	0 28	1	6 135	2 1187	2		351	332	13	4	207	212
	0.12	21 I			3 70~	662	14	14 40	0 191	3	A 50.	3 452	- 4	-5	- 93Z	710	15	- 4	375	284
		74 334			5 1357	1402	16	14 26	6 305	5	6 71	648		- 5	746	766	1	5	72 C	724
	0 21	13 235	- 14		5 485	411	1A	14 3	1 27	7	A 114	7 1133	Α.	- 5	38	46	3	- 5	596	547
16	e 2	04 Z46	- 16	, e	5 124	119	2C	14 15	7 I75	9	6 1 04	1064	10	5	24Ò	272	5	5	491	459
12	C 7	57 8 5 0	18	-	s 859	652	0	16 17	5 159	- 11	6 74	> > > 77	12	Ś.	155	1 74		ě		
14	C 6	C* 620	20	, ,	5 775	703	2	15 4	9 64	- 15	A 18		14		422	4 77				
16	A 4	CO 932		• •	. 77	15	4	14 1										- 1	600	013
19		5 766				1.61	· · ·	· · · · · ·	é	12	0 /41	<i>i i i i</i>	1.5	-	31.	P.C	11	5	547	665
						137				1	1 364	J 3C7	0	6	452	345	13	- 5	21C	210
20	6 IQ	20 1693			5 C6 5	690	1	0 134	7 1258	د	7 \$27	7 343	2	6	554	540	1	6	632	583
22	0 7	57 759	_ Z 8	, ,	366	355		0 227	1 2173	5	7 301	2 96	4	6	1085	1040	٤	6	557	604
Z4	•	29 63	30		205	240	- 5	0 126	C 1216	7	7 250	259		6	429	410	÷.		53	76
26	0 63	97 ezo	32	6	577	500	7	0 48	7 443	q	7 241	249		~	140	1 77			670	640
Z 9	0 6	73 652	34		290	273	9	0 68	1 707	11	7 234	271	iñ		701					100
30	0 2	99 279	30		112	73	- 11	0 964	1078				12	Ä	478			-		100
12	0 21	18 289			181	204				:	0 0 90	132		-		438	-		3/3	492
14							- 12	0 01		د	9 103	132	G	<u> </u>	2.0	247		• * *	4.	
34					132	312	12	0 140	129		8 0 K x 2		2	- 7	530	458	0	0	1146	1075
		244		- 2		322	17	0 90	7 835	0	0 319	181	4	7	64Z	597	2	0	134	99
	0 20	201	- Z		410	4 80	10	0 654	5 683	2	0 1753	1526	e	7	66	28	4	0	46 C	393
417	C 1	IE 78		- 6	63C	723	21	0 161	L 130	- 4	0 392	348	A	7	295	282	۵	3	544	583
42	C 47	5 410	6		322	334	23	0 433	3 446	6	0 1115	1100	0	P	78		Ā	ň	24.8	31.0
44	C 31	5 275	9	a	276	290	1	1 1245	1121	Ā	0 624		ň	à			10	š		
46	0 7	'J 37	10	9	1115	1710		1 141												223
ō		1 0	1.2	ā	494	703		1 101				222	~	10	170	210	12	U.	122	129
41	-1 7	ž .		ă	101	166	- 4 -		2.55	12		121	<u>u</u>		124	144	14	- 0	184	377
12	5 12		- 17		175	133		1 1/1	164		0 1160	1203	a	12	466	413	16	0	173	120
<u> </u>		1112	10		-13	242		1 400	201	16	0 698	674	с	13	195	141	0	1	891	885
-		0 336	10			109	11	1 304	5 392	18	0 168	133	с	14	Z46	183	Z	1	93 5	86Z
~	2 43		20	9	±84	168	19	1 611	592	20	0 427	475	9	15	110		4	1	410	371
6	Z 15	4 51	22	8	205	178	15	1 436	3 3 95	22	0 7ea	833		•K =	- 10		6	ī	94.5	910
Ŗ	Z 224	C 2513	- 24	9	497	456	17	1 498	508	0	1 449	4 66	1	0	234	1 88	Ā	- î	54.3	554
10	2 24	6 292	46	9	392	373	17	1 92	76	2	1 1557	14.25	ī	ñ	911	876	10	•	21.5	170
12	2 11 9	3 1305	29	в	192	105	21	1 38	17		742		-	ň	PA 9			- 1	207	701
14	2 52	1 630	30	8	14.8	304	23	1 134	1.75				-	ž						103
16	2 12	8 247	32		170	74.7	· · · ·		1000			1065				-13	1.2		-004	405
1		7 (30				203	1	2 1130	1048		1 383	364		Q.	40		16	1	32 @	345
10	2 10		34		213	200	2	2 1769	1663	10	1 455	369	11	c	610	670	0	z	276	236
20	2 93	2 970	10		12	14	2	2 1928	1717	12	1 453	4 Z O	13	0	66C	672	2	2	129	105
~ ~ ~	4 63	2 363	15	9	234	264	7	2 134	- 111	14	1 499	525	15	c	358	427	4	2	103	77
24	2 41	2 338	c	10	50.9	455	•	2 989	899	16	1 127	129	17	0	466	501	6	2	50	69
26	2 26	7 241	2	10	21 C	227	11	2 705	753	18	1 2 26	236	19	C	543	562		Z	502	498
28	2 52	3 450	4	10	245	265	2.3	2 280	275	20	1 39	46	1	i	837	769	10	ž	21	34
30	2 75	0 748	8	10	73 C	793	15	2 936	865	22	1 341	343		ī	1660	1408	12		215	205
32	Z 10	5 112	10	10	560	555	17	2 1081	1157	-0	2 1216	1154	5	ī	667	679	14	5	132	155
36	2 60	6 525	12	10	104	104	19	2 562	570		2 455	449	7		484	470		5	540	\$20
36	2 45	4 52	14	10	29.1	334	21	2 204	202	2			ċ		8 7 7					100
14	2 5		- 12	10	104	450		1 100	203			1.1			222	263			20	10
40	3 17				117	330	÷.	3 101	108	<u> </u>	2 1285	1235		1	/35	719		3	972	962
4.3	2 22					320	2	3 200	104		2 271	283	13	1	52	37		3	1225	1210
		520	~~~	10		34	2	3 103	42	10	2 102	86	15	1	664	687	8	з	504	483
	6 64	2 2 6 4	~ ~ ~	10	284	263	7	3 842	833	12	2 832	831	17	1	299	351	10	3	461	433
0	4 94	5 768	- 24	10	477	404	•	3 480	457	14	2 637	879	19	1	369	455	12	3	813	817
2	4 63	9 770	2 e	10	72	65	11	3 35	25	16	2 292	253	1	2	522	505	14	3	744	756
4	4 107	1205	28	10	153	129	13	3 1146	1138	18	2 260	275	3	2	556	4.27		-	104	113
	4 85	7 1050	30	10	2C 5	190	15	3 79	80	20	2 814	802		2	258	229		-		
8	4 94	5 1076	32	10	209	199	17	3 114	178	-	1 477			5	378	131		ĩ	- 11	
10	4 57	550	34	10	3.1	1.6	10	3 378		ž					211		- 7			
15	4 104						17	3 313	360	<i>c</i>	3 125	CI.		÷.	411	923	•	•	104	340
12	- 1060	1114	0	12	319	219	21	3 447	410	4	3 470	429	11	2	678	639	5	4	286	248
	3 34	2 201	2	14	379	435	1	4 604	558	6	3 1006	967	13	2	196	142	10	4	445	464
10	+ +E.	473	4	12	175	205	3	4 418	475	8	3 589	579	15	2	473	510	G	5	Z04	186
18	4 99(5 943	6	12	299	315	5	4 107	121	10	3 284	255	17	z	618	640	2	ŝ	107	121
20	4 95	9 1064	8	12	31.7	289	7	4 1028	977	12	3 317	3 5 3	19	2	248	787		5	821	805
22	4 29/	274	10	12	105	174	•	4 1071	1053		3 360	200		- R -	114.0			-		
24	4 194		12	- 15	87			1012	1032		2 2 2 2	368	-	- 1 -	1203	1142	2	- 2	401	44.5
24	4 4 9	4.60	17					7	011	10	3 143	1 24	-		2221	1200		?	123	120
29	4 66	A17		::	270	704	1.3			16	3 605	4/6	- 2	2	2/2	222	0	<u> </u>	30	23
10			10		371	200			1012	20	3 760	752		3	307	430	o	7	52	75
			TC	14	3/1	390	11	+ 1015	1056	a	4 878	806	4	ى د	1231	1151	с	8	50	56
		719	20	12	99	69	10	4 44	•	z	4 280	207	11	з	556	590	a	9	191	137
14	4 476	468	22	12	351	325	1	5 436	488	4	4 1158	1053	13	3	89	111	0	10	121	126
36	- 72	51	24	12	221	Z15	3	5 81	48	6	4 1195	1059	15	3	533	622	0	11	274	285
38	4 131	122	28	12	48	84	5	5 59	50	ā	4 135	25	17	ŝ	706	743	ē	īż	155	118
4C	4 241	247	28	12	162	184	7	5 38	64	10	4 221	200	1	4	574	578	ō	11	24.2	222
42	4 311	300	0	14	407	372	9	5 222	223	12	4 903	858	i	Ĺ.	\$77	518	ă	14		
44	4 12	14	ž	Ĩ4	20 F	231	n	5 154	111	12	4 707			ĩ	1.9	110	Ň	17	170	13
Ó	6 79	14	ĩ	14	4.7	27		5 267	374		- 191	010	-	7	50A			÷.,	144	11
2	6 951	1102	ĩ	17	21.4				510	10		400	1	7		202		~		
	A 10/1	1174	•		21.0	211	12	2 151	112	18	► 561	571	4	•	244	521	I	0	485	457
-																				

 $(pz)_3](C_5H_5)(CO)_2Mo$ and $[Et_2B(pz)_2](C_5H_5)(CO)_2Mo$ and the analogous C_7H_7 compounds, reports of which are forthcoming.

ACKNOWLEDGEMENT

We are grateful to the National Science Foundation for support of this work under Grant No. 7034X.

APPENDIX

Tetrakis(1-pyrazolyl)boratecyclopentadienyldicarbonylmolybdenum crystallizes in the monoclinic system, and systematic absences indicate the space group C2/c(No. 15). The unit cell dimensions are: $a=37.09\pm0.01$ Å, $b=8.742\pm0.002$ Å, $c=12.986\pm0.005$ Å, $\beta=93.79^{\circ}\pm0.03^{\circ}$. A unit cell volume of 4201 Å³ and Z=8 gives

							ee 41			FUBS	EC AL	н		Enas	FCAL	**	+ F	185	FCAL	н	Ł	FC 85	FCAL	
	5	471	- L - L		5.	288	277	-16	10	284	305	-7	š	556	62.5	-6	3	221	211	-9		74	55	
5	ñ.,	340	249	-44	•	2.66	290	-18	10	446	449	-9	3	90	95	-8	31	485	1375	-11	4	457	457	
ź	ā	159	160	-46	ž	132	1 27	-20	10	300	291	-11	3	606	747	-10	3	338	399	-13	•	856	8 39	
q	0	178	174	-2	4	150	95	-2?	10	92	116	-13	3	718	760	-12	3	115	68	-15		**	25	
11	•	339	290		4	864	967	-24	10	262	145	-15		732	228	-16	4.	390	440	-11	3			
1	1	614	624	-0	2	30		-20	10	344	288	-19	ĩ	27 A	272	-18	÷ `	247	374	-3	5	195	192	
2	1	433	564	-10	2	191	169	- 20	10	20	14	-21	ŝ	24 5	210	-20	3	467	467	-5	5	1227	1165	
-	÷.	178	202	-12	Ā	360	291	- 32	10	233	218	-1	4	1535	1416	-2	4 1	301	1256	-7	5	610	601	
ç	ĩ	898	680	-14	Â.	576	6 54	- 34	10	293	250	-3	4	709	542	-4	4	800	781	-9	5	354	349	
1	ž	51	Z9	-16	4	956	985	-36	10	134	104	-5		1363	1 306	-6	.	612	574	-11	5	642	607	
3	2	334	277	-18	4	664	669	- 39	10	177	228	-4	2	197	171	-10	7.1	836	824	-15	- 6	198	212	
- 2	2	19	125	-20	2	A1A	817	-4	12	263	202	-11	- 2	835	869	-12	4	38	. 9	-1	6	4 55	4 59	
4	5	285	257	-24	4	976	961	-6	12	373	358	-13	4	630	691	-14	4	262	265	-3	6	147	146	
i	3	620	581	-26	4	240	233	-9	12	175	202	-15	•	644	665	-16	*	653	687	-5		740	7 39	
٤	د	814	799	-28	4	234	183	-10	12	20		-17		316	385	-18	2	143	3 50	-/	2	317	247	
3	ి.	351	352	-30	2	4 13	583	-14	12	505	5 85	-21	- 4	916	821	z	5	ico	ii ii	-11	6	435	4 30	
- T	· •	509	505	-14	-	173	112	-16	12	27	51	-1	5	171	178	-4	5	431	367	-1	7	181	126	
ā	ĩ	823	834	-16	4	403	352	-15	12	346	369	-3	5	555	509	-6	5	137	120	-3	7	119	145	
ö	ž	116	E EL	-38	4	412	356	-∡0	12	360	321	-5	5	26	15	-8	5	4Z3	336	-5	7	2 02	190	
e	3	511	504	-40	4	281	2 3 D	-22	12	160	167	-7	5	49	15	-10	2	522	343		• K	5.76	A 101	
0	- 2	90		-42	4	-69	ICI	-24	12	571	238	-11	3	172	223	-14	5	155	185		i	670	695	
20	2	156	115		2	760	945	- 28	12	315	279	-13	5	522	528	-16	5	534	527	-6	1	593	6C1	
ă	7	13.5	147	-÷	6	797	891	- 30	12	167	125	-15	5	17	1	-18	5	370	420	-8	1	854	8 32	
ō	8	21	1	-6	6	542	627	-32	12	180	179	-17	5	126	98	-2	÷.	743	686	-10	1	111	169	
е	9	237	220	-8	6	673	108	-z	14	. 65	70	-19	2	231	260		2	299	514	-12	- 1	313	887	
с	10	19	11	-10	61	1201	1395	-4		253	195	-1	2	45	534	-8	~	836	717	-14	÷	683	650	
	12	100	104	-14	Å	375	403	-8	14	17	1 85	-5	6	539	472	-10	6	910	944	-2	ž	862	8 24	
ŏ	13	176	197	-16	6	598	640	-10	14	54	34	-7	6	1479	1424	-12	6	567	579	-4	2	105	100	
		8-		-18	6	666	661	-12	14	168	1 1 9	-9	6	462	445	-14	<u>.</u>	335	373	-6	Z,	623	568	
0	0	312	435	-20	٥	570	554	-14	14	200	177	-11	2	553	599		÷	600	5/2	-10	5	240	272	
o	1	340	384	-22	- 6	3 65	436	-10		122	100	- 12		407	384		÷	77	26	-12	;	140	154	
2	2	315	366	-26	2	290	358	-20	- 14	513	250	-17	ŏ	56	52	-8	ż	290	215	-14	ž	380	416	
0	2	178	174	-28	6	102	76	-22	14	260	201	-1	7	83 Z	836	-10	7	220	166	-10	2	437	445	
0	5	153	176	- 30	6	619	539	-24	- 14	. 36	. 31	- 3	1	150	131	-1	чк, т	50			1	575	555	
0	6	27	-5	-32	6	600	515	-26	14	137	150		÷	20	78	-1	1	87	52	-6	3	651	678	
g	- 1	26	- 21	- 34	2	4 13	312		10	101	30	-9	ż	241	265	-5	ĩ	1136	1046	-8	3	657	6 20	
ŭ	2	49	40	-38	ŏ	363	237	-0	16	90	1 31	-11	ż	21 6	250	-7	1	317	303	-10	э	1123	1160	
ŏ	10	19	2	-40	6	309	300	-8	16	120	145	-13	7	262	249	-9	1	112	105	-12	3	- 64	65	
Ð	11	87	106	-42	6	69	74	-10	16	121	153	-1		580	538	-11	+	110	141	-13		164	180	
	ex _	10.	207	-44	•	250	234		· · · ·	•t	1 10		8	432	376	-15	- î	49	74		4	181	5 20	
		232	307			673	800	-1	ī	1476	1408	-Ť	ā	753	725	-17	ī	630	612	-4	- 4	585	520	
ŏ	2	224	295	-6	ā	103	112	-5	ī	221	172		•ĸ :	- 24		-19	1	368	456	-6		1 67	1 80	
0	د	58	37	-8	8	124	154	-7	1	747	686	-2	1	611	610	-1	4	1/2	113		- 7	376	325	
0	4	100	145	-10	8	566	661	-9	1	1404	13/4		- 1	104	41		5	533	527	-17	- 2	49	60	
0	5	18		-12		935	1012	_ 13	- 1	241	241	-8	î	77	96	-7	5	653	540	-2	5	937	922	
۰.	<u>م</u> ر .	. ^?.	108	-14		503	\$77	-15	1	- 55	50	-10	ī	478	435	-9	ž	301	327		5	396	361	
-4	••• 2	474	635	-18	ă	183	1 32	-17	- i	37	27	-12	ĩ	554	479	-11	2	729	727	-6	5	238	205	
-6	2	1093	1245	-zo	8	607	632	-19	1	320	317	-14	1	677	692	-13	2	265	321	-8	2	499	479	
-8	2	448	483	-22		277	283	-21	- 1	415	405	-10	1	121	112	-17	÷	125	505	-10	ີ່			
-10	ž	826	929	-24		468	114	-23		126	175	~20	- ÷	277	287	-19	ż	367	442	-1	ີ 1	258	273	
-14	5	937	1037	-28	ä	73	EE.	-3	ź	1943	1754	-22	ī	200	246	-1	و	278	260	-3	1	832	857	
-16	ź	611	871	-30		101	34	-5	ž	1525	1459	- Z	2	249	303	-3	3	650	631	-5	1	869	877	
-18	ž	275	289	-32	8	576	5 09	-7	2	1010	955	-4	2	262	267	-5	3	115	119	-7	ļ	485	304	
-26	z	76	23	-34		267	149	-9	2	748	749	-6	3	1297	1211	-7	ŝ	352	314	-11	1	969	939	
-22	2	1385	1375	-36		154	1 4 4	-13	5	1183	1272	-10	- 5	467	445	-n	í	573	602	-1	2	190	264	
-52	Ş	424	119		å	314	320	-15	2	228	255	-12	ż	96	114	-13	3	601	627	-3	2	Z14	2 5 9	
-28	5	487	541	-2	ıŏ	152	236	-17	ž	646	699	-14	ž	531	580	-15	3	393	393	-5	2	2 75	Z 53	
-30	ž	574	599		10	403	5 Z 7	-10	2	947	992	-16	2	1050	1103	-17	3	558	586	-7	2	123	92	
- 32	2	70	80	-6	10	2.60	Z 60	-21	2	418	419	-13	Ž	418	+3I 577	-14	2	305	240	-7	- 1	74	40	
	2	392	349	-8	10	136	125	-23	- 1	1454	1271	-22	- 5	370	359	-3	4	226	168	-5	3	405	3 65	
-36	2,	315	323	-10	10	A10	954	-3		· • • • •	826	-2	3	404	348	-5	4	771	755	-5	3	7 92	755	
-40	ź	101	51	-14	10	412	345	-5	ž	402	214		3	153	128	-7	4	445	421	-7	3	713	654	
	_	-	-																					

 $\rho_{calc} 1.57 \text{ g} \cdot \text{cm}^{-3}$ which agrees well with the experimental value of 1.59 determined by flotation methods. The integrated intensities of 889 reflections within the sphere $\theta \leq 65^{\circ}$ were measured on a General Electric XRD-5 manual diffractometer using nickel-filtered copper radiation and a θ -2 θ scan technique. The structure was solved and refined by the usual combination of Patterson, Fourier and least-squares calculations.

With the limited data set and using isotropic temperature factors for all the atoms except the molybdenum atom, the conventional (*i.e.*, unit weighted) R factor is 0.086. Though a full data set and subsequent refinement is needed for meaningful discussion of the finer details, the structure of this compound has been unambiguously determined and the accuracy is sufficient for our purposes. No further crystallographic work is planned.

A table of the observed and final calculated structure amplitudes (electrons),

134	

IABLE 2

FINAL ATOMIC POSITIONAL (Å) AND THERMAL PARAMETERS*

Atom	x	у	z	<i>B</i> (Å ²)	
Мо	0.17994(5)	0.04593(29)	0.21638(15)	ь	
N11	0.1309(5)	-0.0607(29)	0.1463(14)	3.6(4)	
C11	0.1232(7)	-0.2122(37)	0.1491(19)	3.9(6)	
C21	0.0882(7)	-0.2394(38)	0.1062(21)	4.7(7)	
C31	0.0743(7)	- 0.0985(38)	0.0690(19)	4.6(6)	
N21	0.1008(5)	0.0057(26)	0.0985(14)	2.7(4)	
N12	0.1632(5)	0.2362(26)	0.1090(13)	3.2(4)	
C12	0.1862(7)	0.3477(40)	0.0846(21)	5.4(7)	
C22	0.1665(7)	0.4446(37)	0.0153(20)	5.2(7)	
C32	0.1310(7)	0.3889(37)	-0.0016(20)	4.8(6)	
N22	0.1311(5)	0.2591 (26)	0.0600(14)	3.1 (4)	
N13	0.0835(5)	0.2446(29)	0.1896(16)	3.8(4)	
C13	0.0633(7)	0.1785(37)	0.2595(22)	5.1(7)	
C23	0.0523(7)	0.2986(43)	0.3245(22)	5.9(7)	
C33	0.0698(8)	0.4207(42)	0.2903(25)	6.3(8)	
N23	0.0888(6)	0.4027(35)	0.2054(20)	6.5(7)	
NI4	0.0651(5)	0.2137(24)	0.0035(14)	3.1 (4)	
C14	0.0677(5)	0.1638(26)	-0.0952(15)	4.2(5)	
C24	0.0359(7)	0.2065(35)	-0.1405(19)	4.5(6)	
C34	0.0145(6)	0.2045(34)	-0.0798(20)	4.3(6)	
N24	0.0336(6)	0.2893(33)	0.0158(18)	4.1(6)	
В	0.0950(9)	0.1821(46)	0.0841 (25)	3.8(8)	
Cl	0.2231 (9)	0.0819(41)	0.1640(25)	7.7(9)	
01	0.2525(5)	0.0960(25)	0.1211(15)	7.0(5)	
C2	0.2014(9)	-0.1481(50)	0.1679(26)	7.8(10)	
02	0.2149(6)	-0.2578(32)	0.1455(17)	8.2(7)	
CP1	0.1783(7)	-0.0500(35)	0.3822(18)	4.3(6)	
CP2	0.1465(6)	0.0463(37)	0.3703(18)	4.1(6)	
CP3	0.1570(7)	0.1969(36)	0.3499(18)	4.2(6)	
CP4	0.1967(7)	0.2023 (38)	0.3525(20)	4.9(7)	
CP5	0.2092(7)	0.0487 (39)	0.3747(19)	4.5(6)	

^a Numbers in parentheses are the estimated standard deviations occurring in the last digit listed. ^b The molybdenum atom was assigned an anisotropic thermal tensor of the form $\exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl]]$. The tensor components with their e.s.d.'s in parentheses are: $\beta_{11} = 0.00046(1)$, $\beta_{22} = 0.00911(53)$, $\beta_{33} = 0.00564(15)$, $\beta_{12} = 0.00004(11)$, $\beta_{13} = 0.00010(3)$, $\beta_{23} = 0.00034(27)$.

multiplied by 10, for $[(C_3H_3N_2)_4B]Mo(CO)_2(C_5H_5)$ is presented as Table 1. The molecular structure and atom numbering system are shown in Fig. 3. Final atomic positions and thermal parameters are given in Table 2, with the listed standard deviations being derived from the inverse matrix of the final least-squares refinement cycle. Intramolecular distances and bond angles are given in Table 3 and 4, respectively.

The most significant result of this investigation is the unequivocal demonstration that in the crystalline state the $[B(pz)_4](C_5H_5)(CO_2)$ Mo molecule has a structure which contains a bidentate tetrakis(1-pyrazolyl) ligand, this being the first structural characterization of the ligand acting in this manner. There is also a slightly tilted *pentahapto*-cyclopentadienyl ring, and two carbonyl groups of the normal terminal type.

The six-membered ring formed by the molybdenum atom, the nitrogen atoms

TABLE 3

Atoms	Distance	Atoms	Distance
Mo-CP1 Mo-CP2 Mo-CP3 Mo-CP4 Mo-CP5 Mo-C1	2.31 (2) 2.42(2) 2.38 (2) 2.29 (2) 2.26 (2) 1.80 (4)	N13-C13 C12-C23 C23-C33 C33-N23 N23-N13 CP1-CP2	1.35(3) 1.42(3) 1.34(3) 1.36(3) 1.40(3) 1.44(3)
Mo-C2 Mo-N11 Mo-N12 N11-C11 C11-C21 C21-C31 C31-N21 N21-N11 N12-C12 C12-C22 C22-C32 C32-N22 N22-N12	1.99(4) 2.18(2) 2.23(2) 1.36(3) 1.40(3) 1.40(3) 1.37(3) 1.37(3) 1.35(3) 1.40(3) 1.40(3) 1.39(3) 1.33(3)	CP2-CP3 CP3-CP4 CP4-CP5 CP5-CP1 C1-O1 C2-O2 B-N21 B-N22 B-N13 B-N14 N14-C14 C14-C24 C24-C34 C34-N24 N14-N14	1.40(3) 1.47(3) 1.44(3) 1.26(3) 1.13(3) 1.56(3) 1.56(3) 1.56(3) 1.50(3) 1.36(3) 1.34(3) 1.34(3) 1.39(3) 1.39(3)

INTRAMOLECULAR BOND DISTANCES" (Å)

^a Numbers in parentheses are the estimated standard deviations occurring in the last digit listed.

TABLE 4

BOND ANGLES^a

Atoms	Angle (Deg.)	Atoms	Angle (Deg.)
N12-Mo-N11	82.5(8)	CP1-CP2-CP3	109(2)
Mo-N11-N21	129(2)	CP2-CP3-CP4	109(2)
N11-N21-B	125(2)	CP3-CP4-CP5	106(2)
N21-B-N22	110(2)	CP4-CP5-CP1	109(2)
B-N22-N12	126(2)	CP5-CP1-CP2	107(2)
N22-N12-Mo	128(2)	N14-B-N13	108(2)
Cl-Mo-C2	69(1)		
N11-Mo-Cl	130(1)		
N11-Mo-C2	81 (1)		
N12Mo-C1	81(1)		
N12-Mo-C2	123(1)		

^a Numbers in parentheses are the estimated standard deviations occurring in the last digit listed.

on the bonded pyrazole rings, and the boron atom is in a rather flattened boat conformation. The angle subtended at the molybdenum atom is much more acute than the one at the boron atom; this presumably helps to minimize non-bonded repulsions.

The $(h^5-C_5H_5)$ group is somewhat unusual. The molybdenum to carbon distances fall in the range 2.26 to 2.42 Å; a tilt on the Mo- $(h^5-C_5H_5 \text{ centroid})$ vector can account for the variations in the bond lengths. Although the variations are large, this situation is not to be confused with the one found in $(C_5H_5)_3$ MoNO where the Mo-C distances to two of the rings vary from 2.32 to 2.68 Å, a range of almost 0.40 Å. In this case a form of bonding basically different from that of a true $(h^5-C_5H_5)$ is believed to exist.

The coordination around the boron atom is roughly tetrahedral as anticipated. This type of structure is consistent with the temperature-dependent NMR spectrum of this substance in solution.

REFERENCES

- 1 S. Trofimenko, Accounts Chem. Res., 4 (1971) 17.
- 2 G. Avitabile, P. Ganis and M. Nemiroff, Acta Crystallogr., Sec. B, 27 (1971) 725.
- 3 M. R. Churchill, K. Gold and C. E. Maw, Jr., Inorg. Chem., 9 (1970) 1597.
- 4 S. Trofimenko, J. Amer. Chem. Soc., 91 (1969) 588.
- 5 J. W. Faller and A. S. Anderson, J. Amer. Chem. Soc., 92 (1970) 5852; and references contained therein.
- 6 J. L. Calderon, F. A. Cotton and P. Legzdins, J. Amer. Chem. Soc., 91 (1969) 2528.