Preliminary communication

Réactions des germyl- et silylphosphines avec les composés α -dicarbonylés: Cas du diacetyl

J. SATGÉ, C. COURET et J. ESCUDIÉ

Laboratoire de chimie des Organominéraux, Université Paul Sabatier, 31 - Toulouse (France) (Reçu le 5 juin 1971)

Les germyl- et silylphosphines R_3MPEt_2 se condensent par addition dipolaire 1,2 sur le groupement carbonyle des aldéhydes pour conduire à des alcoxygermanes et silanes phosphorés R_3M -O-CH(R)-PEt₂ (M = Ge^{1,2}, M = Si³).

La condensation de ces mêmes phosphines sur le groupement carbonyle des cétones est plus difficile et seules les cétones à carbonyle activé ou peu encombré réagissent^{1,4,5}.

L'addition dipolaire 1,4 des germyl- et silylphosphines est généralement observée sur les systèmes conjugués des aldéhydes et cétones α-éthylèniques avec formation d'alcénoxygermanes¹ et -silanes³ phosphorés de type R₃M-O-C=C-C-PEt₂.

Après ces études, il nous a paru intéressant d'étudier le comportement de ces phosphines vis à vis de dérivés α -dicarbonylés tels que le diacétyl et le glyoxal. Nous reportons ici les premiers résultats observés avec le diacétyl.

La diéthyl(triméthylgermyl)phosphine donne une addition dipolaire 1,2 sur l'un des groupements carbonyles du diacétyl; cette addition est facilitée par le caractère nettement électrophile des carbones des carbonyles dans ce dérivé:

$$Me_{3}GePEt_{2} + CH_{3} - C - C - CH_{3} \rightarrow Me_{3}Ge - O - C - C - CH_{3}$$

$$0 \quad 0 \quad Et_{2}P \quad 0$$

Ce dérivé d'insertion, peu stable, n'a pu être isolé par distillation, mais a été caractérisé par réaction d'échange avec Me_3SiCl :

$$\begin{array}{c} \text{CH}_3 \\ \text{Me}_3\text{Ge-O-C-C-CH}_3 + \text{Me}_3\text{SiCl} \rightarrow \text{Me}_3\text{GeCl} + \text{Me}_3\text{Si-O-C-C-CH}_3 \\ \mid 0 \\ \text{Et}_2\text{P} \\ \end{array}$$

Ce dérivé silicié stable, peut être facilement atteint par addition de Me₃SiPEt₂ sur le diacétyl (rdt. 95%).

J. Organometal, Chem., 30 (1971) C70-C74

La réaction de Me₂Si(PEt₂)₂ avec le diacétyl en excès (50%) conduit à 3 dérivés de condensation: les dérivés d'addition 1/1 et 1/2 acycliques et le dérivé d'addition 1/1 cyclique:

$$Me_{2}Si = O - C C CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$PEt_{2}$$

$$(IV) (15\%)$$

Ce sila-2, dioxolanne-1,3 (IV) à substituants phosphorés a pu être isolé par ailleurs après les réactions suivantes:

Il présente toujours la même structure (trans-thréo) ($\delta(Me_2) = 0.23 \cdot 10^{-6}$ s). Ceci peut s'expliquer dans les deux cas par l'induction asymétrique du premier carbone chiral, lors de l'addition concertée sur le deuxième groupement carbonyle:

Le dérivé germanié cyclique correspondant:

qui se forme en faible quantité dans la condensation directe de Me₂Ge(PEt₂)₂ sur le diacétyl a pu être isolé à partir de Me₂GeCl₂ et du dérivé dilithié:

(pour la suite voir page C74)

J. Organometal. Chem., 30 (1971) C70-C74

TABLEAU 1					
Composé	Eb. (°C/mm)	Données spectrale	Données spectrales caracteristiques		
		IR (cm ⁻¹)	¹ H RMN	δ×10-6	J (Hz)
$ \begin{array}{c cccc} CH_3 & O \\ CH_3)_3Si - O - C & CCCC\\ \hline P(C_2H_5)_2 \end{array} $ (1)	56/0.15	ν(C=O) 1710	$(CH_3)_3SI^{-a}$ $CH_3-c_4^{-a}$ $CH_3-c_5^{-a}$ $CH_3-c_5^{-a}$	0.20 s 1.41 d 2.03 d	(P-CH ₃) 11 (P-CH ₃) 1.5
$(CH_3)_2 Si - O - C - CH_3$ $(C_2H_5)_2 P P(C_2H_5)_2$ (II)	117-119/0.3	ν(C=O) 1700	CH ₃) ₂ Si (" CH ₃ —C—C-P(0.25 d 2.10 d	(CH ₃) ₂ SIP 3.5 (CH ₃ — $\frac{1}{1}$ — $\frac{1}{1}$ —P)
$\begin{array}{c} CH_3 \\ \downarrow \\ (CH_3)_2 Si - (O - C - C - CH_3)_2 \\ (C_2 H_5)_2 P O \\ (III) \end{array}$	157/0.3	ν(C=O) 1700	$(CH_3)_2SI_5$ (CH_3)— $C-P_4$ (CH_3 — $C-P_4$	0.33 s 1.55 d 2.10 d	(P-CH ₃) 11.5 (P-CH ₃) 1
(CH3)2Si (CH3)2Si O-C(CH3)P(C2H5)2 (IV)	117-119/0.3		(CH ₃) ₂ Si \sqrt{a}	0,23 s	

J. Organometal. Chem., 30 (1971) C70-C74

	(CH ₃ -Si-H) 2.5 (CH ₃ -P) 11.5 (CH ₃ -P) 1.5	(CH ₃ -Sl-H) 2.5 (H-Si-P) 1 (CH ₃ -CH) 6.5 (CH-P) 8.5	$(CH_3 - C - C - P)1.5$ $(CH_3 - C - C - P)1.5$ $((-CH_2 - Ge - H)^3)$ $((H - Ge - P) 1$	(CH ₃ -CH) 7 (CH-P) 9.25
0,67 s	0,22 d 1,56 d 2,18 d	4.86 d (sept.) 0.15 s et 0.24 s 3.87 d (quart.)	2.20 d 5.40 d (quint.)	4.63 d (quart.)
(CH₃)2Gc∕ ^a	$(CH_3)_2 SI \left\langle \begin{array}{c} b \\ CH_3 - c \\ CH_3 - c \\ O \\ O \\ CH_3 - c \\ O \\ O \\ CH_3 - c \\ O \\$	– Si–H (CH₃)₂Si(b) – O–CH	$CH_{3}-C-C-C - C - K b$ O $CH_{3}-C-C - C - K b$	4 HO-O-
	ν(Si-H) 2130; ν(C=O) 1710		ν(Ge-Η) 2040; ν(C=O) 1690	
150/0.45	54/0.025	53/0.03	72/0.65	non distillé
$(CH_3)_2Ge$ $O-C(CH_3)P(C_2H_5)_2$ $O-C(CH_3)P(C_2H_5)_2$ (V)	$(CH_3)_2SI - O - C - CH_3$ $H P(C_2H_5)_2$ (VI)	$(CH_3)_2Si = \begin{pmatrix} O - C(H)CH_3 \\ O - C(CH_3)P(C_2H_2)_2 \\ (VII) \end{pmatrix}$	$ \begin{array}{c} CH_3 & Q \\ & & \\ (C_2H_5)_2Ge - O - C - C - CH_3 \\ & P(C_2H_5)_2 \\ (VIII) \\ \end{array} $	$(C_2H_5)_1Ge$ $O-C(H)CH_3$ $O-C(CH_3)P(C_2H_5)_2$ (IX)

J. Organometal. Chem., 30 (1971) C70-C74

^d Solvant C₆H₆. ^b Solvant CD₃COCD₃.

Il présente la même structure stéréochimique que (IV). La réaction d'échange à partir de ce dérivé (V) et Me₂SiCl₂ conduit facilement à (IV).

La condensation des hydrométalphosphines $R_2 - M - PEt_2$ (M = Si, Ge)* sur le diacétyl conduit, sans catalyseur, à un dérivé de monoinsertion du type:

Ces dérivés, sous effet thermique (M = Si) ou en présence de H_2 PtCl₆ (M = Ge) conduisent par addition intramoléculaire M-H/C=O à des sila- ou germadioxolannes à substituant phosphoré du type:

$$R_2M$$

$$O-C(CH_3)PEt_3$$

$$(VII, M = Si, R = CH_3)$$

$$(IX, M = Ge, R = C_2H_5)$$

L'ensemble des résultats obtenus dans la condensation des métalphosphines sur les dérivés α -dicarbonylés sera décrit dans un prochain mémoire.

BIBLIOGRAPHIE

- 1 J. Satgé, C. Couret et J. Escudié, J. Organometal. Chem., 24 (1970) 633.
- 2 J. Satgé et C. Couret, C.R. Acad. Sci. Ser. C, 267 (1968) 173.
- 3 C. Couret, J. Escudié et J. Satgé, résultats non publiés.
- 4 J. Satgé, C. Couret et J. Escudié, C.R. Acad. Sci. Ser. C, 270 (1970) 351.
- 5 E.W. Abel et I.H. Sabherwal, J. Chem. Soc. A, (1968) 1105.
- 6 G. Fritz, Angew. Chem., 78 (1966) 80; Angew. Chem. Intern. Ed., 5 (1966) 53;
 - G. Fritz et G. Becker, Angew. Chem., 79 (1967) 1968; Angew. Chem., Intern. Ed., 6 (1967) 1078.

ce dérivé assez instable est utilisé in situ.

J. Organometal. Chem., 30 (1971) C70-C74

^{★(}CH₃)₂Si(H)PEt₂ a été décrit par Fritz⁶; Et₂Ge(H)PEt₂ a été obtenu par réaction d'échange: