SYNTHESIS OF BENZOYL DERIVATIVES OF Mo AND W CYCLOPENTA-DIENYL TRICARBONYLS

A. N. NESMEYANOV, L. G. MAKAROVA, N. A. USTYNYUK and L. V. BOGATYREVA Institute of Organo-Element Compounds, Academy of Sciences, Moscow (U.S.S.R.) (Received May 22nd, 1972)

SUMMARY

Benzoyl compounds of the type $C_5H_5M(CO)_3COC_6H_5$ (M=Mo, W) have been synthesized. Decarbonylation of $C_5H_5Mo(CO)_3COC_6H_5$ proceeds readily and leads to the product $[C_6H_5C_5H_4Mo(CO)_3]_2$ in practically quantitative yield in which migration of the phenyl group to the C_5H_5 ring has occurred. The reaction of $C_5H_5M(CO)_3COC_6H_5$ with $P(C_6H_5)_3$ and $P(OC_6H_5)_3$ was found to proceed via two paths, *i.e.* replacement of a CO group and replacement of the C_5H_5 ring.

We have synthesized benzoyl derivatives of formula $C_5H_5M(CO)_3COC_6H_5$ (M = Mo, W) and investigated their ease of decarbonylation to the respective phenyl compounds. It is known that acyl compounds of the type $C_5H_5Mo(CO)_3COR^1$ are unstable in the case of Mo but of limited stability in the case of W. However, we have succeeded in preparing benzoyl compounds of Mo and W of similar type through the following reaction:

 $C_5H_5M(CO)_3^-Na^+ + C_6H_5COCl \rightarrow C_5H_5M(CO)_3COC_6H_5$ (M=Mo, W)

The compounds obtained have quite different stabilities. The W derivative is almost indefinitely stable in the solid state and only slowly decomposes in non-polarsolvents, while the molybdenum compound is of limited stability in the solid state and rapidly decomposes in solutions at room temperature, even in non-polar solvents, according to the scheme:

The same products were obtained during arylation of $C_5H_5Mo(CO)_3Na$ with $(C_6H_5)_2IBF_4^2$ but in this case the yield of $[C_6H_5C_5H_4Mo(CO)_3]_2$ (60%) was found to be much greater than that of $C_6H_5C_5H_4(CO)_3Mo-Mo(CO)_3C_5H_5$ (20%). If $C_5H_5Mo(CO)_3COC_6H_5$ is refluxed for 15 min in benzene then it is almost quanti-

J. Organometal. Chem., 46 (1972)

tatively converted to $[C_6H_5C_5H_4Mo(CO)_3]_2$ with some traces of $C_6H_5C_5H_4(CO)_3-Mo-Mo(CO)_3C_5H_5$ (by TLC). No diphenyl, benzophenone or dibenzoyl is apparently formed. The results obtained indicate that intramolecular transfer of the phenyl radical to the cyclopentadienyl ring occurs.

It is much more difficult to decarbonylate $C_5H_5W(CO)_3COC_6H_5$. Refluxing in benzene leaves the benzoyl compound virtually unchanged while refluxing in toluene results in the formation of traces of $C_5H_5W(CO)_3C_6H_5$ and almost complete decomposition of the starting material. The action of ClRh[P(C_6H_5)_3]_3 in benzene has little effect and leads to only a very small yield of $C_5H_5W(CO)_3C_6H_5$ although this decarbonylating agent is very effective in the case of $C_5H_5Mo(CO)_2P(C_6H_5)_3$ - $COC_6H_4F-p^3$.

We have also studied the possibility of synthesizing benzoyl compounds of W cyclopentadienylcarbonyls by CO insertion in the W-C₆H₅ σ -bond of the respective phenyl derivatives. We have found that bubbling CO into a benzene solution of C₅H₅W(CO)₃C₆H₅ under UV irradiation affords C₅H₅W(CO)₃COC₆H₅ in 6% yield.

$$C_5H_5W(CO)_3C_6H_5+CO \rightleftharpoons C_5H_5W(CO)_3COC_6H_5$$

Apparently this reaction involves an equilibrium since increasing the reaction time results in virtually no increase in the yield of $C_5H_5W(CO)_3COC_6H_5$. With $C_5H_5W(CO)_2P(C_6H_5)_3C_6H_5^4$ under the same conditions, in addition to CO insertion in the W-C₆H₅ σ -bond the reaction gives a product in which substitution of $P(C_6H_5)_3$ by carbon monoxide has occurred:

$$C_{5}H_{5}W(CO)_{2}P(C_{6}H_{5})_{3}C_{6}H_{5} + CO$$

 $C_{5}H_{5}W(CO)_{3}C_{6}H_{5} + P(C_{6}H_{5})_{3}$
 $C_{5}H_{5}W(CO)_{2}P(C_{6}H_{5})_{3}C_{6}H_{5} + CO$

The benzoyl compounds obtained exhibit different reactivities towards $P(C_6H_5)_3$ and $P(OC_6H_5)_3$. For example, $C_5H_5W(CO)_3COC_6H_5$ reacts with these ligands only after refluxing in benzene for many hours producing the substituted benzoyl compounds in almost quantitative yield. $C_5H_5W(CO)_3COC_6H_5+L \rightarrow C_5H_5W(CO)_2LCOC_6H_5+CO$ ($L=P(C_6H_5)_3$, $P(OC_6H_5)_3$). $C_5H_5MO(CO)_3COC_6-H_5$, on the other hand, reacts with both $P(C_6H_5)_3$ and $P(OC_6H_5)_3$ either after standing in solution at room temperature for many hours or after refluxing in benzene for 1 h. In both cases two reactions occur: CO substitution by the L molecule and C_5H_5 ring substitution. The first reaction affords $C_5H_5MO(CO)_2LCOC_6H_5$ but with $L=P(OC_6H_5)_3$ noticeable quantities of the decarbonylation product, $C_5H_5MO(CO)_2P(OC_6H_5)_3C_6H_5$ are also obtained. The second reaction yields a mixture of *cis*- and *trans*- $MO(CO)_4L_2$ when $L=P(C_6H_5)_3$ and $MO(CO)_3L_3$ in addition when $L=P(OC_6H_5)_3$.

C₅H₅Mo(CO)₃COC₆H₅ + P(C₆H₅)₃ → {[P(C₆H₅)₃]₃Mo(CO)₃}
$$\xrightarrow{\text{co}}$$

[P(C₆H₅)₃]₂Mo(CO)₄
C₅H₅Mo(CO)₃COC₆H₅ + P(OC₆H₅)₃ → [P(OC₆H₅)₃]₃Mo(CO)₃

The compound $[P(C_6H_5)_3]_3Mo(CO)_3$ has already been isolated following

J. Organometal. Chem., 46 (1972)

TABLE	1
-------	---

C ₅ H ₅ M(CO) ₃ - COC ₆ H ₅	L	Reflux time (h)	Yield (%)			
			$C_5H_5M(CO)_2-LCOC_6H_5$	$C_5H_5MCO_2LC_6H_5$	$L_3M(CO)_3$	cis, trans- $L_2M(CO)_4$
M=Mo	P(C ₆ H ₅) ₃	1	36	traces		trans 6 cis 36
M=Mo	$P(OC_6H_5)_3$	2	33ª	20	8	cis traces
M = W	$P(C_6H_5)_3$	24	66 [·]	traces		trans traces
M = W	$P(OC_6H_5)_3$	40	45		2	

REACTIONS OF C5H5M(CO)3COC6H5 WITH P(C6H5)3 AND P(OC6H5)3(L) IN BENZENE

^a Found: C, 60.40, 60.63; H, 4.14, 4.05; Mo, 15.00, 15.10; P, 4.84, 4.88. Calcd.: C, 60.77; H, 3.98; Mo, 15.17; P, 4.90%. ν (C=O) 1895 vs, 1971 s cm⁻¹; ν (C=O) 1590 m cm⁻¹ (solvent CHCl₃); PMR δ (C₅H₅) 4.87 (doublet) [J(C₆H₅-P) 0.9 Hz], δ (C₅H₅) 7.18–7.62 (multiplet) ppm (solvent CDCl₃).

the rapid reaction of (cycloheptatriene)Mo(CO)₃ with $P(C_6H_5)_3^5$. The instability of this complex in the conditions employed is apparently due to the fact that an approximately equivalent quantity of CO is evolved when CO substitution by L occurs thus enabling carbonylation of the intermediate tricarbonyl compound to occur. Thus the reaction of $C_5H_5Mo(CO)_3COC_6H_5$ with $P(C_6H_5)_3$ in boiling benzene is very similar to that of $C_5H_5W(CO)_3C_6H_5$ with $P(C_6H_5)_3$ under the same conditions⁴.

When $L = P(OC_6H_5)_3$, substitution by CO is the principal reaction and only traces of fac-Mo(CO)₃P(OC₆H₅) and cis-Mo(CO)₄[P(OC₅H₅)₃]₂ were obtained. These reactions are recorded in Table 1.

These reactions are recorded in Tabl

EXPERIMENTAL

PMR spectra were measured on a Perkin-Elmer R-12 instrument. All operations were carried out under argon.

1. Synthesis of $C_5H_5Mo(CO)_3COC_6H_5$

A solution of $C_5H_5Mo(CO)_3Na$ in 100 ml of absolute THF, obtained by reduction of 5.6 g of $C_5H_5Mo(CO)_3Cl$ with a double excess of 0.8% sodium amalgam, was slowly added under magnetic stirring to 1.6 ml of C_6H_5COCl in 10 ml of absolute THF cooled to -50° . The mixture was slowly heated to room temperature and the stirring continued for another half hour. The solvent was evaporated in vacuo, the residue was extracted with benzene/petroleum ether (2/8) and chromatographed on alumina. Elution with the same mixture gave 0.75 g of $[C_5H_5Mo(CO)_3]_2$ (15%), 0.15 g of $C_6H_5C_5H_4(CO)_3Mo-Mo(CO)_3C_5H_5$ (33%) and 0.5 g of $[C_5H_5Mo(CO)_3]_2Hg$ (7%). Elution with a mixture of petroleum ether and benzene (1/2) gave 1.25 g of $C_5H_5Mo(CO)_3COC_6H_5$ (18%). After low-temperature crystallization from hexane this material had m.p. 82–83°. (Found : C, 51.88 ; H, 2.98 ; Mo, 27.28. Calcd. : C, 51.45 ; H, 2.88 ; Mo, 27.40%.) $\nu(C=O)$ 1934 vs, 2022 s cm⁻¹ ; $\nu(C=O)$ 1640 m cm⁻¹ (solvent CHCl₃). PMR : $\delta(C_5H_5)$ 5.64 (singlet); $\delta(C_6H_5)$ 7.29–7.45 (multiplet) ppm (solvent CDCl₃).

2. Synthesis of $C_5H_5W(CO)_3COC_6H_5$ Using a similar procedure, 0.12 g of $[C_5H_5W(CO)_3]_2$ (4%) and 0.78 g of

J. Organometal. Chem., 46 (1972)

C₅H₅W (CO)₃COC₆H₅ (18%) were prepared from 3.68 g (0.01 mole) of C₅H₅W (CO)₃-Cl and 0.7 ml of C₆H₅COCl. After reprecipitation from a 1/1 hexane/CH₂Cl₂ mixture the material had a m.p. 143–144°. (Found: C, 41.07, 41.34; H, 2.29, 2.45; W, 41.72, 41.73. Calcd.: C, 41.12; H, 2.30; W, 41.97%.) v(C≡O) 1935 vs, 2126 s cm⁻¹; v(C=O) 1606 m cm⁻¹ (solvent CHCl₃). PMR δ(C₅H₅) 5.67 (singlet); δ(C₆H₅) 7.29–7.45 (multiplet) ppm (solvent CDCl₃).

3. Thermal decarbonylation of $C_5H_5Mo(CO)_3COC_6H_5$

 $0.3 \text{ g of } C_5H_5Mo(CO)_3COC_5H_5 \text{ in } 30 \text{ ml of absolute benzene was refluxed for } 20 \text{ min. Benzene was evaporated in vacuo. The residue was extracted with 5 ml of warm benzene. The insoluble residue was reprecipitated from heptane/methylene chloride while the latter was evaporated in vacuo. 0.16 g of <math>[C_6H_5C_5H_4Mo(CO)_3]_2$ was obtained. Chromatography of the benzene extract on alumina using a 2/8 mixture of benzene/heptane as eluant afforded 0.02 g of $C_6H_5C_5H_4(CO)_3Mo-Mo(CO)_3C_5H_5$ (8%) and 0.03 g of $[C_6H_5C_5H_4Mo(CO)_3]_2$. Total yield of $[C_6H_5C_5H_4Mo(CO)_3]_2$ 71%.

4. Reactions of $C_5H_5M(CO)_3COC_6H_5$ with $P(C_6H_5)_3$ and $P(OC_6H_5)_3$ in boiling benzene

The reflux times and product yields are shown in Table 1. In all experiments the ratio of $L/C_5H_5M(CO)_3COC_6H_5$ was 3/1. After evaporation of the benzene all the reaction mixtures were chromatographed on alumina using a mixture of petroleum ether and benzene (8/2). The order of elution was as follows: trans-Mo(CO)_4L_2, cis-Mo(CO)_4L_2, $C_5H_5M(CO)_2LC_6H_5$, $M(CO)_3L_3$ (only for $L=P(OC_6H_5)_3$) and $C_5H_5M(CO)_2LCOC_6H_5$. The complexes obtained were recrystallized from a 1/1 mixture of CHCl_3-CH_3OH or reprecipitated from a mixture of heptane and methylene chloride by evaporation of the latter in vacuo.

5. Reactions of $C_5H_5W(CO)_3C_6H_5$ and $C_5H_5W(CO)_2P(C_6H_5)C_6H_5$ with CO.

6.6 g of $C_5H_5W(CO)_3C_6H_5$ in 150 ml of absolute benzene were irradiated with UV light (PRK-4) with CO bubbling for 40 h. After evaporation of the benzene in vacuo, the residue was dissolved in the mixture of benzene and hexane (1/1) and chromatographed on an alumina column using the same mixture as eluant. Two yellow bands were collected. The first band (5.5g, 83%) was identified as $C_5H_5W(CO)_3$ - C_6H_5 and the second band (0.42 g, 6%) as $C_5H_5W(CO)_3COC_6H_5$.

Similarly, 2.14 g of $C_5H_5W(CO)_2P(C_6H_5)_3C_6H_5$ in 150 ml of absolute benzene with bubbling of CO for 26 h and simultaneous UV irradiation gave 0.15 g of $C_5H_5W_-(CO)_3C_6H_5$ (11%), 1.5 g of $C_5H_5W(CO)_2P(C_6H_5)_3C_6H_5$ (70%) and 0.14 g of $C_5H_5W(CO)_2P(C_6H_5)_3C_6H_5$ (70%) and 0.14 g of $C_5H_5W(CO)_2P(C_6H_5)_3C_6H_5$ (6.5%).

REFERENCES

- 1 R. B. King and M. B. Bisnette, J. Organometal. Chem., 2 (1964) 15.
- 2 A. N. Nesmeyanov, Yu. A. Chapovskii, B. V. Lokshin, A. V. Kisin and L. G. Makarova, Dokl. Akad. Nauk SSSR, 171 (1966) 637.
- 3 A. N. Nesmeyanov, L. G. Makarova, N. A. Ustynyuk, B. A. Kvasov and L. V. Bogatyreva, J. Organometal. Chem., 34 (1972) 185.
- 4 A. N. Nesmeyanov, N. A. Ustynyuk, L. V. Bogatyreva and L. G. Makarova, *Izv. Akad. Nauk SSSR. Ser. Khim.*, (1973) in press.
- 5 E. W. Abel, M. A. Bennett and G. Wilkinson, J. Chem. Soc., (1959) 2323.
- J. Organometal. Chem., 46 (1972)