PRELIMINARY COMMUNICATION

ÜBER AROMATENKOMPLEXE VON METALLEN
CVIII*. CYCLOPENTADIENYL-VANADIN-DINITROSYL-CARBONYL

ERNST OTTO FISCHER, ROBERT J.J. SCHNEIDER und JÖRN MÜLLER Anorganisch-Chemisches Laboratorium der Technischen Hochschule München (Deutschland) (Eingegangen den 18. Juni 1968)

An Cyclopentadienyl-metall-nitrosyl-carbonyl-Verbindungen sind bisher die ungeladenen Komplexe $C_5H_5Cr(CO)_2NO^2$, $C_5H_5Mo(CO)_2NO^2$, $C_5H_5Mo(CO)_2NO^2$, $C_5H_5Mn(NO)CO]_2^4$, sowie die Kationen $[C_5H_5CrCO(NO)_2]^{+5}$, $[C_5H_5Mn(CO)_2NO]^{+6,4}$, $[C_5H_5Re(CO)_2NO]^{+7}$ bekannt geworden. Sie stellen bis auf das sehr schwach paramagnetische (0.7 B.M.) $[C_5H_5Mn(NO)CO]_2$ ausnahmslos diamagnetische, der Edelgasregel gehorchende Metallorganyle dar. Über ein bisher unbekanntes, im Sinne derselben zu erwarten gewesenes ungeladenes Cyclopentadienyl-vanadin-dinitrosyl-carbonyl $C_5H_5V(NO)_2CO$ sei nachfolgend kurz berichtet.

DARSTELLUNG

Wir hatten schon früher $C_5 H_5 V(CO)_4$ mit NaCN in methanolischer Lösung unter UV-Bestrahlung nach

$$C_5H_5V(CO)_4 + NaCN \rightarrow Na^{\dagger}[C_5H_5V(CO)_3CN]^{\dagger} + CO$$

zu orangerotem $Na[C_5H_5V(CO)_3CN]$ umgesetzt¹. Wurde dieses in Aceton gelöst und kurze Zeit mit durchströmendem NO behandelt, so war augenblicklich eine Farbvertiefung zu beobachten. Aus dem aufgearbeiteten Rückstand solcher Lösungen konnte leicht flüchtiges, diamagnetisches $C_5H_5V(NO)_2CO$ isoliert werden. Es entsteht im übrigen auch bei der Umsetzung von $(C_5H_5)_2V_2(CO)_5^8$ mit NO in Hexan in geringer Ausbeute.

EIGENSCHAFTEN

Das in allen üblichen organischen Solventien wie Benzol, Äther, Hexan mit braunroter Farbe gut lösliche Metallorganyl vom Schm.p. 50° zersetzt sich darin bei

[★]CVII. Mitteilung: siehe Ref. 1

J. Organometal. Chem., 14 (1968) P4-P6

Zutritt von Luft sehr rasch unter Abscheidung brauner Flocken. Es sublimiert im Hochvakuum bei 40°.

 $C_5 H_5 V(NO)_2 CO$ zeigt im IR-Spektrum (Perkin-Elmer Modell 21, LiF-Optik) in Hexan die $\nu(CO)$ -Bande der endständigen Carbonylgruppe bei 2051 (vs) cm⁻¹, die zwei $\nu(NO)$ -Absorptionen treten bei 1738 (vs) und 1650 (vs) cm⁻¹ auf. Für den π -gebundenen $C_5 H_5$ -Liganden charakteristische Banden finden sich im KBr-Spektrum bei 3106, 1425, 1014/1008, 844 und 815 cm⁻¹.

Im 1 H-NMR-Spektrum, aufgenommen in CD₃COCD₃ (Varian A60), ist nur ein scharfes Singulett der Ringprotonen bei 4.31 τ zu beobachten.

Im Massenspektrum (Atlas CH4, Ofenionenquelle TO4, 50 eV) treten neben dem Molekülion $C_5H_5V(NO)_2CO^+$ bei m/e=204 (rel. Intensität $I_r=26.5$) die folgenden charakteristischen Fragmentionen auf: 176, $C_5H_5V(NO)_2^+(I_r=25.6)$; 174, $C_5H_5V(NO)CO^+(I_r=0.4)$; 146, $C_5H_5VNO^+(I_r=10.9)$; 116, $C_5H_5V^+(I_r=100.0)$; 90, $VC_3H_3^+(I_r=29.4)$; 89, $VC_3H_2^+(I_r=9.0)$; 88, $VC_3H^+(I_r=5.0)$; 81, $VNO^+(I_r=0.9)$; 76, $VC_2H^+(I_r=4.2)$; 67, $VO^+(I_r=18.6)$; 51, $V^+(I_r=23.4)$.

Metastabile Peaks finden sich bei m/e = 151.8 (entspr. $204^{+} \rightarrow 176^{+} + CO$), m/e = 121.1 (entspr. $176^{+} \rightarrow 146^{+} + NO$), m/e = 69.8 ($116^{+} \rightarrow 90^{+} + C_{2}H_{2}$), m/e = 30.8 (entspr. $146^{+} \rightarrow 67^{+} + (C_{5}H_{5} + N)$ oder $C_{5}H_{5}N$).

PRÄPARATIVE VORSCHRIFT

Umsetzung und Aufarbeitung sind in gereinigter N2-Atmosphäre durchzuführen.

1. $NafC_5H_5V(CO)_3CN$

Eine Lösung von 1.25 g (5.48 mMol) C₅H₅V(CO)₄ und 269 mg (5.5 mMol) NaCN in 50 ml Methanol wird in einem 250 ml Kolben, an den ein Hg-Überdruckventil angeschlossen ist, das die Abspaltung des CO während der Reaktion zu verfolgen gestattet, unter magnetischem Rühren und Wasserkühlung (~7°) mit UV-Licht (Hg-Hochdruckbrenner Q 81, Quarzlampen GmbH Hanau) 24 Stunden bestrahlt. Anschliessend entfernt man das Methanol im Wasserstrahlvakuum, löst das Reaktionsprodukt in 25 ml Wasser, filtriert über eine G3-Fritte und bringt die Lösung auf eine mit in Wasser gequollenem Sephadex G10★ gefüllte Säule (Länge 40 cm, Durchmesser 2 cm). Die einzige auftretende orangerote Zone wird aufgefangen, das Wasser am Rotationsverdampfer entfernt und der Rückstand im Hochvakuum getrocknet. Ausbeute an Na[C₅H₅V(CO)₃CN] 930 mg entspr. 68% d.Th. bez. auf C₅H₅V(CO)₄.

Zur analytischen Sicherung wurde das Na-Salz mit überschüssigem [N(CH₃)₄]Br zu schwerlöslichem [N(CH₃)₄][C₅H₅V(CO)₃CN] umgesetzt. Zers.p. 129°. (Gef.:C, 52.18; H, 5.88; N, 9.29; O, 15.90; V, 17.10. $C_{13}H_{17}N_2O_3V$ ber.:C, 52.00; H, 5.72; N, 9.34; O, 16.00; V, 16.96; Mol.-Gew. 300.26.)

2. $C_5H_5V(NO)_2CO$.

Durch eine frisch bereitete Lösung von 850 mg (3.41 mMol) $Na[C_5H_5V(CO)_3CN]$ in 30 ml Aceton wird 5 Minuten ein schwacher Strom von NO geleitet. Es tritt augen-

^{*}Pharmazia GmbH, Uppsala (Schweden)

blicklich Verfärbung nach braunrot ein. Nach Entfernen des Acetons im Wasserstrahlvakuum wird der Rückstand in 20 ml H₂O aufgenommen und dreimal mit je 20 ml Äther extrahiert. Man bringt die vereinigten ätherischen Fraktionen zur Trockne und sublimiert anschliessend sofort bei 40° im Hochvakuum an einen mit fl.Luft gekühlten Sublimationsfinger. Nach 5-stündigem Trocknen bei ~0° im Hochvakuum erhält man 50 mg dunkelbraunes, feinpulvriges C₅ H₅ V(NO)₂ CO entspr. einer Ausbeute von 7% d.Th. bez. auf Na[C₅H₅V(CO)₃CN]. Schm.p. 50°. (Gef.: C, 35.30; H, 2.45; N, 13.73; O, 23.40; V, 24.60; Mol.-Gew. massenspektrometrisch 204. C₆H₅N₂O₃V ber.: C, 35.31; H, 2.41; N, 13.73; O, 23.52; V, 24.97%; Mol.-Gew. 204.06.)

DANK

Wir danken dem Verband der Chemischen Industrie, Düsseldorf und der Badischen Anilin- und Sodafabrik A.G., Ludwigshafen für die Förderung dieser Untersuchungen.

LITERATUR

- 1 E.O. Fischer und R.J.J. Schneider, J. Organometal. Chem., 12 (1968) P27.
- 2 E.O. Fischer, O. Beckert, W. Hafner und H.O. Stahl, Z. Naturforsch., 10b (1955) 598

- 3 T.S. Piper und G. Wilkinson, J. Inorg. Nucl. Chem., 3 (1956) 104
 4 R.B. King und M.B. Bisnette, Inorg. Chem., 3 (1964) 791
 5 E.O. Fischer und P. Kuzel, Z. Anorg. Allg. Chem., 317 (1962) 226
- 6 T.S. Piper, F.A. Cotton und G. Wilkinson, J. Inorg. Nucl. Chem., 1 (1955) 165 7 E.O. Fischer und H. Strametz, Z. Naturforsch., 23b (1968) 278
- 8 E.O. Fischer und R.J.J. Schneider, Angew. Chem., 79 (1967) 537; Angew. Chem., Intern. Ed., 6 (1967) 569
- J. Organometal Chem., 14 (1968) P4-P6