Preliminary communication

Ethylene displacement from π -cyclopentadienyldiethylenerhodium(I)

J.F. NIXON and A.A. PINKERTON

School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex (Great Britain) (Received February 14th, 1972)

In contrast to the ready displacement of ethylene from certain square planar rhodium(I) ethylene complexes¹⁻⁵ the related π -cyclopentadienyldiethylenerhodium(I) compound⁶, π -C₅H₅Rh(C₂H₄)₂, is inert to substitution by ligands such as triphenylphosphine, carbon monoxide and cyanide ion². This difference has been attributed to the fact that in π -C₅H₅Rh(C₂H₄)₂ the metal can be regarded as having an inert gas configuration whereas the 16*e* square-planar rhodium(I) complex has a vacant orbital available to the incoming ligand².

Ethylene is, however, readily displaced from π -C₅H₅Rh(C₂H₄)₂ by ligands such as SO₂ and tetracyanoethylene which have Lewis acid character and the metal is believed to act as the donor atom². Recently the complex π -C₅H₅Rh(C₂H₄)₂ •HgCl₂ has been reported⁷, and the Lewis basicity of transition metals is well established^{8,9}.

We have found that fluorophosphines, L, which have acceptor properties^{10,11} (e.g., PF₃ forms a 1/1 complex with Me₃N at low temperature)¹², also readily displace ethylene from π -C₅H₅Rh(C₂H₄)₂ under mild conditions affording high yields of the yellow π -cyclopentadienylbis(fluorophosphine)rhodium(I) complexes, π -C₅H₅RhL₂ (I).

$$\pi - C_5 H_5 Rh(C_2 H_4)_2 \xrightarrow{2L} \pi - C_5 H_5 RhL_2 + 2C_2 H_4$$
(I)

 $(L = PF_3, CF_3PF_2, CCl_3PF_2, CCl_2HPF_2, Me_2NPF_2, (CF_3)_2PF)$

(I) $(L = PF_3)$ has recently been synthesised from $[RhCl(PF_3)_2]_2$ and $NaC_5H_5^{13}$. The failure of carbon monoxide to displace ethylene from π -C₅H₅Rh(C₂H₄)₂² suggests that CO has weaker acceptor properties than fluorophosphines^{10,11}.

As in the case of the ethylene- π -C₅H₅Rh(C₂H₄)₂ system, no exchange is observed between free and coordinated PF₃ in π -C₅H₅Rh(PF₃)₂¹³, whereas PF₃ and [RhCl(PF₃)₂]₂ readily undergo rapid intermolecular exchange^{13, 14}. Similarly no evidence was found for the intermediate π -C₅H₅Rh(C₂H₄)(PF₃) when a solution of equimolar amounts of

J. Organometal. Chem., 37 (1972)

 π -C₅H₅Rh(C₂H₄)₂ and π -C₅H₅Rh(PF₃)₂ was heated at 60°, in sharp contrast to the immediate formation of $[RhCl(C_2H_4)(PF_3)]_2$ when solutions of $[RhCl(C_2H_4)_2]_2$ and $[RhCl(PF_3)_2]_2$ were mixed at room temperature¹⁵. π -Allylic trifluorophosphinerhodium(I) complexes, e.g., π -all Rh(PF₃)₃, (all = C₃H₅; C₄H₇; C₆H₉) undergo phosphine exchange via a dissociative mechanism¹⁶.

Ethylaminobis(difluorophosphine), $EtN(PF_2)_2$, which acts as a bidentate ligand towards Group VI metals¹⁷ rapidly reacts with π -C₅H₅Rh(C₂H₄)₂ at room temperature to yield rather unexpectedly π -C₅H₅Rh[EtN(PF₂)₂]₂. ¹⁹F NMR studies establish the presence of coordinated and uncoordinated PF2 groups in this complex in accordance with structure (II).

The identity of the complexes of type (I) is confirmed by their characteristic ¹⁹F NMR spectra which are typical of the X part of an $[X_nA]_2$ spin system, (X = fluorine, $A = phosphorus)^{17, 18, 19}$, each line being further split into a 1/1 doublet by the ¹⁰³Rh nucleus (1 ½, 100% natural abundance). These NMR spectra will be discussed in detail in a later publication²⁰

REFERENCES

- 1 R. Cramer, J. Amer. Chem. Soc., 86 (1964) 217; Accounts Chem. Res., 1 (1968) 186.
- 2 R. Cramer, J. Amer. Chem. Soc., 89 (1967) 5377.
- 3 J.T. Mague and G. Wilkinson, J. Chem. Soc. A, (1966) 1736.
- 4 J. Powell and B.L. Shaw, J. Chem. Soc. A, (1968) 211.
- 5 S. Otsuka, A. Nakamura and H. Minamido, Chem. Commun., (1969) 191.
- 6 R.B. King, Inorg. Chem. 2 (1963) 528.
- 7 R. Cramer and J.J. Mrowa, Inorg. Chim. Acta, 5 (1971) 528.
- 8 D.F. Shriver, Accounts Chem. Res., 3 (1970) 231.
- 9 J.C. Kotz and D.G. Pedrotty, Organometal. Chem. Rev. A, (1969) 479.
- 10 J.F. Nixon, Advan. Inorg. Chem. Radiochem., 13 (1970) 363.
- 11 Th. Kruck, Angew. Chem. Int. Ed., 6 (1967) 53.
- 12 R.R. Holmes and R.P. Wagner, Inorg. Chem., 2 (1963) 384.
- 13 M.A. Bennett and D.J. Patmore, Inorg. Chem., 10 (1971) 2387.
- 14 J.F. Nixon and J.R. Swain, J. Chem. Soc. (Dalton Transactions), in press.
- 15 D.A. Clement and J.F. Nixon, unpublished results.
- 16 D.A. Clement, J.F. Nixon and B. Wilkins, J. Organometal. Chem., 37 (1972) C43.
- 17 T.R. Johnson and J.F. Nixon, J. Chem. Soc. A, (1969) 2518.
- 18 C.G. Barlow, J.F. Nixon and J.R. Swain, J. Chem. Soc. A, (1969) 1082.
- 19 J.F. Nixon, J. Chem. Soc. A, (1969) 1087.
- 20 J.F. Nixon and A.A. Pinkerton, in preparation.

C48