Preliminary communication

Synthesis of Low-valent Thiocarbonyl Complexes

<u>via</u> 1,2-Elimination of Methylthiol from

<u>Cis-Metal-hydrido-dithiomethylester Complexes</u>.

Os(Cs)(CO)₂(PPh₃)₂ and IrCl(Cs)(PPh₃)₂

T. J. Collins, W. R. Roper and K. G. Town

Department of Chemistry,

University of Auckland, Auckland, New Zealand,

(Received September 28th, 1976)

SUMMARY

[Os(η^2 -CS₂Me)(CO)₂(PPh₃)₂]⁺ and [Ir(η^2 -CS₂Me)Cl(CO)(PPh₃)₂]⁺ react with NaBH₄ giving OsH(CS₂Me)(CO)₂(PPh₃)₂ and IrH(CS₂Me)Cl(CO)(PPh₃)₂ respectively, these compounds contain mutually <u>cis</u> hydride and η^1 -dithiomethylester ligands and upon heating undergo 1,2-elimination of MeSH producing Os(CS)(CO)₂(PPh₃)₂ and IrCl(CS)(PPh₃)₂.

	}	!		
[0s(cs ₂ Me)(co) ₂ (PPn ₃) ₂]	2050, 1995	1070	7.76s (SMe)	
osн(cs ₂ мe)(co) ₂ (PPn ₃) ₂	2055, 1970	1005 ^d	14.35t J(H-P) = 20 Hz (Os-H);	8.57s (SMe)
0s(cs)(co) ₂ (PPh ₃) ₂ 199	1955, 1890	1230		
[Ir(cs ₂ Me)c1(c0)(PPh ₃) ₂]	S.	1153	7.84s (SWe)	
IrH(CS ₂ Me)C1(CO)(PPh ₃) ₂ 2040	Q	985 đ	22.0t J(H-P) = 14 Hz (Ir-H);	8.0s (SMe)
Ircl(cs)(PPh ₃) ₂		1332		
d	U			
Nujol mulls CDC13 solution	ı Al	l compounds re	All compounds reported have satisfactory elemental analyses.	analyses.
Cations characterised as both perchlorate and trifluoromethylsulphonate salts.	orate and tr	ifluoromethyls	• •	Medium intensity.

An advantage of such a reaction is that it is accompanied by a reduction of the metal oxidation state by two units. Thus an osmium(II) hydrido-dithiomethylester complex should yield an osmium(0) thiocarbonyl complex. To test this idea we reacted the cation $[Os(\eta^2-Cs_2Me)(CO)_2(PPh_3)_2]^+$ (ref. 1) with NaBH₄ so producing $OsH(Cs_2Me)(CO)_2(PPh_3)_2$. Two vCO bands are observed in the I.R. spectrum of this hydride (see Table) together with vCS at $1005cm^{-1}$, a position which we have found to be characteristic of monodentate dithiomethylester complexes. The hydride ligand appears as a 1:2:1 triplet in the ¹H NMR spectrum and the geometry of the complex is, therefore, as depicted below.

$$\begin{bmatrix}
CO & | & C & SMe \\
CO & | & C & SMe \\
CO & | & S & S
\end{bmatrix}
\xrightarrow{PPh_3} CO & | & SMe \\
CO & | & C & S
\end{bmatrix}
\xrightarrow{PPh_3} CO & | & C & S$$

$$CO & | & C & S$$

$$PPh_3$$

$$PPh_3$$

$$PPh_3$$

A solution of this hydride when heated under reflux in 2-methoxyethanol eliminates methylthiol and gives the pale yellow zerovalent complex $Os(CS)(CO)_2(PPh_3)_2$.

The same method can be used for a very simple, high yield, conversion 2,3 of $Ircl(CO)(PPh_3)_2$ to the known thiocarbonyl analogue, $Ircl(CS)(PPh_3)_2$. The η^2 -CS₂ complex formed by $Ircl(CO)(PPh_3)_2$ is very unstable 4 but if $Ircl(CO)(PPh_3)_2$ is $\underline{dissolved}$ in CS₂ and reacted with methyl trifluoromethylsulphonate, $[Ir(CS_2Me)Cl(CO)(PPh_3)_2]$ CF₃SO₃ results in quantitative yield. Reaction with NaBH_A yields $Irh(CS_2Me)Cl(CO)(PPh_3)_2$ (see Table) and a suspension of this hydride when heated under reflux in t-butanol releases methylthiol and gives $Ircl(CS)(PPh_3)_2$.

Similar 1,2-elimination of methylthiol from appropriate starting materials could be a useful route to other low-valent complexes of CS, CO, or CNR ligands.

We thank the New Zealand Universities Grants Committee for grants towards instrumental facilities and the award of a Postgraduate Scholarship to T. J. C., and Johnson Matthey Ltd. for a generous loan of osmium tetroxide.

References

- K. R. Grundy, R. O. Harris and W. R. Roper, <u>J. Organometal. Chem.</u>, 90 (1975) C34.
- 2. H. Yagupsky and G. Wilkinson, J. Chem. Soc. (A), (1968), 2813.
- 3. K. Kubota and C.R. Carey, J. Organometal. Chem., 29, (1970) 491.
- 4. M. C. Baird and G. Wilkinson, J. Chem. Soc. (A), (1967) 865.