Journal of Organometallic Chemistry, 145 (1978) 285-302 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

DIORGANOTHALLIUM-ÜBERGANGSMETALL-KOMPLEXE, R2Tl-MLn

BERNHARD WALTHER *, HARALD ALBERT und ALFRED KOLBE Sektion Chemie der Martin-Luther-Universität Halle, Weinbergweg 402, Halle (S), (D.D.R.) (Eingegangen den 20. September 1977)

Summary

Diorganothallium transition metal complexes of the general formula R_2Tl-ML_n with $ML_n=M(CO)_2LCp$ (M = Mo, W; L = CO, PPh₃) are obtained by protolytic reactions, redistribution reactions or by methatetic reactions, and are characterized spectroscopically and by chemical reactions. For $ML_n=Cr(CO)_3Cp$, $Fe(CO)_2Cp$ and $Co(CO)_4$ R_3Tl and $Tl(ML_n)_3$ can always be isolated. In the case of $Me_2Tl-M(CO)_3Cp$ (M = Mo, W) variable temperature NMR measurements gave evidence for a symmetrisation—redistribution equilibrium $3R_2Tl-ML_n \neq 2R_3Tl + Tl(ML_n)_3$, which generally determines the stability of the diorganothallium transition metal complexes.

Zusammenfassung

Diorganothallium—Übergangsmetall-Komplexe des Typs R_2Tl — ML_n mit $ML_n = M(CO)_2LCp$ (M = Mo, W; L = CO, PPh_3) werden durch Protolyse- oder Redistributionsreaktionen bzw. durch doppelte Umsetzung synthetisiert und spektroskopisch sowie durch ihr Reaktionsverhalten charakterisiert. Wenn ML_n $Cr(CO)_3Cp$, $Fe(CO)_2Cp$ oder $Co(CO)_4$ repräsentiert, werden dagegen stets R_3Tl und $Tl(ML_n)_3$ isoliert. Temperaturabhängige NMR-Untersuchungen beweisen für Me_2Tl — $M(CO)_3Cp$ (M = Mo, W) ein Symmetrisierungs—Redistributions-Gleichgewicht $3R_2Tl$ — $ML_n \rightleftharpoons 2R_3Tl + Tl(ML_n)_3$, das generell entscheidend die Stabilität der Diorganothallium—Übergangsmetall-Komplexe bestimmt.

Einleitung

Die Synthese der Dimethylthallium(III)-tricarbonyl(η-cyclopentadienyl)-metall-Komplexe Me₂Tl—M(CO)₃Cp des Molybdäns und Wolframs [1] im Jahre 1972 hatte gezeigt, dass unter hinreichend schonenden Reaktionsbedingungen zumindest spezielle Diorganothallium—Übergangsmetall-Verbindungen isolierbar sind.

Frühere Versuche zur Synthese solcher Komplexe waren erfolglos geblieben.

Die Literatur enthielt lediglich eine ionogene Verbindung der Zusammensetzung $K(Ph_2Tl)[Fe(CN)_2(C\equiv CPh)NO] \cdot NH_3[2].$

Hein und Mitarbeiter [3] setzten Ph₂TlOH und Fe(CO)₅ um und erhielten einen nicht näher charakterisierten dunkelbraunen Niederschlag. Me₂TlOH und H₂Fe(CO)₄ reagieren unter Methanentwicklung zu einer dunkelbraunen Substanz der wahrscheinlichen Zusammensetzung (CO)₄FeTlHFe(CO)₄ [4]. Im Gegensatz zu der üblicherweise unter selektiver Abspaltung eines Organorestes verlaufenden Umsetzung der Triorganothalliumverbindungen mit H-aciden Partnern, führt die Reaktion von Me₃Tl mit HCo(CO)₄ [5] bzw. HMn(CO)₅ [6] nach Gl. 1 summarisch zur Substitution aller drei Methylgruppen und Bildung der Thallium(III)-tris(metallcarbonyl)-Komplexe.

$$Me_3Tl + 3 HML_n \rightarrow 3 CH_4 + Tl(ML_n)_3$$

$$(1)$$

 $(\mathrm{ML}_n = \mathrm{Co}(\mathrm{CO})_4, \, \mathrm{Mn}(\mathrm{CO})_5)$

Die Dimethylthallium—Übergangsmetall-Komplexe Me_2Tl — ML_n werden von den Autoren als instabile, nach Gl. 2 weiterreagierende Intermediäre dieser Umsetzungen diskutiert.

$$3 \operatorname{Me_2Tl-ML}_n \to 2 \operatorname{Me_3Tl} + \operatorname{Tl}(\operatorname{ML}_n)_3 \tag{2}$$

1973 beschrieben Haupt und Neumann [7] die Darstellung des gelben, sich bei 55°C zersetzenden $Ph_2Tl-Mn(CO)_5$ aus Ph_2TlCl und $NaMn(CO)_5$ in Diäthyläther. Analoge Umsetzungen mit Dialkylthallium-halogeniden ergaben nicht die Dialkylthallium-pentacarbonylmangan-Komplexe, sondern $Tl[Mn(CO)_5]_3$. In einen Übersichtsarbeit [8] werden als weitere Beispiele dieser Substanzklasse $R_2Tl[V(CO)_6]$ und $R_2Tl[Co(dmgH)_2py]$ (R = Me, Ph, $dmgH_2 = Dimethylglyoxim$) genannt.

Ausgehend von dieser Situation wird nun über weitere Versuche zur Synthese von Diorganothallium—Übergangsmetall-Komplexen R_2TI — ML_n und deren Charakterisierung durch spektroskopische Untersuchungen und Reaktivitätsstudien berichtet. Im Mittelpunkt der Untersuchungen stehen Aussagen über die Tl—M-Bindung, vor allem ihre Stabilität sowie die Zersetzungswege der Komplexe.

Darstellung der Ergebnisse

Synthesen der Komplexe

Diorganothallium-tricarbonyl(cyclopentadienyl)- bzw. Dicarbonyl(cyclopentadienyl)(triphenylphosphan)-Komplexe des Molybdäns und Wolframs sind nach drei Reaktionstypen zugänglich: (1) Protolysereaktionen; (2) Alkalisalz-Methode; (3) Redistributionsreaktionen.

Umsetzungen von Triorganothalliumverbindungen mit den Übergangsmetallhydriden des Molybdäns und Wolframs führen in einer Protolysereaktion gemäss Gl. 3 unter Substitution eines Organorestes am Thalliumatom zu den Diorganothallium—Übergangsmetall-Komplexen I—VIII.

Die Synthesen von I—IV werden unter Lichtausschluss bei tiefen Temperaturen (I und II —78°C; III und IV —50°C) ausgeführt, indem zu intensiv gerührten Lösungen von R₃Tl in Methylenchlorid vorgekühlte Lösungen des Übergangs-

$$R_3Tl + HM(CO)_2LCp \xrightarrow{-RH} R_2Tl - M(CO)_2LCp$$
 (3)

	I	II	ш	IV	v	VI	VII	VIII
M	Mo Me CO	Mo Et CO	w	w	Мо	Mo	w	w
R	Me	Et	Me	Et	Me	Ph	Me	Ph
L	co	CO	CO	CO	PPh ₃	PPh ₃	PPh ₃	PPh3

(IIV—I)

metallhydrides (Molverhältniss 1:1) im gleichen Lösungsmittel zugegeben werden. Die Alkanentwicklung verläuft spontan, aus den orange gefärbten Lösungen lassen sich I—IV mit vorgekühltem n-Hexan analysenrein ausfällen.

Bei der analogen Umsetzung von Me₃Tl mit HCr(CO)₃Cp erfolgt ebenfalls Methanentwicklung, jedoch ist der gewünschte Komplex weder zu isolieren noch spektroskopisch nachzuweisen. Im Reaktionsansatz lässt sich auch nach der Umsetzung im Molverhältnis 1:1 NMR-spektroskopisch nur Me₃Tl feststellen.

Die Synthesen der triphenylphosphan-substituierten Komplexe V-VIII erfordern vergleichsweise höhere Temperaturen und längere Reaktionszeiten (V und VII -25°C/30 min; VI und VIII +25°C/2 Stdn.). I und III sind ebenfalls aus (Me₂Tl-NMe₂)₂ und HM(CO)₃Cp in Hexan bei -78°C gemäss Gl. 4 erhältlich. Die Reaktionen führen nicht unmittelbar zu analysenreinen Produkten, so dass die Synthese aus Trimethylthallium günstiger ist.

$$Me_2Tl-NMe_2 + HM(CO)_3Cp \xrightarrow{-NHMe_2} Me_2Tl-M(CO)_3Cp$$
 (4)

HMo(CO)₃Cp reagiert gleichfalls mit Ph₃Tl. Jedoch konnte auch bei vielfältiger Variation der Reaktionsbedingungen kein Ph₂Tl—Mo(CO)₃Cp erhalten werden. Setzt man dagegen Ph₂TlBr mit den Natriumverbindungen der Carbonylmetallat-Anionen in Diglyme um, so lassen sich die nach Gl. 5 gebildeten Komplexe VI, VIII, IX und X isolieren. Andere Lösungsmittel führten nicht zum Erfolg; bei der Reaktion von Ph₂TlBr und NaW(CO)₃Cp in THF oder Äther bildet sich Tl[W(CO)₃Cp]₃.

Im Falle von VI und VIII sind Ausbeuten und Reinheit der Substanzen nach der Alkalisalz-Methode geringer als bei der Synthese durch Protolysereaktion nach Gl. 3. IX zersetzt sich nach der Isolierung bei Raumtemperatur in wenigen Minuten, so dass zur Charakterisierung lediglich das IR-Spektrum der Diglyme-Lösung diente, während X hinreichend stabil ist.

Versuche zur Darstellung der Dimethylthallium—Übergangsmetall-Komplexe I, III, V und VII nach der Alkalisalz-Methode in THF, Glyme oder Diglyme blieben erfolglos. Nach mehrtägigem Rühren der Reaktionsansätze bei Raum-

temperatur wurde das Dimethylthalliumbromid praktisch quantitativ zurückgewonnen.

Die Synthese von III durch Redistributionsreaktion aus Tl[W(CO)₃Cp]₃ und Me₃Tl in Methylenchlorid bei —78°C nach Gl. 6 zeigt prinzipiell eine weitere Synthesevariante für Diorganothallium—Übergangsmetall-Komplexe auf, deren Reichweite und Grenzen jedoch nocht nicht abgesteckt wurden.

$$TI[W(CO)_3Cp]_3 + 2 Me_3Tl \rightarrow 3 Me_2Tl-W(CO)_3Cp$$
 (6)

Eigenschaften

I-IV, IX und X sind extrem luft- und lichtempfindliche kristalline, intensiv gelbe Substanzen, die sich bei Lagerung in Abhängigkeit von der Temperatur unter Rotfärbung (Bildung von [M(CO)₃Cp]₂) zersetzen. Bei -78°C unter Lichtausschluss ist eine längere Aufbewahrung ohne wesentliche Zersetzung möglich. Die ebenfalls kristallinen, intensiv gelben triphenylphosphan-substituierten Komplexe sind dagegen wesentlich stabiler gegenüber Luft- und Lichteinwirkung, so dass eine Lagerung bei 0°C ohne erkennbaren Zerfall möglich ist. I—X schmelzen unter Zersetzung, wobei die Wolfram-gegenüber den Molybdänverbindungen generell höhere Zersetzungspunkte aufweisen. Während bei den vergleichbaren Organoquecksilber-[9] und Triorganoblei-Komplexen [10] die Phenylverbindungen höhere Zersetzungspunkte als die Alkylderivate besitzen, wird für die Diorganothallium-tricarbonyl(cyclopentadienyl)metall-Verbindungen der umgekehrte Trend beobachtet. Im Falle der triphenylphosphan-substituierten Komplexe V-VIII sind dagegen die Phenyl- gegenüber den Methylderivaten stabiler. I-VIII und X sind in n-Hexan und Cyclohexan schwerlöslich, während sie sich in Benzol, THF und CH₂Cl₂ mit roter Farbe gut lösen. Diese Lösungen sind bei Raumtemperatur zersetzlich. Als günstigstes Lösungsmittel erwies sich CH2Cl2 unterhalb -50°C. Bei Abkühlung erfolgt eine deutliche reversible Farbaufhellung der Lösungen von rot nach gelb-orange. Bei sorgfältiger Arbeitsweise lassen sich in Benzol kryoskopische Molmassebestimmungen ausführen. Die Ergebnisse belegen den monomeren Bau der Komplexe in Lösung.

Die leichte Zersetzlichkeit gehört zu den typischen Eigenschaften dieser Komplexe. Dies gab Anlass für die Untersuchung der dabei ablaufenden Vorgänge.

Die langsame thermische Zersetzung von I im Festzustand unter Vakuum (50–60°C, 3 Stdn.) ergab 43% Me₃Tl, 65% Tl, 80% [Mo(CO)₃Cp]₂ sowie in Spuren Mo(CO)₆. Die gleichen Produkte resultieren, wenn I mehrere Wochen unter Lichtausschluss bei 0°C aufbewahrt wird. III zersetzt sich analog, aber mit geringerer Zerfallsgeschwindigkeit. Als Reaktionsablauf postulieren wir eine primäre, homolytische Spaltung der Thallium—Übergangsmetall-Bindung nach Gl. 7, wobei die Radikale Me₂Tl und Cp(CO)₃M in bekannter Weise weiterreagieren. Inwieweit auch eine Homolyse der Tl—C-Bindungen erfolgt, kann nicht entschieden werden.

Die Zersetzung von I bei Raumtemperatur in THF ergibt unter Lichtausschluss gemäss Gl. 8 Me₃Tl und Tl[Mo(CO)₃Cp]₃. Bei Lichteinwirkung unterliegt Tl[Mo(CO)₃Cp]₃ einer reduktiven Eliminierung zu [Mo(CO)₃Cp]₂ und Tl^IMo-(CO)₃Cp. Letzteres zerfällt unter Disproportionierung zu Tl⁰ und Tl[Mo(CO)₃-Cp]₃ [11,12].

3 Me₂Tl-Mo(CO)₃Cp
$$\xrightarrow{\text{Lichtausschluss}}$$
 Tl[Mo(CO)₃Cp]₃ + 2 Me₃Tl (8)

TlMo(CO)₃Cp + [Mo(CO)₃Cp]₂

$$\xrightarrow{\frac{2}{3}}$$
 Tl + $\frac{1}{3}$ Tl[Mo(CO)₃Cp]₂

IR-spektroskopische Untersuchungen

In den IR-Festkörperspektren von I—IV und X treten bei hinreichend rascher Probenpräparation und Spektrenaufnahme nur drei starke terminale Carbonylbanden auf. In Fig. 1a ist beispielsweise der Carbonylbereich des Nujolspektrums von III dargestellt. Bereits nach kurzer Zeit verfärben sich die Proben von gelb nach rot. In den Spektren geht damit eine Verringerung der Bandenintensität von I—IV und X einher, während gleichzeitig die CO-Schwingungen der bei der Zersetzung gebildeten Bis(cyclopentadienyl)hexacarbonyldimetall-Komplexe deutlicher hervortreten (Fig. 1b). Die CO-Valenzschwingungsbanden von I—IV und X sind in Tab. 1 zusammengestellt. Über IR- und NMR-spektroskopische Untersuchungen an den triphenylphosphan-substituierten Komplexen V—VIII berichten wir an anderer Stelle. Die Infrarotspektren der Diorganothallium-tricarbonyl(cyclopentadienyl)metall-Komplexe sind mit einer lokalen C.-Symmetrie am Übergangsmetallatom, für die nach der irreduziblen Darstellung $\Gamma = 2 A' + A''$ zwei symmetrische und eine antisymmetrische CO-Valenzschwingung zu erwarten sind, in Übereinstimmung. Die Grundgeometrie dieser Komplexe entspricht demnach der in Fig. 2 skizzierten sog. "piano-stool"-Geometrie.

Im Vergleich zum Cp(CO)₃Mo-Anion [13] sind die CO-Valenzschwingungen der Komplexe I und II nach höheren Wellenzahlen verschoben, wodurch die erwartete Ladungsübertragung von Molybdän zum Thallium in diesen kovalenten heteronuclearen Metall—Metall-Bindungen belegt wird.

TABELLE 1

CARBONYLBANDEN IN DEN FESTKÖRPERSPEKTREN VON I—IV UND X (Nujol, cm⁻¹)

	A'	A"	A'	·
ī	1950	1869	1838	
H	1938	1858	1804	
Ш	1930	1834	1788	
IV	1933	1854	1796	
\mathbf{v}	1962	1879	1839	

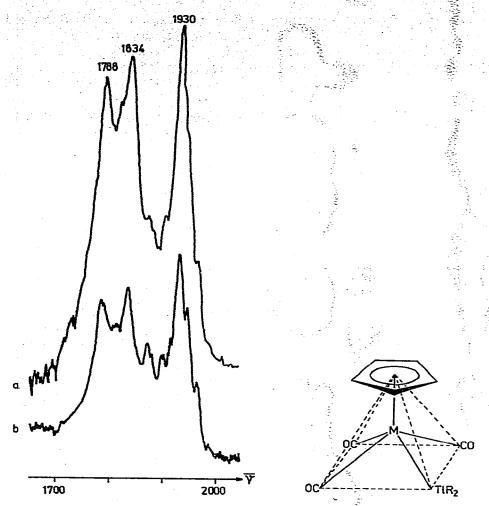


Fig. 1. Carbonylbanden von Me₂Tl-W(CO)₃Cp (III) im Nujolspektrum; (a) frische Präparation; (b) nach einer Stunde.

Fig. 2. Strukturvorschlag für R₂TI-M(CO)₃Cp (M = Mo, W).

¹H-NMR-Untersuchungen

Tabelle 2 enthält die ¹H-NMR-Daten von I—IV sowie Me₃Tl und Et₃Tl [14]. Die Spektren sind stark reversibel temperaturabhängig. Unterhalb —50°C treten die Signale des Dubletts der Dimethylthalliumgruppe als scharfe Peaks auf. Mit steigender Temperatur werden sie breiter und flacher, bei +32°C sind sie nahezu unerkennbar. Gleichzeitig steigt die chemische Verschiebung nach höherem Feld an, während ²J(TlCH) kleiner wird. Die Temperaturabhängigkeit der Spektrenparameter von I, III und Me₃Tl ist in Fig. 3 graphisch dargestellt. Die ¹H-Kerne des Cyclopentadienylliganden ergeben bei tiefen Temperaturen ein Singulett. Es beweist die η^5 -Form und freie Rotation dieses Liganden um die C₅-Achse. Bei steigenden Temperaturen verschiebt sich das Signal nach höherem Feld. Für III wurden folgende τ -Werte gefunden: —92°C 4.50, —10°C 4.60, +32°C 4.62.

TABELLE 2
¹ H-NMR-DATEN VON I-IV, Me ₃ Tl UND Et ₃ Tl (CD ₂ Cl ₂ -Lösung)

	τ(TlR ₂) ⁽			² J(TICH)	³ J(TICCH)	τ(Cp) ^b	Т (°С)
	ті—СН3	TIC <u>H</u> 2CH3	ті—СН ₂ —С <u>Н</u> 3				(0)
I	8.80 ^c			271 ^c		4.68	70
II III	8.89 ^d	8.04	8.18	249 274 ^d	529	4.71 4.68	80 74
IV Me ₃ Tl ^e	9.48	8.09	8.38	310 251	627	4.68	10 85
Et ₃ Tl e		8.71	8.21	198	396		-85

^a Lock CH₂Cl₂. ^b Lock HMDS. ^c -92° C: τ 8.79, 272 Hz; -48° C: τ 8.81, 264 Hz; -28° C: τ 8.83, 259 Hz; -3° C: τ 8.89, 242 Hz. ^d -89° C: τ 8.88, 274 Hz; -50° C: τ 8.90, 272 Hz; -30° C: τ 8.92, 268 Hz; -10° C' τ 8.95, 264 Hz. ^e Lit. [14].

Die Abhängigkeit der Spektrenparameter vom Übergangsmetall schliesst eine ionische Struktur aus und ist indikativ für eine kovalente Thallium—Übergangsmetall-Bindung. Gegenüber entsprechenden Trialkylthalliumverbindungen führt die Substitution eines Organorestes durch einen elektronegativen Rest allgemein zu einer Verschiebung der α -Protonenresonanz nach niederem Feld und zu einer Vergrösserung der Kopplungskonstanten $^2J(\text{TlCH})$. Diesen Einflusss üben auch die Tricarbonyl(cyclopentadienyl)metall-Gruppen von I—IV aus, wie die Werte der Tab. 2 zeigen. Die α -Protonenresonanz liegt gegenüber den Trialkylthalliumverbindungen signifikant bei tieferem Feld; die $^2J(\text{TlCH})$ -Werte sind grösser als die der Vergleichsverbindungen. Mehrere Autoren [15—18] konnten

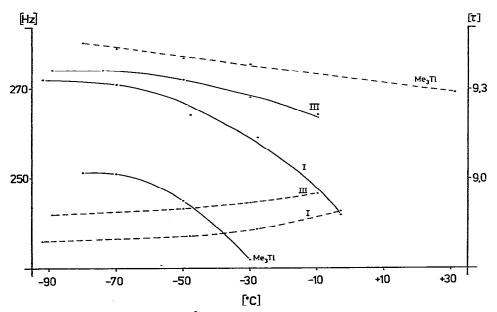


Fig. 3. Temperaturabhängigkeit der 1 H-NMR-Spektrenparameter von I, III und Me $_3$ Tl in CD $_2$ Cl $_2$ (ausgezogene Kurven: 2 J(TlCH), gestrichelte Kurven: chem. Verschiebung (τ)).

überzeugend zeigen, dass die Grösse der Tl—H-Kopplung in Beziehung zum s-Charakter der Bindungsorbitale des Thalliums steht und dominant durch den Fermi-Kontakt-Term bestimmt wird. Für I—IV ist deshalb ein gegenüber dem sp^2 -Valenzhybridzustand am Tl-Atom der Trialkylthalliumverbindungen erhöhter s-Anteil in den Metall—Kohlenstoff-Bindungen anzunehmen. Nach "Bent's second order hybridization concept" [19] ist das s-Orbital eines Atoms vornehmlich in den Bindungen mit den elektropositiven Substituenten konzentriert. Die Übergangsmetallgruppe ist demnach als elektronegativer Substituent am Thalliumatom dieser Verbindungen anzusehen, R_2 Tl $^{\delta}$ + $^{\delta}$ -M(CO)₃Cp.

Die in Fig. 3 dargestellte Temperaturabhängigkeit der Kernresonanzspektren ist folgendermassen zu interpretieren: Das Verschwinden der ^{205/203}Tl—C—¹H-Kopplung mit steigender Temperatur und der gleichzeitige Koaleszenztrend beweisen einen Bruch der Thallium—Kohlenstoff-Bindungen. Eingehendere Studien an den Komplexen I und III ergaben, dass sie in Lösung gemäss Gl. 9 mit Trimethylthallium und den Thallium-tris[tricarbonyl(cyclopentadienyl)metall]-Verbindungen im Gleichgewicht stehen.

Methylgruppen-Austauschreaktion

$$3 \text{ Me}_2\text{Tl-M(CO)}_3\text{Cp} \xrightarrow{\text{(CH}_2\text{Cl}_2)} 2 \text{ Me}_3\text{Tl} + \text{Tl[M(CO)}_3\text{Cp]}_3$$
 (9)

tiefe Temperaturen

Raumtemperatur

gelb

rot

Temperaturänderungen beeinflussen: (1) die Lage des Gleichgewichtes; (2) Die Geschwindigkeit der Hin- und Rückreaktion; (3) die Überlagerung des Gleichgewichtes 9 durch die Methylgruppenaustauschreaktion des Trimethylthalliums.

Bei tiefen Temperaturen liegt Gleichgewicht 9 praktisch quantitativ auf der linken Seite. Es werden die "reinen" Signale der Dimethylthalliumgruppe von I bzw. III mit dem "Grenzwert"-Spektrenparametern (1 τ 8.79, 272 Hz; III τ 8.88, 274 Hz) beobachtet. Die Reaktionsgeschwindigkeiten der Reaktion 9 auf der NMR-Zeitskala sind langsam, was durch die Aufnahme des Spektrums einer Probe, die neben III überschüssiges Me₃Tl enthält, bestätigt wird. Bei tiefen Temperaturen werden dann die individuellen Signale von III und Me₃Tl beobachtet. Es sei darauf hingewiesen, dass die Geschwindigkeiten des Gleichgewichtes 9 nur bezüglich des NMR langsam wird. Die Bildung von III bei -78° C aus Me₃Tl und Tl[W(CO)₃Cp]₃ im Sinne der Redistributionsreaktion 6 erfolgt sehr schnell.

Mit steigender Temperatur wird Gleichgewicht 9 nach rechts verschoben. Es werden gemittelte Signale der Organothalliumgruppierungen beobachtet. ²J-(TlCH) wird kleiner, die chemische Verschiebung grösser, d.h. die Spektrenparameter verändern sich in Richtung derjenigen des Me₃Tl (Fig. 3). Gleichzeitig kommt mit steigender Temperatur der intermolekulare Methylgruppenaustausch des Trimethylthalliums ins Spiel, der von Maher und Evans [20] eingehend untersucht worden ist. Der mit Gleichgewicht 9 und dem Methylgruppenaustausch des Me₃Tl verbundene, auf der NMR-Zeitskala rasche Bruch der Tl—C-Bindungen führt zum Verschwinden der Signale des TlCH-Dubletts. Reines Me₃Tl ergibt bei Raumtemperatur ein Singulett bei τ 9.29, das bei Zugabe von Tl[W-(CO)₃Cp]₃ verschwindet. Der mit steigender Temperatur zunehmende Gleich-

gewichtsanteil an Tl[M(CO)₃Cp]₃ verursacht die Farbänderung der Lösungen von gelb nach rot und erklärt somit zwanglos den ausgeprägten "Thermochromeffekt" der Lösungen dieser Komplexe.

Wie beschrieben, wird bei der Umsetzung von Me_3Tl und $HCr(CO)_3Cp$ kein Me_2Tl — $Cr(CO)_3Cp$ gebildet. Im NMR-Spektrum des Reaktionsansatzes in CH_2Cl_2 wird auch bei $-92^{\circ}C$ trotz Methanentwicklung nur das Dublett für Me_3Tl beobachtet. Offensichtlich liegt Gleichgewicht 9 für M=Cr auch bei tiefen Temperaturen soweit rechts, dass Me_2Tl — $Cr(CO)_3Cp$ nicht nachweisbar ist. Angesichts der aus Analogiegründen zu erwartenden geringen Bindungsenergie der Tl—Cr-im Vergleich zur Tl—Mo- und Tl—W-Bindung ist es plausibel, dass Me_2Tl —Cr- $(CO)_3Cp$ in die offenbar stabileren Gleichgewichtspartner übergeht.

Reaktionsverhalten der $R_2Tl-M(CO)_3Cp$ -Komplexe

Reaktionen an der Tl-M-Bindung dieser Komplexe können, wie die thermische Zersetzung nach Gl. 7 zeigt, unter homolytischer Spaltung dieser Bindung verlaufen. Die in Schema 1 zusammengestellten Reaktionen, die zumeist mit I ausgeführt wurden, lassen erkennen, dass Reaktionen unter Spaltung der Thallium-Übergangsmetall-Bindung sowohl mit elektrophilen als auch nucleophilen Partnern möglich sind und in Übereinstimmung mit der Bindungspolarität ablaufen (Einzeldaten s. Beschreibung der Versuche).

Versuche, mit CS₂ eine Einschiedungsreaktion in die 11-Mo-Bindung von I zu realisieren, ergaben kein einheitliches Reaktionsprodukt.

I und Br₂ setzen sich im Molverhältnis 1:1 bei Raumtemperatur in CH₂Cl₂ unter Bildung von 90% d. Th. BrMo(CO)₃Cp um; im Reaktionsansatz lässt sich gleichzeitig gaschromatographisch MeBr nachweisen. Orientierende Umsetzungen

SCHEMA 1

$$\begin{array}{c} \stackrel{MeJ}{\longrightarrow} MeM(CO)_3Cp + R_2TlJ \\ \stackrel{JCH_2CH_2J}{\longrightarrow} JM(CO)_3Cp + R_2TlJ + C_2H_4 \\ & \stackrel{JCl}{\longrightarrow} JM(CO)_3Cp + R_2TlCl \\ & \stackrel{Me_3SnCl}{\longrightarrow} Me_3SnM(CO)_3Cp + R_2TlCl \\ & \stackrel{HgCl_2}{\longrightarrow} ClHgM(CO)_3Cp + R_2TlCl \\ & \stackrel{\frac{1}{2}HgCl_2}{\longrightarrow} \frac{1}{2}Hg[M(CO)_3Cp]_2 + R_2TlCl \\ & \stackrel{H_2O}{\longrightarrow} HM(CO)_3Cp + R_2TlCl \\ & \stackrel{H_2O}{\longrightarrow} HM(CO)_3Cp + R_2TlCl \\ & \stackrel{H_2O}{\longrightarrow} HM(CO)_3Cp + R_2TlCl \\ & \stackrel{LiR}{\longrightarrow} LiM(CO)_3Cp + R_3Tl \end{array}$$

von I bzw. IV mit Br₂ im Molverhältnis 1: 2 bei —78°C ergaben in guten Ausbeuten gelbe feinkristalline Niederschläge, die thermisch äusserst instabil sind und daher noch nicht identifiziert werden konnten. Wir vermuten, dass unter diesen Reaktionsbedingungen bevorzugt die Tl—C-Bindungen reagieren und Verbindungen des Typs BrMeTl—M(CO)₃Cp bzw. Br₂Tl—M(CO)₃Cp gebildet werden.

I setzt sich mit Quecksilber in einem sicher komplexen Reaktionsablauf zu Hg[Mo(CO)₃Cp]₂, Tl⁰ und Me₂Hg um. Summarisch ist die Reaktion durch Gl. 10 wiedergegeben.

$$2 \text{ Me}_2\text{Tl-Mo(CO)}_3\text{Cp} + 3 \text{ Hg} \rightarrow \text{Hg[Mo(CO)}_3\text{Cp]}_2 + 2 \text{ Tl}^0 + 2 \text{ Me}_2\text{Hg}$$
 (10)

Es ist wahrscheinlich, dass die Bildung dieser Produkte über Reaktion 9 mit nachfolgenden Umsetzungen von Tl[Mo(CO)₃Cp]₃ oder gar Tl^IMo(CO)₃Cp und [Mo(CO)₃Cp]₂ bzw. Me₃Tl mit Hg erfolgt.

Eine gezielte Substitution der Carbonylliganden am Zentralatom durch PPh₃ war nicht möglich. Unter den für solche Reaktionen erforderlichen Aktivierungsbedingungen thermischer oder photochemischer Art ist die Zersetzung der Komplexe der einzige Reaktionsweg.

Versuche zur Synthese von R₂Tl-Fe(CO)₂Cp und Me₂Tl-Co(CO)₄

Diorganothalliumbromide reagieren in Glyme bei -50° C mit NaFe(CO)₂Cp unter Bildung von NaBr, R₃Tl und Tl[Fe(CO)₂Cp]₃. Gaschromatographisch konnte ausserdem für R = Me Aceton, für R = Ph Benzophenon und Biphenyl in geringen Mengen nachgewiesen werden. CO-Entwicklung und Thalliumabscheidung traten nicht ein. Entsprechend Gl. 11 nehmen wir als Zwischenstufe dieser Reaktion R₂Tl—Fe(CO)₂Cp an, das offenbar auch unter schonenden Reaktionsbedingungen instabil ist und in einer Symmetrisierungsreaktion zu R₃Tl und Tl[Fe(CO)₂Cp]₃ weiterreagiert. R₂CO und Ph₂ bilden sich vermutlich durch Folgereaktionen der Zwischenstufe R₂Tl—Fe(CO)₂Cp mit NaFe(CO)₂Cp bzw. durch homolytische Spaltung der Tl—C-Bindungen.

Die Isolierung von Tl[Fe(CO)₂Cp]₃ bei den Umsetzungen nach Gl. 11 war zunächst überraschend, da Burlitch und Theyson [12] diese Verbindung als äusserst instabil und daher nur IR-spektroskopisch nachweisbar beschrieben hatten. Ihre von Reaktion 11 unabhängige Synthese gelingt durch Umsetzung von in Äther/Glyme gelöstem TlCl₃ bei —50°C mit einer Glyme-Lösing von NaFe(CO)₂-Cp nach Gl. 12.

$$TlCl_3 + 3 NaFe(CO)_2Cp \rightarrow Tl[Fe(CO)_2Cp]_3 + 3 NaCl$$
 (12)

Tl[Fe(CO)₂Cp]₃ bildet intensiv grün-rote, dichroitische Kristalle, die sich bei 138–140°C zersetzen und unter Lichtausschluss bei –78°C längere Zeit haltbar sind.

Hieber und Mitarbeiter [5] hatten 1957 ohne Angabe experimenteller Details die Umsetzung von Me₃Tl und HCo(CO)₄ zu Tl[Co(CO)₄]₃ mitgeteilt. Es lag

nunmehr nahe zu prüfen, ob Me₂Tl—Co(CO)₄ bei tiefen Temperaturen darstellbar ist oder analog den Diorganothallium—Eisen-Komplexen eine hohe Symmetrisierungstendenz die Isolierung verhindert.

Nach Einleiten von kontinuierlich synthetisiertem $HCo(CO)_4$ mit Hilfe eines CO-Stromes in eine auf -30° C gekühlte n-Hexan- bzw. auf -78° C gekühlte CH_2Cl_2 -Lösung von Me_3 Tl lässt sich nur $Tl[Co(CO)_4]_3$ isolieren.

Haupt und Neumann [7] wiesen bei der Umsetzung von R_2 TlCl mit NaMn-(CO)₅ in THF (R = Me -40°C; R = Ph -20°C) als Reaktionsprodukte Tl[Mn-(CO)₅]₃, NaCl und R_2 CO neben zwei Dritteln des unumgesetzten R_2 TlCl nach. Das nach unserer Auffassung bei dieser Umsetzung ebenfalls gebildete R_3 Tl konnte bei der von den Autoren gewählten Aufarbeitung der Reaktionsansätze nicht gefunden werden.

Diskussion

Am Beispiel der Dimethylthallium-tricarbonyl(cyclopentadienyl)metall-Komplexe I und III konnte erstmalig das in Gl. 13 verallgemeinerte Symmetrisierungs—Redistributions-Gleichgewicht zweifelsfrei nachgewiesen werden.

$$3 R2Tl-MLn = \frac{Symmetrisierung}{Redistribution} 2R3Tl + Tl(MLn)3$$
 (13)

Redistributionsreaktionen wurden verschiedentlich, so z.B. für die Darstellung von Diorganothalliumhalogeniden aus R₃Tl und TlX₃ [21] beschrieben. Dagegen sind Beispiele für Symmetrisierungsreaktionen u.W. nicht bekannt. Sie wurden, wie beschrieben, lediglich als Zerfallsreaktionen intermediärer Dimethylthallium— Übergangsmetall-Verbindungen des Kobalts [5] und Mangans [6] postuliert. Gesicherte Aussagen über die Mechanismen der Reaktionen des Symmetrisierungs—Redistributions-Gleichgewichtes lassen sich z.Z. nicht machen, so dass weitere Untersuchungen erforderlich sind.

Eine synoptische Sicht aller Kentnisse über Diorganothallium—Übergangsmetall-Komplexe offenbart die fundamentale Bedeutung des Gleichgewichtes 13 für die Stabilität dieser Verbindungen. Die Lage des Gleichgewichtes ist abhängig vom Übergangsmetall und seinen Liganden, den organischen Resten am Thalliumatom, der Temperatur und dem Lösungmittel, obwohl der Einfluss dieser Faktoren im Detail noch nicht erfassbar ist.

Von den 3d-Elementen konnten nur $R_2Tl-V(CO)_6$ (R = Me, Ph) [8] und $Ph_2Tl-Mn(CO)_5$ [7] isoliert werden, während Versuche zur Darstellung von $Me_2Tl-Cr(CO)_3Cp$, $Me_2Tl-Mn(CO)_5$ [7], $R_2Tl-Fe(CO)_2Cp$ (R = Me, Ph) und $Me_2Tl-Co(CO)_4$ [5] ausschliesslich die Produkte der Symmetrisierungsreaktion, R_3Tl und $Tl(ML_n)_3$ ergaben.

Aufgrund dieser Ergebnisse wagen wir die Hypothese, dass die Stabilität der R_2Tl-ML_n -Komplexe der 3d-Elemente bezüglich der Symmetrisierungsreaktion im Periodensystem von links nach rechts abnimmt. Innerhalb der VI. Nebengruppe ist die erwartete zunehmende Stabilität mit steigender Atommasse des Übergangsmetalls festzustellen.

Uberlegungen, die Stabilitätsverhältnisse analog den Thallium(I)—Ubergangsmetall-Verbindungen $\mathrm{Tl^IML}_n$ [22,23] durch Vergleich der $\mathrm{p}K_a$ -Werte der zugrundeliegenden Übergangsmetallhydride oder der Nucleophilie der Übergangsmetallionen zu deuten, ergaben keine Zusammenhänge.

Austausch eines CO-Liganden in den Komplexen I, III, IX und X gegen PPh₃ führt zu einem signifikanten Stabilitätsgewinn (V, VII, VI, VIII). In ihren Ursachen ungeklärt ist die Tatsache, dass für die Komplexe mit $ML_n = Mo(CO)_3Cp$ und $W(CO)_3Cp$ die Stabilität der Dimethylthallium-Derivate höher ist, als die der Diphenylthallium-Derivate, während bei $ML_n = Mn(CO)_5$ die Verhältnisse gerade umgekehrt sind.

Unter den Diorganometall-tricarbonyl(cyclopentadienyl)metall-Komplexen der Elemente der III. Hauptgruppe treten beträchtliche, die Struktur und Stabilität der Verbindungen betreffende Differenzen auf.

Me₂Al-W(CO)₃Cp [24] ist im Festzustand und in Lösung dimer gebaut. Zwei Wolfram- und zwei Aluminiumatome sowie vier CO-Brücken-Liganden bilden einen zentrosymmetrischen 12-Ring.

Me₂Ga-M(CO)₃Cp (M = Mo, W) wurde durch Protolysereaktionen aus Me₃Ga und HM(CO)₃Cp synthetisiert [25,26]. Me₂GaW(CO)₃Cp bildet im Festzustand diskrete Moleküle mit einer 3-4-Koordination am W-Atom. Der π -gebundene Cyclopentadienyl-Ligand und die aus den drei CO-Liganden und dem Ga-Atom gebildete Ebene liegen nahezu parallel. Das Ga-Atom weist eine annähernd trigonal-planare Koordinationssphäre mit Bindungswinkeln um 120° auf [26].

NMR-Untersuchungen zeigten, dass Me_2Ga — $Mo(CO)_3Cp$ sich in Lösung mit Me_3Ga und $MeGa[Mo(CO)_3Cp]_2$ ins Gleichgewicht setzt und mit Me_3Ga ein rascher Methylgruppen-Austausch abläuft [26]. Im Gegensatz zum Me_3Ga wurde bei Umsetzungen von Me_3In mit $HM(CO)_3Cp$ (M=Mo, W) im Temperaturbereich von -196°C bis Raumtemperatur nur $In[M(CO)_3Cp]_3$ isoliert [27].

Untersuchungen über die Stabilität der generell durch die Alkalisalz-Methode darstellbaren Triorganoblei-tricarbonyl(cyclopentadienyl)metall-Komplexe der Chromtriade [10] sind nicht beschrieben worden. Ihre relativ hohen Zersetzungspunkte (R₃Pb-M(CO)₃Cp; M = Cr, R = Ph 195-197°C; M = Mo, R = Me 93-95°C; R = Ph 200°C; M = W, R = Ph 214-215°C) deuten aber gegenüber den entsprechenden Diorganothalliumverbindungen eine grössere Stabilität an.

Nach Arbeiten von Roberts [9,28] sowie Hieber und Mitarbeitern [5] ist ein Gl. 13 entsprechendes Symmetrisierungs—Redistributions-Gleichgewicht für die Organoquecksilber—Übergangsmetall-Komplexe RHg— ML_n ($ML_n = Mo(CO)_3Cp$, $Mn(CO)_5$, $Fe(CO)_2Cp$, $Co(CO)_4$) von ähnlich fundamentaler Bedeutung wie im Falle der Diorganothallium—Übergangsmetall-Komplexe.

Die geschilderten Ergebnisse zeigen, obwohl noch viele Fragen unbeantwortet sind, dass das "post transition"-Metall Thallium in seinen Diorganothallium—Übergangsmetall-Komplexen deutlichere Analogien zu den vergleichbaren Verbindungen der im PSE benachbarten Metalle Quecksilber und Blei aufweist als zu denen der leichteren Metalle der III. Hauptgruppe.

Beschreibung der Versuche

¹H-NMR-Spektren wurden mit dem Spektrometer HA 100 D-15 der Firma Varian AG, IR-Spektren mit einem Beckman-IR 12 aufgenommen. Alle Versuche wurden unter einer Argonatmosphäre durchgeführt.

Darstellung von $R_2Tl-M(CO)_3Cp$ (I-IV)

(a) Zu einer CH₂Cl₂-Lösung von R₃Tl tropft man bei -78°C (M = Mo) bzw.

- -50°C (M = W) eine äquimolare Lösung von HM(CO)₃Cp [29-31] im gleichen Lösungsmittel. Nach 15 min werden I—IV mit 100—150 ml vorgekühltem n-Hexan ausgefällt, unter Kühlung der Fritte abfiltriert und mit kaltem n-Hexan gewaschen (Einzeldaten s. Tab. 3).
- (b) I bildet sich ebenfalls, wenn 1.64 g Me₂Tl—NMe₂ [32] und 1.45 g HMo-(CO)₃Cp bei —78°C 0.5 Stdn. in 50 ml n-Hexan gerührt werden und das gebildete HNMe₂ kontinuierlich im Wasserstrahlpumpenvakuum abgezogen wird. Der mit [Mo(CO)₃Cp]₂ verunreinigte Niederschlag wird bei Raumtemperatur mehrmals mit n-Hexan extrahiert und I bei —78°C zur Kristallisation gebracht; Ausb. 2.0 g (71%). Nach gleicher Vorschrift werden bei der Umsetzung von 0.8 g Me₂Tl—NMe₂ und 0.95 g HW(CO)₃Cp 0.9 g (55%) III erhalten.
- (c) III entsteht auch, wenn 0.4 g Tl[W(CO)₃Cp]₃ [12] in 5 ml CH₂Cl₂ und 0.2 g Me₃Tl in 10 ml CH₂Cl₂ bei -78°C zur Reaktion gebracht werden. Nach 5 Min wird III mit ca. 100 ml vorgekühltem n-Hexan gefällt und unter Kühlung der Fritte isoliert; Ausb. 0.5 g (88%).

Synthese von $R_2Tl-M(CO)_2PPh_3Cp$ (V-VIII)

- (a) Zu einer CH₂Cl₂-Lösung von R₃Tl wird bei —25°C (R = Me) bzw. bei Raumtemperatur (R = Ph) eine äquimolare Lösung des triphenylphosphan-substituierten Übergangsmetallhydrids [33] getropft. Die Reaktionsansätze werden nach 30 min (R = Me) bzw. 2 Stdn. (R = Ph) filtriert. V—VIII im Filtrat mit vorgekühltem n-Hexan gefällt und unter Kühlung der Fritte abfiltriert (Einzeldaten s. Tab. 4).
- (b) VI bildet sich auch, wenn 1.3 g NaMo(CO)₂PPh₃Cp in 20 ml Diglyme langsam bei -20°C zu einer gerührten Suspension von 1.1 g Ph₂TlBr in 5 ml CH₂Cl₂ getropft werden. Nach 3 Stdn. wird filtriert, das Filtrat mit 20 ml CH₂Cl₂ versetzt und VI unter intensivem Rühren mit ca. 100 ml n-Hexan zur Kristallisation gebracht; Ausb. 0.95 g (44%).

Unter analogen Bedingungen werden bei der Umsetzung von 0.7 g NaW(CO)₂-PPh₃Cp und 0.5 g Ph₂TlBr 0.75 g (68%) VIII erhalten.

Darstellung von $Ph_2Tl-W(CO)_3Cp(X)$

0.65 g NaW(CO)₃Cp in 10 ml Diglyme lässt man bei -20° C zu einer gerührten Suspension von 0.8 g Ph₂TlBr in 5 ml des gleichen Lösungsmittels tropfen. Nach 3 Stdn. wird filtriert, dem Filtrat 30 ml Diäthyläther zugefügt und X unter intensivem Rühren mit 100 ml gekühltem n-Hexan ausgefällt; Ausb. 1.2 g (95%); Fp. 38–40°C (zers.). Analysen: Gef.: C, 35.1; H, 2.4; Tl, 28.9. C₂₀H₁₅O₃TlW ber.: C, 34.73; H, 2.16; Tl, 29.52%.

Die analog synthetisierte Molybdänverbindung IX zersetzt sich unmittelbar nach der Isolierung. IR-Daten (Diglyme): IX 1962sst, 1904st, 1885sst, 1864st, 1793m, 1795s cm⁻¹; X 1957sst, 1898st, 1879sst, 1857st, 1788m, 1751s cm⁻¹.

Thermische Zersetzung von I im Festzustand

1.1 g I werden in einer Sublimationsapparatur unter Vakuum und Zwischenschaltung einer Kühlfalle (-78°C) in einem Heizbad 3 Stdn. auf 50-60°C erwärmt. Nach Hydrolyse wurden in der Kühlfalle durch acidimetrische Titration 166 mg (43.5%) Me₃Tl bestimmt. Am Sublimationsfinger befanden sich ca. 50 mg Mo(CO)₆. Der Rückstand des Ansatzes wurde mit Benzol extrahiert und

tabelle 3 Reaktionbansätze, molmassen und elementaranalysen für I—1v

ž.	R ₃ Tl (g) (ml CH ₂ Cl ₂)	HM(CO) ₃ Cρ (ϗ) (ml CH ₂ Cl ₂)	Aush, (g) (%)	Fp. (Zers.) (°C)	Summenformel Molmasse	Elementaranalysen gef. (ber.) (%)	nalysen 6)		
					gof, " (bor.)	Ö	H	Ţ	
_	3,1	3,0	4,5	69-89	C ₁₀ H ₁₁ O ₃ MoTl	26,2	2,3	41.7	. v
	(16)	(8)	(12)		476(470,51)	(25,05)	(2,31)	(42,62)	
Ħ	4,3	9,6	6.1	86-87	C12H15O3MoT1	28.2	3,0	89.8	-
	(20)	(30)	(81)		508(507,56)	(28.40)	(3.08)	(40.27)	
111	1.5	2,5	3.0	76-78	C10H1103WT1	21,6	1.9	36,3	
	(10)	(8)	(88)		561 (567,42)	(21.16)	(1.95)	(36,01)	
21	1,2	1,4	1,8	119-121	C12H15O3WT1	24,1	2,7	34,1	
,	(10)	(10)	(73)		592(505,47)	(24,20)	(2,54)	(34,32)	

g Kryoskopisch in Benzol,

REAKTIONSANSÄTZE, MOLMASSEN UND ELEMENTARANALYSEN V-VIII

TABELLE 4

ž	R ₃ Tl (g) (ml CH ₂ Cl ₂)	CpM(CO) ₂ PPh ₃ H (g) (ml CH ₂ Cl ₂)	Ausb. (g) (%)	Fp. (Zers.) (°C)	Summenformel Molmasse	Elementarnalysen	1860	(8)
					Bol. (Der.)	Ų	H	Ę
>	1,2	83	3,15	146-148	C27H26O2PMoT1	45.0	3.7	29.0
ΙΛ	(a) 0.6	(10) 0.65	(86) 1-1	778-178	705(713,61)	(45,44)	(3.64)	(28.51)
•	(2)	(10)	(97)	3	824(837.72)	(63.07)	(3.58)	(24.89)
NII	8.0	1.8	2.5	160-162	C27H26O2PWT1	39.9	3.4	26.2
	<u>@</u>	(10)	(88)		792(801,51)	(40.41)	(3.24)	(25,50)
VIII	4.0	9.0	0.75	188-100	C37H30O2PWTI	48.3	6,0	21.6
	(2)	(6)	(93)		902(925,63)	(48.01)	(3.24)	(22,08)

^a Kryoskopisch in Benzol.

100 mg (64%) Thallium abfiltriert. Nach Einengen des Benzols wurden 450 mg (80%) [Mo(CO)₃Cp]₂ isoliert und durch Festpunkt (215–217°C) [31] und IR-Spektrum (1965st, 1920sst(br) cm⁻¹ [34]identifiziert.

Zersetzung von I in THF

Eine Lösung von 1.0 g I in 20 ml THF wird unter Lichtausschluss 24 Stdn. bei Raumtemperatur gerührt und anschliessend das THF i. Vak. in eine Kühlfalle abgezogen. Nach Hydrolyse liessen sich titrimetrisch in der Kühlfalle 176 mg (51%) Me₃Tl nachweisen. Der Rückstand wurde erneut in THF gelöst. IR-Banden bei 2018s, 1993s, 1964st, 1931m, 1888st, 1863sst cm⁻¹ beweisen die Existenz von Tl[Mo(CO)₃Cp]₃ in dieser Lösung [12]. Setzt man diese Lösung drei Tage dem Licht aus, so scheiden sich 150 mg (106%) Tl ab, und aus dem Filtrat lassen sich 400 mg (78%) [Mo(CO)₃Cp]₂ isolieren.

Umsetzung von I mit MeJ

0.85 g I und 0.25 g MeJ werden in 30 ml CH₂Cl₂ umgesetzt. Nach 48 Stdn. wird vom Me₂TlJ (0.52 g (91%)) abfiltriert, das Filtrat zur Trockne eingeengt und der Rückstand bei 80°C/2 mmHg sublimiert. Ausb. 0.35 g (76%) MeMo-(CO)₃Cp, Fp. 123—124°C (lit. [31] 124°C); IR (CS₂): 2020sst, 1937sst cm⁻¹.

Umsetzung von II mit JCH2CH2J

0.5 g II in 20 ml CH_2Cl_2 und 0.28 g JCH_2CH_2J in 10 ml CH_2Cl_2 ergeben bei Raumtemperatur in einer rasch ablaufenden Reaktion 0.35 g (78%) Et_2TlJ , Fp. 264—266°C (Zers.), und aus dessen Filtrat nach Fällung mit 50 ml Hexan 0.3 g (84%) $JMo(CO)_3Cp$, Fp. 134—135°C; $IR(CCl_4)$: 2040sst, 1968sst, 1955sst cm^{-1} [29]. I reagiert analog mit JCH_2CH_2J .

Reaktion von I und III mit JCl

Zu einer Lösung von 1.15 g I in 20 ml CH₂Cl₂ tropft man bei -78°C 0.39 g in 10 ml CH₂Cl₂ gelöstes JCl und filtriert nach 3 Stdn. 0.5 g (86%) Me₂TlCl ab. Aus dem Filtrat werden 0.55 g (66%) JMo(CO)₃Cp erhalten.

Entsprechend setzen sich 0.8 g III und 0.23 g JCl zu 0.25 g (66%) Me₂TlCl und 0.3 g (43%) JW(CO)₃Cp um, Fp. 141—143°C; IR (CCl₄); 2025st, 1952sst, 1940st(Sch) cm⁻¹ (Lit. [29] 2024, 1946, 1938 cm⁻¹).

Umsetzung von I mit Me₃SnCl

Zu einer Lösung von 0.95 g I in 10 ml Äther gibt man 0.39 g Me₃SnCl in 10 ml Äther und filtriert nach 24 Stdn. 0.45 g (88%) Me₂TlCl ab. Das Filtrat wird zur Trockne eingeengt und der Rückstand im Hochvakuum bei 90°C sublimiert. Ausb. 0.4 g (49%) Me₃SnMo(CO)₃Cp; Fp. 97—100°C (Lit. [35] 98—99°C); IR (C_6H_6): 1990sst, 1916st, 1891sst cm⁻¹ [35]).

Umsetzungen von I mit HgCl₂

1.5 g I und 0.85 g HgCl₂ (Molverhältnis 1:1) werden 24 Stdn. in 30 ml CH₂Cl₂ gerührt und von 0.75 g (89%) Me₂TlCl abfiltriert. Aus dem Filtrat lassen sich durch Einengen und Umkristallisation aus EtOH 1.2 g (80%) ClHgMo(CO)₃-Cp isolieren, Fp. 188—190°C, IR (CHCl₃): 2024st, 1954(Sch), 1936st cm⁻¹ [36].

Analog ergeben 0.95 g I und 0.27 g $HgCl_2$ (Molverhältnis 2 : 1) in 30 ml CH_2Cl_2 neben 0.5 g (94%) Me_2TlCl 0.5 g (73%) $Hg[Mo(CO)_3Cp]_2$ vom Fp. 203—204°C. IR (CHCl₃): 2015st, 1972sst, 1906st(Sch), 1891st cm⁻¹ [36].

Reaktion von I mit HCl

Zu 1.8 g I in 20 ml Äther lässt man eine Lösung von 0.14 g HCl in 10 ml Äther tropfen. Nach 2 Stdn. werden 0.9 g (89.5%) Me₂TlCl abfiltriert, man engt das Filtrat zur Trockne ein und sublimiert den Rückstand im Hochvakuum bei 40°C, Ausb. 0.4 g (47%) HMo(CO)₃Cp; Fp. 50—52°C [30].

Reaktion von II und III mit LiR

Eine Lösung von 1.15 g II in 30 ml THF wird bei —78°C mit 0.1 g LiEt versetzt. Nach 1 Std. wird unter Kühlung der Fritte filtriert und das Filtrat bei 0°C Badtemperatur i. Vak. (2 mmHg) über eine Kühlfalle (—78°C) zur Trockne eingeengt. Nach Hydrolyse liessen sich in der Kühlfalle titrimetrisch 0.54 g (83%) Et₃Tl bestimmen. Der Rückstand (0.5 g) wird in 10 ml THF gelöst, nach Zugabe von Eisessig i. Vak. zur Trockne eingeengt und der Rückstand im Hochvakuum sublimiert, Ausb. 0.2 g (35.5%) HMo(CO)₃Cp.

Nach gleicher Vorschrift werden aus 0.5 g III und 20 mg LiMe 135 mg (60.5%) Me₃Tl und 0.5 g (22%) HW(CO)₃Cp erhalten.

Reaktion von I mit Br2

Zu 1.05 g I in 20 ml CH₂Cl₂ lässt man eine Lösung von 0.35 g Br₂ in 10 ml CH₂Cl₂ tropfen. Nach 2 Stdn. wird filtriert und im Filtrat gaschromatographisch MeBr nachgewiesen. Durch Einengen und Fällen mit n-Hexan werden 0.7 g (98%) BrMo(CO)₃Cp vom Fp. 150—151°C [29] erhalten; IR (Cyclohexan): 2057sst, 1990sst, 1968sst cm⁻¹ (Lit. [37] 2045, 1989, 1968 cm⁻¹).

Umsetzung von I mit Hg

Eine Lösung von 1.95 g I in 30 ml CH₂Cl₂ wird vier Tage mit einem Überschuss Hg gerührt, das gebildete Thalliumamalgam abfiltriert (Nachweis des Thalliums nach Lösung in HNO₃ als TIJ) und das Filtrat wie oben beschrieben aufgearbeitet. Ausb. 0.7 g (50%) Hg[Mo(CO)₃Cp]₂; Me₂Hg wurde gaschromatographisch nachgewiesen.

Umsetzung von NaFe(CO)₂Cp mit Ph₂TlBr

2.45 g NaFe(CO)₂Cp [38] in 30 ml Glyme werden bei —50°C langsam zu einer Suspension von 5.3 g Ph₂TlBr in 10 ml Glyme getropft. Nach 2 Stdn. wird unter Kühlung der Fritte filtriert. Aus dem Filtrat werden nach Einengen zur Trockne, Aufnahme des Rückstandes in Äther und Fällung bei —78°C mit n-Hexan 1.4 g (47%) Tl[Fe(CO)₂Cp]₃ isoliert, Fp. 137—139°C (Zers.); IR (THF): 1992m; 1959sst, 1920st, 1788s cm⁻¹ (Lit. [12] 1986, 1956, 1918, 1782 cm⁻¹). Extraktion des Filterkuchens mit Äther und Fällen mit n-Hexan ergaben 2.3 g (66%) Ph₃Tl, Fp. 169—170°C (Zers.) [39]; gef.: Tl, 46.1; ber.: 49.64%). In der ätherischen Lösung wurde gaschromatographisch Ph₂ und Ph₂CO nachgewiesen. Aus dem Extraktionsrückstand lassen sich mit heissem Wasser 1.1 g (88%) NaBr lösen, es verbleiben 0.2 g Ph₂TlBr.

Reaktion von NaFe(CO)₂Cp mit Me_2TlBr

Zu einer Suspension von 4.1 g Me₂TlBr in 10 ml Glyme werden bei —50°C 2.6 g NaFe(CO)₂Cp in 30 ml Glyme getropft. Nach 2 Stdn. wird i. Vak. über eine Kühlfalle zur Trockne eingeengt. In der Kühlfalle liessen sich nach Hydrolyse titrimetrisch 0.89 g (41%) Me₃Tl bestimmen. Gaschromatographisch wurde im Glymedestillat Aceton nachgewiesen. Der Rückstand wird mit Äther aufgenommen und von 1.2 g (90%) NaBr abfiltriert. Aus dem Filtrat lassen sich nach Fällung mit ca. 100 ml vorgekühltem n-Hexan 1.6 g (52%) Tl[Fe(CO)₂Cp]₃ isolieren.

Darstellung von $Tl[Fe(CO)_2Cp]_3$

0.42 g TlCl₃, gelöst in 10 ml Äther/Glyme-Gemisch (1:1) lässt man langsam bei -50°C zu einer intensiv gerührten Lösung von 0.8 g NaFe(CO)₂Cp (Molverhältnis 1:3) in 15 ml Glyme tropfen. Nach 2 Stdn. wird i. Vak. zur Trockne eingeengt, der Rückstand mit 20 ml Äther digeriert, filtriert und Tl[Fe(CO)₂-Cp]₃.mit 100 ml vorgekühltem n-Hexan zur Kristallisation gebracht. Ausb. 0.75 g (76.5%); Fp. 138–140°C (Zers.); IR (THF) analog oben. Analysen: Gef.: C, 34.4; H, 2.35; Tl, 27.5. C₂₁H₁₅Fe₃O₆Tl ber.: C, 34.31; H, 2.05; Tl, 28.0%.

Dank

Herrn Doz. Dr. A. Zschunke, Halle, danken wir für die Aufnahme der NMR-Spektren.

Literatur

- 1 B. Walther und C. Rockstroh, J. Organometal. Chem., 44 (1972) C4.
- 2 R. Nast, K.W. Krüger und G. Beck, Z. Anorg. Allg. Chem., 350 (1967) 177.
- 3 F. Hein und H. Pobloth, Z. Anorg. Allg. Chem., 248 (1941) 84.
- 4 F. Hein und E. Heuser, Z. Anorg. Allg. Chem., 255 (1947) 125.
- 5 O. Geisenberger, Dissertation TH München, 1942, zitiert in W. Hieber und R. Breu, Chem. Ber., 90 (1957) 1270.
- 6 A.G. Lee, The Chemistry of Thallium, Elsevier, Amsterdam/London/New York, 1971, S. 170.
- 7 H.-J. Haupt und F. Neumann, J. Organometal. Chem., 50 (1973) 63.
- 8 A.T.T. Hsieh, Inorg. Chim. Acta, 14 (1975) 87.
- 9 R.M.G. Roberts, J. Organometal. Chem., 40 (1972) 359.
- 10 H.R.H. Patil und W.A.G. Graham, Inorg. Chem., 5 (1966) 1401.
- 11 R.B. King, Inorg. Chem., 9 (1970) 1936.
- 12 J.M. Burlitch und T.W. Teyson, J. Chem. Soc. Dalton, (1974) 828.
- 13 R.B. King, K.H. Pannell, C.A. Eggers und L.W. Hauk, Inorg. Chem., 7 (1968) 2353.
- 14 J.P. Maher und D.F. Evans, Proc. Chem. Soc. (London), (1961) 208.
- 15 J.V. Hatton, J. Chem. Phys., 40 (1964) 933.
- 16 J.P. Maher und D.F. Evans, J. Chem. Soc., (1965) 637.
- 17 A.T. Weibel und J.P. Oliver, J. Organometal. Chem., 74 (1974) 155.
- 18 C.S. Hoad, R.W. Matthews, M.M. Thakur und D.G. Gillies, J. Organometal. Chem., 124 (1977) C31.
- 19 H.A. Bent, Chem. Rev., 61 (1961) 275.
- 20 J.P. Maher und D.F. Evans, J. Chem. Soc., (1963) 5534.
- 21 A.N. Nesmeyanov und R.A. Sokolik, Methoden der Elementorganischen Chemie, Verlag Nauka, Moskau, 1964, S. 451.
- 22 S.E. Pedersen, W.R. Robinson und D.P. Schussler, J. Chem. Soc., Chem. Commun., (1974) 805.
- 23 S.E. Pedersen, und W.R. Robinson, Inorg. Chem., 14 (1975) 2360.
- 24 A.J. Conway, G.J. Gainsford, R.R. Schrieke und J.D. Smith, J. Chem. Soc., Dalton, (1975) 2499.
- 25 A.J. Conway, P.B. Hitchcock und J.D. Smith, J. Chem. Soc., Dalton, (1975) 1945.
- 26 J.N. St. Denis, W. Butler, M.D. Glick und J.P. Oliver, J. Organometal. Chem., 129 (1977) 1.
- 27 A.T.T. Hsieh und M.J. Mays, J. Organometal. Chem., 37 (1972) 9.

- 28 R.M.G. Roberts, J. Organometal. Chem., 47 (1973) 359.
- 29 T.S. Piper und G. Wilkinson, J. Inorg. Nucl. Chem., 3 (1956) 104.
- 30 S.A. Keppie und M.F. Lappert, J. Organometal. Chem., 19 (1969) P5.
- 31 R.B. King, Organometal.Synth., Vol. 1, Academic Press, New York, London, 1965; dort weitere Literaturzitate.
- 32 B. Walther, A. Zschunke, B. Adler, A. Kolbe und S. Bauer, Z. Anorg. Allg. Chem., 427 (1976) 137.
- 33 A. Bainbridge, P.J. Craig und M. Green, J. Chem. Soc., A, (1968) 2715.
- 34 K.W. Barnett und P.M. Treichel, Inorg. Chem., 6 (1967) 294.
- 35 D.J. Cardin, S.A. Keppie und M.F. Lappert, J. Chem. Soc. A, (1970) 2594.
- 36 M.J. Mays und J.D. Robb, J. Chem. Soc. A, (1968) 329.
- 37 R.B. King und L.W. Houk, Can. J. Chem., 47 (1969) 2959.
- 38 R.B. King und F.G.A. Stone, Inorg. Synth., 7 (1962) 110.
- 39 H. Gilman und R.G. Jones, J. Amer. Chem. Soc., 61 (1939) 1513.