Journal of Organometallic Chemistry, 137 (1977) C28-C30 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

BASIC METALS

IV*. THE SYNTHESIS OF MONOCYCLOPENTADIENYLCOBALT COMPLEXES CONTAINING Co—Zn, Co—Cu, Co—Sn AND Co—Hg BONDS

K. DEY** and H. WERNER*

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg (B.R.D.)

(Received June 24th, 1977)

Summary

The pronounced Lewis basic character of the metal atom in $C_5H_5Co(PMe_3)_2$ is demonstrated by its reactions with $ZnCl_2/PMe_3$, $[(PMe_3)_2CuCl]_2$, $SnCl_4$, R_3SnCl (R = Me, Ph) and $HgCl_2$ which lead to stable monocyclopentadienylcobalt complexes containing Co-Zn, Co-Cu, Co-Sn and Co-Hg bonds.

The concept of transition-metal basicity [2] has only rarely been applied to half-sandwich type complexes $C_m H_m M L_n$ ($L = PR_3$, $P(OR)_3$, AsR_3 etc.). Monocyclopentadienyl-cobalt- and -rhodium-bis(phosphine) and -bis(phosphite) compounds have recently been prepared in our laboratories [1, 3] and thus allowed us to compare the reactivities of the compounds $C_5 H_5 M(CO)_2$, $C_5 H_5 M$ -[$P(OR)_3$]₂, and $C_5 H_5 M(PR_3)_2$ (M = Co, Rh) towards Lewis acids. The cobalt complex $C_5 H_5 Co(PMe_3)_2$ (I) [1] was by far to be the most reactive. On treatment with even weak acids HX, alkyl and acyl halides it forms the cations $[C_5 H_5 (PMe_3)_2 CoH]^+$, $[C_5 H_5 (PMe_3)_2 CoR]^+$ and $[C_5 H_5 (PMe_3)_2 CoC(O)R]^+$, which contain unusually stable Co-H and Co-C bonds [1, 4].

We have now investigated reactions of I with metal halide compounds known to behave as Lewis acids. In an attempt to develop a one-step-synthesis of I starting from $CoCl_2$, C_5H_5 Tl and excess PMe_3 , and using metallic zinc as the reducing agent, we isolated, along with I, $[C_5H_5(PMe_3)_2CoZnCl_2(PMe_3)]$ (II). This complex has also been synthesized by the reaction of I with $ZnCl_2$ and PMe_3 in THF/ether.

Complex II reacts with water (in absence of air) to give the known cation

^{*}For Part III see ref. 1.

^{**}Fellow of the Alexander-von-Humboldt Foundation 1977/78. On leave from the University of Kalyani, West Bengal (India).

 $[C_5H_5(PMe_3)_2CoH]^+$ [1], isolated as the PF₆ salt. The reaction of II with PMe₃ produces I and $(PMe_3)_2$ ZnCl₂ in quantitative yields. Although NMR data for II could not be obtained because of the instability of its solutions, the complex was fully characterized by elemental analysis and its mass spectrum.

[C_s H_s (PMe₃)₂ CoCuCl(PMe₃)₂] (III) structurally analogous to II was prepared by treatment of I with [(PMe₃)₂CuCl]₂ [5] at 10°C in benzene. The NMR spectrum (in CD₃NO₂) shows the expected resonances for the cyclopentadienyl protons at δ 5.0 ppm and for the PMe₃ protons bonded to Co at δ 1.13 ppm and bonded to Cu at δ 0.87 ppm.

Reactions of I with R_3SnCl and $SnCl_4$ give two types of product. With R_3SnCl (R = Me, Ph), in ether at $-70^{\circ}C$, oxidative addition occurs to give $[C_5H_5(PMe_3)_2-CoSnR_3]Cl$ (IV, R = Me; V, R = Ph). Metathetical reactions of IV and V with NH_4PF_6 in methanol yield the corresponding hexafluorophosphate salts $[C_5H_5(PMe_3)_2CoSnR_3]PF_6$ (VI, R = Me; VII, R = Ph). Elemental analysis, NMR data (VI: δ (ppm, CD_3NO_2) 5.02 (C_5H_5), t, J(PH) 0.9 Hz; 1.5 (PMe_3), virt.t; 0.66 ($PNMe_3$), s (with satellites), $PNMe_3$ ($PNMe_3$), the satellites ($PNMe_3$), the satellites ($PNMe_3$) (

SCHEME 1

1.0 Hz; 1.6 (PMe₃), virt.t; 7.5 (C₆H₅), m (60 MHz)) and conductivity measurements (VII: $\Lambda_{\rm M}$ 65.7 cm² mol⁻¹ Ω^{-1} , in CH₃NO₂ at 25°C) are in accord with the proposed structure.

With SnCl₄, on the other hand, I reacts under the same conditions to form a 1/1 adduct $[C_5H_5(PMe_3)_2CoSnCl_4]$ (VIII). Further reaction of VIII with a second mol of SnCl₄ in acetone at -70° C gives the most interesting compound $[C_5H_5(PMe_3)_2CoSnCl_3][SnCl_5]$ (IX) which is one of the rare examples of stabilization of an organometallic cation by the $SnCl_5^-$ anion (1H NMR of IX: δ (ppm in CD_3NO_2) 5.32 (C_5H_5), s; 1.44 (PMe_3), virt.t; Λ_M 89.3 cm² mol⁻¹ Ω^{-1} , in CH_3NO_2 at 25°C). It should be noted that the dicarbonyl complex $C_5H_5Co(CO)_2$ reacts with SnX_4 (X = Cl, Br, I) at room temperature to yield $[C_5H_5(CO)_2CoSnX_3(X)]$ [6], but in this case, it was not possible to isolate the Lewis acid/Lewis base adduct $[C_5H_5(CO)_2CoSnCl_4]$ formed before the elimination of one mol of CO.

Mercuric dichloride preferentially cleaves the Co—Sn bond in VI to give, along with Me₃SnCl, the complex [C₅H₅(PMe₃)₂CoHgCl]PF₆ (X), in about 60% yield. With I, HgCl₂ reacts to give a 1/1 adduct (XI), which rapidly decomposes in solution and probably possesses a similar structure to that of [C₅H₅(CO)₂CoHgCl₂] [7]. Scheme 1 summarises the results so far obtained on the reactions of C₅H₅Co-(PMe₃)₂ (I) with Lewis-acidic metal halides. It clearly demonstrates the strong Lewis basic behaviour of the metal atom in the half-sandwich type complex I.

Acknowledgements

We are grateful to the Alexander-von-Humboldt Foundation for awarding a Fellowship to one of us (K.D.). We thank the Deutsche Forschungsgemeinschaft for financial support, W. Hofmann for valuable discussions and Dr. W. Buchner, Dr. N. Pelz and P. Kneis for spectroscopic measurements.

References

- 1 H. Werner and W. Hofmann, Chem. Ber., 110 (1977) in press.
- 2 D.F. Shriver, Accounts Chem. Res., 3 (1970) 231.
- 3 V. Harder, J. Müller and H. Werner, Helv. Chim. Acta, 54 (1971) 1; H. Neukomm and H. Werner, ibid., 57 (1974) 1067; H. Werner and R. Feser, unpublished results.
- 4 H. Werner and W. Hofmann, unpublished results.
- 5 H. Schmidbaur, J. Adlkofer and K. Schwirten, Chem. Ber., 105 (1972) 3382.
- 6 R. Kummer and W.A.G. Graham, Inorg. Chem., 7 (1968) 523.
- 7 D.J. Cook, J.L. Dawes and R.D.W. Kemmitt, J. Chem. Soc. A, (1967) 1547; I.M. Nowell and D.R. Russell, Chem. Commun., (1967) 817.