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Summary

lggHg NMR spectra are reported for the complexes [MquL]NO3

containing either two- (e.g. L = pyridine) or three-coordinate
mercury (e.g. L = 2,2'-bipyridyl). For unidentate and bidentate
ligands of similar basicity chelation with bidentate Tigands to give
three-coordinate mercury results in upfie]d.shifts of ]ggHg
resonances from thét of the linear complexes. For complexes of

unidentate ligands shifts correlate with changes in base strength

of the ligands, and methyl substitution in the 2 position of pyridine



appears to~§es'uit in an upfield shift of ca. 30 ppm.  Effects of
jgsuhsttguttaa in the 2 posttncn are very strong 1n cemp!exes ef ‘

un:dentate 2- benzylpyrzdzne and 3,3° -dzmethyl-a 2'- bzpyrzdyl.

199 799Hg) shows the coup11n9

Compar1son of the Hg sh1fts w1th J( H-
constant to be 115ens1t1ve to subst1tut1on in the 2 pos1t1on in - -

Tinear complexes and is a function on]y of the ]1gand base strength.»r

Introduction

Methylmercury(II) complexes involving linear and three-coordinate mercury
have been reported recently [1-3]. Linear complexes [MeHgL]NO3 were obtained
with pyridine and substituted pyridines (I), and an X-ray crystal structure of
the 2,2'-bipyridyl complex (II) showed presence of unsymmetrical three-
coordinate mercury [3]. Methyl substituted 2,2'-bipyridyls and 1,10-
phenanthrolines gaveAcomplexes whose IH NMR spectra indicated structures
related to II, except for 3,3'-dimethyl-2,2'-bipyridyl (3,3'-dmbpy) which
functions as a unidentate (III) because steric interaction between 3,3"'-methyl

groups prevents coplanarity of the rings required for chelation [2].
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199, ) 199 .
Hg NMR spectra for these complexes have been measured, as Hg shifts
are very sensitive to the immediate environment of mercury [4-61, and might he

expected to yield empirical information about structures of the complexes.

Results and Discussion

199 1, 199

Ha}, and pKa of LH® are
199H

Comparisons of Hg NMR shifts, J(

given in Table 1 and Fig. 1. All of the complexes have § g
upfield from MeHgNO3, indicating increased shielding on coordination
cf 1igands.

In ]H NMR spectroscopic studies correlations between values of

31199

Hg) for a large range of MeHgX compounds and values of
stability constants of MeHgX [9-11], pKa of HX [10-15], or electro-
negativity of X [15,16] have been explained by assuming that the
relative magnitude of the coupling constant is due mainly to the

Fermi contact interaction, specified by the s-electron density on

the coupled nuclei and carbon [15,16]. An increase in electronegativity
of X is expected to increase the s character of the hybrid orbital of
mercury involved in bonding to carbon and to increase the effective
nuclear charge for the mercury 6s orbital resulting on a contraction

of that orbital [8,15,16]. These effects are consistent with the
increase in coupling constant observed with increasing electronegativity

99Hg) increases with decreasing pKa

of X. Thus, for [MeHgL]N03,J(1H—1
of LH+ with separate relationships for unidentate and bidentate

ligands, as a lower basicity of L corresponds to a greater “electro-
negativity" of the nitrogen donor atom of L [2] [Table 1, Fig. 1{a}].

199

Application of this approach to the Hg NMR results is not

straightforward. Thus, plots of & ]ggHg vs pKa of LH+ {Fig. 1{b}}]

]ggHg) fFig. 1{c)] give only approximately linear correlations

and J('H-
for the unidentate ligands, with 2-benzylpyridine (2-Bzlpy) and
3,3"'-dmbpy well removed from the correlations, and “correlations”

for the bidentate 1igands are poor.
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:TABLE 1

: NHR PARAHETERS FOR THE METHYLMERCURY GROUP IN COHPLEXES [MeHgL]NO3,
TDGETHER HITh pKa of’LH

vComplex ) _{J(?H-]ggﬂg)la’b 8 199ch pKa of LH+a
MeHgNO, ‘ ’ 251.8

[¥etg(py)INO, 229.6 -87 - 4.09
[“eHg(2-mpy) JNO, 7 227.9 -132 4.71
[MeHg(3-mpy)INO,; 228.2 -91 4.49
[Metg(4-mpy) INO, 227.5 T -98 4.72
[MeHg(2,4-dmpy) INO, 225.7 -148 5.44
[MeHg(2,6-dmpy ) INO 225.2 -171 5.28
[MeHg(2-Bz1py) INO, 3 229.6 -165 3.97
[MeKg(bpy)INO, 238.8 -236 3.18
[MeHg(s6., 6'-dmbpy)]N03-H20d 235.9 -255 3.99
[MeHg(5,5" -dmbpy) INO, 237.0 -229 3.76
[MeHg(4,4" -dmbpy) IO, 235.1 -278 3.97
[MeHg(3,3* -dmbpy) INO, 230.4 -187 3.59
[MeHg(phen) INO,E 239.8 -351 4.03

% From ref. 2. 0.1M solutions in CD,0D at 100 Miz.  Accuracy to
ca. *+ 0.5 Hz. The sign of the coupling constant is assumed to be
negative [7,8]. © ca. 0.1M solutions in CH30H. Shifts are ppm
upfieid from HeHgNOs. Accuracy to * 2 ppm. d 2-Bzipy =
2-benzylpyridine, 6,6'-dmbpy = 6,6'-dimethyi-2,2'-bipyridyi, other
ligands similarly abbreviated. € Complexes of methyl substituted
l,lb—phenahfhrolines [1,2] were insufficiently soluble for ]ggHg NMR.

In Fig. 1(b) the shifts for linear complexes reflect greater

shielding of mercury with the more basic ligands ( }, and suggest
that methyl substitution in the 2 position may also result in.an addi-
tional upfield shift of ca. 30 ppm as separate correlations can .be drawn
for py, 3-mpy, 4-mpy, and 2-mpy, 2,4-dmpy (---). Double substitution,

as in 2,6—dmpy, causes a further 30 ppm shift.

Two linear complexes, 2-Bzlpy and 3,3'-dmbpy, correlate neither
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with the other 1inear complexes nor with the chelated 1ligands, ana

]ggHg higher than complexes of unidentate ligands of

have values of &
similar'basicity. In addition to a possible effect from substitution

in the 2 position, as obsérved for methylpyridines, the high vatues may
indicate presence of a weak interaction between mercury and the aromatic
ring similar to that present in some y-substituted propyl mercurials,

e.g. CIHGCH,C(Me)(OMe)CH,(p-0MePh) which has Kg...Ph 3.05A [17], and
suggested by Sens et al. to account for the 199Hg resonance of Me,Hg

in benzene (50.4 ppm upfield from neat Me,Hg [61). Increased shielding
of the MeHg({II) proton in these complexes (0.26-0.51 ppm upfield from

all other cemplexes [2]) can then be explained as a result of a diamagnetic

ring current effect with the aromatic ring interacting with mercury and

thus close to the methyl group.

The correlation between & ]99Hg and-J(]H—lggHg) for linear complexes
is as expected [Fig. 1(c)]. Complexes with a greater effective nuclear
199

charge on mercury, i.e. ones with lower & Hg and lower pKa of LH+,

have higher values of J(]H-lggﬂg). The complexes of 2-Bzlpy and 3,3'-

dmbpy are again exceptions, but when J(]H-]ggHg) is plotted against pKa

these complexes conform with the other 1inear complexes. This suggests

that J('u-199

199

Hg) is insensitive to some of the factors determining the
Hg chemical shift, in particular, substitution in the 2 position of
pyridine.

The bpy, 6,6'-dmbpy, 5,5'-dmbpy, and 4,4'-dmbpy and phen ligands
have been shown by 1H NMR spectroscopy to give three-coordinate mercury

[2]. For these complexes the shifts correlate less well with pKa, and

3(n199

atom is more shielded. As for the complexes of 2-Bzlpy and 3,3'-dmbpy
199

Hg) is higher than for linear complexes although the mercury

J(]H- Hg) may be insensitive to some of the factors determining the

199Hg chemical shift.
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Exgérimentéi

wgﬂg spectra were obtamed at 16 08 MHz .ona Bruker Hx-90

 The
' mod'lﬁed for mu'ltl-nuclear operatmn, usmg the PFI’ techmque. Hoch-
ﬁcatwns cons1sted of add1t1on of a Bruxer Hu‘lh-nuc‘lear Access;ory
comb‘med mth a Schomandl frequency synthesuer t_ype ND 'IOCM (300 Hz -
100 HHz)_. An external DZO Tock was used an_d a'l’l- spectra were prfoton
noiSerdecouplc_d. Spectra were recorded using a 90° pulse (ca. 18 pcec),

5000 Hz sweep width, 2.4 or 8K data points giving pulse repeat times of

a)
240 o
3 0
= @
I 2354 o)
=
~
X
= 230-
2051
1 . |
3 4 5

pKa of LH™

Fig. 1. Relationship between (a) |3('H-'%%g)| and pKa of LH,
() & "9%g and pka of LH', (c) |3('H-1%%g)| and & '%%Hg in the
complexes [lieHgL]N03, where L = pyridines @), 2.2'-bipyridyls @),
and. 1,10-phenanthrolines (@). Least-squares lines are drawn for
each groub'of 1_igandrs:, with 3,3'-dmbpy excluded in (a). and both
3,3'-dnbpy and 2-Bzlpy excluded in (b) and {c).
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2 4,,or' 8 sees respectwely. cnennca] smfts are’ referred, for '{ j.”_

comvemence, to external Heﬁgﬂ03 in CH30H. ’4
Aspectroscopxc grade methanol.- cOncentrat1on effects on sh1fts,
although not1ceab1e, have been 1gnored as these are not s1gn1f1cant

conpared wrth,the range ofrshtfts between’ compounds.
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