THE MOLECULAR STRUCTURE OF π-(TRICARBONYLCHROMIUM)TOLUENE

F. van MEURS * and H. van KONINGSVELD
Laboratory of Organic Chemistry, Delft University of Technology, Julianalaan 136, Delft-2208 (The Netherlands)

(Received November 5th, 1976)

Summary

The molecular structure of π-(tricarbonylchromium)toluene, $\mathrm{CrC}_{10} \mathrm{H}_{3} \mathrm{O}_{3}$, has been determined from three-dimensional X-ray data. The orthorhombic unit-cell, $P 22_{1} 2_{1}$, with $a=11.109(4), b=7.231(3)$ and $c=12.206(4) \AA$, contains four molecules. Refinement converged to a final weighted R-index of 4.1% for 1163 observed reflexions. The orientation of the tricarbonylchromium group is nearly eclipsed with respect to the carbon atoms $\mathbf{C}(1), \mathrm{C}(3)$ and $\mathrm{C}(5)$.

Introduction

NMR data of monoalkylsubstituted π-(tricarbonylchromium)benzenes have been analysed in terms of a rapid equilibrium between conformers I and II [1-3]. As a reference compound for conformer II (1'-t-butyl-2', 2^{\prime}-dimethylpropyl)- π -

(tricarbonylchromium)benzene ($\mathrm{R}=\mathrm{CH}-\mathrm{t}-\mathrm{Bu}_{2}$) was used [3]; a recent X-ray analysis of this compound [4] showed the orientation of the $\operatorname{Cr}(\mathrm{CO})_{3}$ group with respect to the arene ring to deviate by about 15° from the assumed position. The ${ }^{1} \mathrm{H}$ NMR study [3] revealed that the population of conformer I in the conformational mixture is most predominant if $R=\mathrm{Me}\left(\Delta \mathrm{G}^{0} \sim 0.5 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. To compare this result with the conformation of the $\mathrm{Cr}(\mathrm{CO})_{3}$ group in π-(tricarbonylchromium)toluene in the solid state, the present X -ray investigation was started.
TABLE 1
FINAL ATOMIC COOLDINATES AND THERMAL PARAMETERS
The fractional atomic eoordinates have been mulliphled by 10^{5} for Cr , by 10^{2} for C and O , and by 10^{3} for in. Tho isotropic factors U are in $\AA^{2} \times 10^{3}$, The $U_{i j}$ coefficients ($\lambda^{2} \times 10^{4}$ for Cr and $\mathrm{K}^{2} \times 10^{3}$ for C and 0) are glven hy the expression: oxp $\left[-2 n^{2}\left(h^{2} a * 2 U_{11}+k^{2} b * 2 U_{22}+l^{2} c+2 U_{33}+h h a * b * U_{12}\right.\right.$ $\left.\left.+h i a^{*} c^{*} U_{13}+h h h^{*} c^{*} U_{23}\right)\right]$

	x / a	y / b	z / c	U_{11} or U	U_{22}	$U_{3,3}$	U_{12}	U_{13}	U_{23}
Cr	22490(6)	8634(7)	18303(4)	378(3)	319(3)	360(3)	40(2)	$35(2)$	-2(2)
C(1)	$2738(4)$	$3059(5)$	1740(3)	68(2)	$31(2)$	65(2)	0 (2)	14(2)	2(2)
C(2)	2636 (5)	3446(6)	2833(3)	677(3)	42(2)	47(2)	1(2)	-7(2)	-10(2)
C(3)	1014(5)	2617 (6)	3223(4)	98(4)	46(2)	40(2)	8(2)	24(3)	$-5(2)$
C(4)	631(5)	2288(7)	2560(4)	$54(2)$	61 (3)	92(1)	10(2)	28(3)	-10(3)
C(b)	717(b)	2792(7)	$1466(4)$	5503)	57(3)	$88(4)$	22(2)	$-18(3)$	-10(3)
C(6)	1730(5)	3622(6)	1044(4)	$85(3)$	40(2)	48(2)	21(2)	$-5(2)$	4(2)
C(7)	$3711(4)$	$465(6)$	1227(4)	$52(2)$	42(2)	66(3)	$7(2)$	15(2)	4(2)
C(8)	2471(4)	-918(6)	2805(3)	06(3)	44(2)	43(2)	$8(2)$	3(2)	-3(2)
$\mathrm{C}(9)$	1897(4)	-696(6)	872(3)	$53(2)$	45(2)	42(2)	1(2)	3(2)	$-0(2)$
C(11)	3854(7)	$4873(8)$	1303(8)	103(5)	52(3)	134(6)	-16(3)	61(5)	0 (1)
O(7)	$40.433)$	153(5)	818(4)	60(2)	87(3)	121(3)	14(2)	43(2)	10(2)
$0(8)$	$2605(4)$	-2126(6)	3411(3)	141(4)	57(2)	68(2)	$18(2)$	$2(2)$	22(2)
O(9)	1208(4)	--1744(5)	268(3)	95(2)	74(2)	62(2)	$-13(2)$	- -3(2)	-23(2)
H(2)	322(4)	363(6)	$310(4)$	52					
H(3)	141(4)	220(7)	387(4)	64					
11(4)	-1(4)	173(6)	302(3)	65					
H(5)	$8(4)$	262(7)	$115(4)$	67					
H(6)	185(4)	384(6)	29 (4)	57					
H(11.1)	398(6)	604(8)	144(5)	07					
Il(112)	405(6)	447(10)	71(G)	07					
Il(113)	108(6)	425 (B)	145(5)	97					

Experimental

The preparation and some physical properties of π-(tricarbonylchromium)toluene have been previously described [3,5]. Crystals of the title compound were grown from nonane at room temperature. The crystal selected for X-ray analysis measured approximately 0.4 mm along the a, b and c directions.

Preliminary Weissenberg photographs, taken with $\mathrm{Cu}-K_{\alpha}$ radiation, showed orthorhombic diffraction symmetry and the systematic extinctions of $P 2_{1} 2_{1} 2_{1}$. The unit-cell dimensions, deduced from measurements on a Nonius automatic single-crystal diffractometer CAD-3, are $a=11.109(4), b=7.231$ (3) and $c=12.206(4) \AA$ (Mo- $K_{\alpha_{1}}=0.70926 \AA$). The unit-cell contains four molecules.

The crystal was mounted about the b-axis. The intensities were measured, up to $\theta=27^{\circ}$, using Mo- K_{α} radiation and a graphite monochromator. High intensities were reduced by nickel filters. From the 1259 measured reflexions 1168 were significantly ($>2.850(\eta)$) different from the background intensity. In the reduction of intensities to structure factors no correction for absorption was made $\left(\mu\left(\mathrm{Mo}-K_{\alpha}\right)=11.81 \mathrm{~cm}^{-1}\right)$.

Structure determination and refinement

All computations were made on an IBM 370/158 computer, using the computer programs from XRAY 72 [6]. The atomic scattering factors used were taken from The International Tables for X-ray Crystallography [7] for chromium(0) and from XRAY 72 for the other atoms. Anomalous scattering factors of chromium(0) [8] were used in the final stages of the refinement.

The structure has been determined using the heavy atom method. All hydrogen atoms were located in a difference map. Five strong low-order reflexions, which were subject to extinction, were rejected. Full matrix refinement of positional parameters of all atoms, anisotropic thermal parameters for the non-hydrogen atoms and fixed isotropic thermal parameters for the hydrogen atoms led to a final R index ($\Sigma_{\mathrm{i}}\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\left|/ \Sigma_{\mathrm{i}} F_{\mathrm{o}}\right| \times 100$) of 4.1 for 1163 independent non-zero reflexions. However, refinement of the positional parameters of the hydrogen atoms resulted in $\mathrm{C}-\mathrm{H}$ distances ranging from 0.57 to $1.21 \AA$. The refinement was repeated using weights equal to $1 / \sigma^{2}\left(F_{0}\right)$. The positional parameters of the hydrogen atoms changed drastically, resulting in more realistic $\mathrm{C}-\mathrm{H}$ distances: from 0.73 to 1.03 A . The positional parameters of Cr changed less than $0.001 \AA$ and those of C and O less than $0.03 \AA$. The standard deviations of the bond lengths decreased by about 45%. Therefore, we believe this refinement to be more reliable than the rerinement using unit-weights. The ratios of shifts to estimated standard deviations in the last least-squares cycle (weighted $R=4.1 \%$), including all parameters refined, were less than 0.63. A final difference Fourier synthesis showed a residual density between -0.44 and $+0.23 e^{-3}$. Final positional and thermal parameters of the atoms in the absolute configuration $\%$ and their estimated standard deviations are listed in Table $1 * *$.

[^0]

Fig. 1. ORTEP drawings of π-(tricarbonylchromium)toluene in the absolute configuration. Ellipsoids are 50% probability surfaces.

Structure description and discussion

General

The geometry of the molecule, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3} \mathrm{Cr}(\mathrm{CO})_{3}$, is depicted in Fig. 1, which also illustrates the anisotropy of the thermal motions of the toluene ligand. Ignoring the anomalous thermal behaviour of $C(2) *$, it looks like the aromatic ligand librates around the threefold axis of the $\operatorname{Cr}(\mathrm{CO})_{3}$ moiety. No correction for the suggested libration was applied, because the data obtained are considered to be sufficiently accurate for our purpose.

The bond lengths, valenceiangles and some interatomic distances in π-(tricarbonylchromium)toluene are given in Fig. 2 and Table 2.

The aromatic ring is planar within experimental error. The distances of the atoms from the least-squares plane through the ring carbon atoms are given in Fig. 3. The angle between the plane through the oxygen atoms and the ring plane is 0.9°. The local symmetry of the $\mathrm{Cr}(\mathrm{CO})_{3}$ group is nearly $C_{3 u} * *$.

Conformational preference of the tricarbonylchromium group

The $\mathrm{Cr}(\mathrm{CO})_{3}$ group adopts a nearly eclipsed conformation (I) with respect to the carbon atoms $C(1), C(3)$ and $C(5)$. The average deviation from perfect eclipsing is 2.2°. It is promising that the conformation found in the crystal is in agreement with both valence-bond considerations [4,9] and results obtained from NMR [1-3] for solutions.

In order to investigate whether a conformational equilibrium between conformations I and II or merely a vibration around an intermediate conformation (depencling on the size of R) is involved in solution, we have started the X -ray analysis of some other compounds in this class ($R=i-\operatorname{Pr}$ and $R=t-B u$).

[^1]

Fig. 2. Fond lengths and angles in π-(tricarbonylchromium)toluene.

Fig. 3. Distances of the atoms from the least-squares plane through the ring carbons in π-(tricarbonylchromium)toluene.

TABLE 2
SOME INTERATOMC DISTANCES IN π-(TRICARBONYLCHROMIUM)TOLUENE
(esd's in parentheses)

Atoms	Distance (A)	Atoms	Distance (A)	Atoms	Distance (A)
$C r-C(1)$	$2.236(4)$	$C r-C(4)$	$2.217(5)$	$C r-O(7)$	$2.979(4)$
$C r-C(2)$	$2.209(4)$	$C r-C(5)$	$2.203(5)$	$C r-O(8)$	$2.971(4)$
$C r-C(3)$	$2.186(5)$	$C r-C(6)$	$2.229(4)$	$C r-O(9)$	$2.975(4)$

Acknowledgement

The authors wish to thank Prof. H. van Bekkum for his interest and discussions.

References

1 W.R. Jackson, W.s. Jennings, S.C. Rennison and R. Spratt, J. Chem. Soc. B, (1969) 1214; C. Segard, B. Roques. C. Pommier and G. Guiochon. Anal. Chem., 43 (1971) 1146.
2 B. Roques, C. Segard, S. Combrisson and F. Wehri, J. Organometal. Chem.. 73 (1974) 327 : W.R. Jackson, C.F. Pincombe, I.D. Rae and S. Thapebinkarm, Aust. J. Ghem., 28 (1975) 1535.
3 F. van Meurs, J.M. van der Toorn and H. van Bekkum, J. Organometal. Chem., 113 (1976) 341.
4 F. vin Meurs and H. van Koningrveld, J. Onganometal. Chem., 118 (1976) 295.
5 F. van Meurs, J.M.A. Baas and H. van Belckum, J. Organometal. Chem., 113 (1976) 353.
6 J.MI. Stewart. G.J. Kruger. Hi.L. Ammon, C. Dickinson and S.R. Hall, The XRAY System, 1972, Chem. Depi.. University of Marshand, U.S.A.
7 Inte:national Tables for X-ray Crystallography, Vol. 11£, Kynoch Press, Birmingham, 1968, p. 204.
8 International Tables ior X-ray Crystallography, Vol IV, Kynoch Press, Birmingham, 1974 , p. 149.
9 O.L. Carter, A.T. MePhail and G.A. Sim, Chem. Commun., (1966) 212.

[^0]: * An analogous refinement using positional parameters $-x, \rightarrow,=z$ yields an R index of 4.5%.
 ** A table of structure fectors may be obtained from the authors.

[^1]: * Wie were unable to explain the very short $\mathrm{C}(2)-\mathrm{H}(2)$ bond length (0.73 K), which might affect the thermal behaviour of $C(2)$.
 ** Cf. also ref. 5.

